1
|
Do C, Jiang G, Cova G, Katsifis CC, Narducci DN, Sakellaropoulos T, Vidal R, Lhoumaud P, Tsirigos A, Regis FFD, Kakabadze N, Nora EP, Noyes M, Hansen AS, Skok JA. Brain and cancer associated binding domain mutations provide insight into CTCF's relationship with chromatin and its contribution to gene regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575070. [PMID: 38370764 PMCID: PMC10871189 DOI: 10.1101/2024.01.11.575070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Here we used a series of CTCF mutations to explore CTCF's relationship with chromatin and its contribution to gene regulation. CTCF's impact depends on the genomic context of bound sites and the unique binding properties of WT and mutant CTCF proteins. Specifically, CTCF's signal strength is linked to changes in accessibility, and the ability to block cohesin is linked to its binding stability. Multivariate modelling reveals that both CTCF and accessibility contribute independently to cohesin binding and insulation, however CTCF signal strength has a stronger effect. CTCF and chromatin have a bidirectional relationship such that at CTCF sites, accessibility is reduced in a cohesin-dependent, mutant specific fashion. In addition, each mutant alters TF binding and accessibility in an indirect manner, changes which impart the most influence on rewiring transcriptional networks and the cell's ability to be reprogrammed. Collectively, the mutant perturbations provide a rich resource for determining CTCF's site-specific effects.
Collapse
|
2
|
Do C, Jiang G, Cova G, Katsifis CC, Narducci DN, Yang J, Sakellaropoulos T, Vidal R, Lhoumaud P, Tsirigos A, Regis FFD, Kakabadze N, Nora EP, Noyes M, Cheng X, Hansen AS, Skok JA. Brain and cancer associated binding domain mutations provide insight into CTCF's relationship with chromatin and its ability to act as a chromatin organizer. RESEARCH SQUARE 2024:rs.3.rs-4670379. [PMID: 39070636 PMCID: PMC11275995 DOI: 10.21203/rs.3.rs-4670379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although only a fraction of CTCF motifs are bound in any cell type, and approximately half of the occupied sites overlap cohesin, the mechanisms underlying cell-type specific attachment and ability to function as a chromatin organizer remain unknown. To investigate the relationship between CTCF and chromatin we applied a combination of imaging, structural and molecular approaches, using a series of brain and cancer associated CTCF mutations that act as CTCF perturbations. We demonstrate that binding and the functional impact of WT and mutant CTCF depend not only on the unique properties of each protein, but also on the genomic context of bound sites. Our studies also highlight the reciprocal relationship between CTCF and chromatin, demonstrating that the unique binding properties of WT and mutant proteins have a distinct impact on accessibility, TF binding, cohesin overlap, chromatin interactivity and gene expression programs, providing insight into their cancer and brain related effects.
Collapse
Affiliation(s)
- Catherine Do
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Guimei Jiang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Giulia Cova
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Christos C Katsifis
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Domenic N Narducci
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Theodore Sakellaropoulos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Raphael Vidal
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Priscillia Lhoumaud
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Applied Bioinformatics Laboratories, Office of Science & Research, NYU Grossman School of Medicine, New York, NY, USA
| | - Faye Fara D Regis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nata Kakabadze
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Elphege P Nora
- Cardiovascular Research Institute, and Department of Biochemistry and Biophysics, University of California San Francisco, CA, USA
| | - Marcus Noyes
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Anders S Hansen
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Jane A Skok
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
3
|
Chen D, Keremane S, Wang S, Lei EP. CTCF regulates global chromatin accessibility and transcription during rod photoreceptor development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596084. [PMID: 38853900 PMCID: PMC11160664 DOI: 10.1101/2024.05.27.596084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chromatin architecture facilitates accurate transcription at a number of loci, but it remains unclear how much chromatin architecture is involved in global transcriptional regulation. Previous work has shown that rapid depletion of the architectural protein CTCF in cell culture strongly alters chromatin organization but results in surprisingly limited gene expression changes. This discrepancy has also been observed when other architectural proteins are depleted, and one possible explanation is that full transcriptional changes are masked by cellular heterogeneity. We tested this idea by performing multi-omics analyses with sorted post-mitotic mouse rods, which undergo synchronized development, and identified CTCF-dependent regulation of global chromatin accessibility and gene expression. Depletion of CTCF leads to dysregulation of ∼20% of the entire transcriptome (>3,000 genes) and ∼41% of genome accessibility (>26,000 sites), and these regions are strongly enriched in euchromatin. Importantly, these changes are highly enriched for CTCF occupancy, suggesting direct CTCF binding and transcriptional regulation at these active loci. CTCF mainly promotes chromatin accessibility of these direct binding targets, and a large fraction of these sites correspond to promoters. At these sites, CTCF binding frequently promotes accessibility and inhibits expression, and motifs of transcription repressors are found to be significantly enriched. Our findings provide different and often opposite conclusions from previous studies, emphasizing the need to consider cell heterogeneity and cell type specificity when performing multi-omics analyses. We conclude that the architectural protein CTCF binds chromatin and regulates global chromatin accessibility and transcription during rod development.
Collapse
|
4
|
Friedman MJ, Wagner T, Lee H, Rosenfeld MG, Oh S. Enhancer-promoter specificity in gene transcription: molecular mechanisms and disease associations. Exp Mol Med 2024; 56:772-787. [PMID: 38658702 PMCID: PMC11058250 DOI: 10.1038/s12276-024-01233-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024] Open
Abstract
Although often located at a distance from their target gene promoters, enhancers are the primary genomic determinants of temporal and spatial transcriptional specificity in metazoans. Since the discovery of the first enhancer element in simian virus 40, there has been substantial interest in unraveling the mechanism(s) by which enhancers communicate with their partner promoters to ensure proper gene expression. These research efforts have benefited considerably from the application of increasingly sophisticated sequencing- and imaging-based approaches in conjunction with innovative (epi)genome-editing technologies; however, despite various proposed models, the principles of enhancer-promoter interaction have still not been fully elucidated. In this review, we provide an overview of recent progress in the eukaryotic gene transcription field pertaining to enhancer-promoter specificity. A better understanding of the mechanistic basis of lineage- and context-dependent enhancer-promoter engagement, along with the continued identification of functional enhancers, will provide key insights into the spatiotemporal control of gene expression that can reveal therapeutic opportunities for a range of enhancer-related diseases.
Collapse
Affiliation(s)
- Meyer J Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tobias Wagner
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haram Lee
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Michael G Rosenfeld
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Soohwan Oh
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
| |
Collapse
|