1
|
Carrillo E, Montaño Romero A, Gonzalez CU, Turcu AL, Chen SR, Chen H, Pan HL, Vázquez S, Twomey EC, Jayaraman V. Memantine Inhibits Calcium-Permeable AMPA Receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601784. [PMID: 39005433 PMCID: PMC11245036 DOI: 10.1101/2024.07.02.601784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Memantine is an US Food and Drug Administration (FDA) approved drug that selectively inhibits NMDA-subtype ionotropic glutamate receptors (NMDARs) for treatment of dementia and Alzheimer's. NMDARs enable calcium influx into neurons and are critical for normal brain function. However, increasing evidence shows that calcium influx in neurological diseases is augmented by calcium-permeable AMPA-subtype ionotropic glutamate receptors (AMPARs). Here, we demonstrate that these calcium-permeable AMPARs (CP-AMPARs) are inhibited by memantine. Electrophysiology unveils that memantine inhibition of CP-AMPARs is dependent on their calcium permeability and the presence of their neuronal auxiliary subunit transmembrane AMPAR regulatory proteins (TARPs). Through cryo-electron microscopy we elucidate that memantine blocks CP-AMPAR ion channels in a unique mechanism of action from NMDARs. Furthermore, we demonstrate that memantine reverses a gain of function AMPAR mutation found in a patient with a neurodevelopmental disorder and inhibits CP-AMPARs in nerve injury. Our findings alter the paradigm for the memantine mechanism of action and provide a blueprint for therapeutic approaches targeting CP-AMPARs.
Collapse
Affiliation(s)
- Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alejandra Montaño Romero
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Cuauhtemoc U. Gonzalez
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Andreea L. Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | | | - Hong Chen
- MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Edward C. Twomey
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Beckman Center for Cryo-EM at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70170, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
2
|
Du R, Wang P, Tian N. CD3ζ-Mediated Signaling Protects Retinal Ganglion Cells in Glutamate Excitotoxicity of the Retina. Cells 2024; 13:1006. [PMID: 38920637 PMCID: PMC11201742 DOI: 10.3390/cells13121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Excessive levels of glutamate activity could potentially damage and kill neurons. Glutamate excitotoxicity is thought to play a critical role in many CNS and retinal diseases. Accordingly, glutamate excitotoxicity has been used as a model to study neuronal diseases. Immune proteins, such as major histocompatibility complex (MHC) class I molecules and their receptors, play important roles in many neuronal diseases, while T-cell receptors (TCR) are the primary receptors of MHCI. We previously showed that a critical component of TCR, CD3ζ, is expressed by mouse retinal ganglion cells (RGCs). The mutation of CD3ζ or MHCI molecules compromises the development of RGC structure and function. In this study, we investigated whether CD3ζ-mediated molecular signaling regulates RGC death in glutamate excitotoxicity. We show that mutation of CD3ζ significantly increased RGC survival in NMDA-induced excitotoxicity. In addition, we found that several downstream molecules of TCR, including Src (proto-oncogene tyrosine-protein kinase) family kinases (SFKs) and spleen tyrosine kinase (Syk), are expressed by RGCs. Selective inhibition of an SFK member, Hck, or Syk members, Syk or Zap70, significantly increased RGC survival in NMDA-induced excitotoxicity. These results provide direct evidence to reveal the underlying molecular mechanisms that control RGC death under disease conditions.
Collapse
Affiliation(s)
- Rui Du
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ping Wang
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84132, USA
- Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| |
Collapse
|
3
|
Coombs I, Bats C, Sexton CA, Studniarczyk D, Cull-Candy SG, Farrant M. Enhanced functional detection of synaptic calcium-permeable AMPA receptors using intracellular NASPM. eLife 2023; 12:e66765. [PMID: 37042655 PMCID: PMC10168695 DOI: 10.7554/elife.66765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/11/2023] [Indexed: 04/13/2023] Open
Abstract
Calcium-permeable AMPA-type glutamate receptors (CP-AMPARs) contribute to many forms of synaptic plasticity and pathology. They can be distinguished from GluA2-containing calcium-impermeable AMPARs by the inward rectification of their currents, which reflects voltage-dependent channel block by intracellular spermine. However, the efficacy of this weakly permeant blocker is differentially altered by the presence of AMPAR auxiliary subunits - including transmembrane AMPAR regulatory proteins, cornichons, and GSG1L - which are widely expressed in neurons and glia. This complicates the interpretation of rectification as a measure of CP-AMPAR expression. Here, we show that the inclusion of the spider toxin analog 1-naphthylacetyl spermine (NASPM) in the intracellular solution results in a complete block of GluA1-mediated outward currents irrespective of the type of associated auxiliary subunit. In neurons from GluA2-knockout mice expressing only CP-AMPARs, intracellular NASPM, unlike spermine, completely blocks outward synaptic currents. Thus, our results identify a functional measure of CP-AMPARs, that is unaffected by their auxiliary subunit content.
Collapse
Affiliation(s)
- Ian Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Cécile Bats
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Craig A Sexton
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Dorota Studniarczyk
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Stuart G Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
4
|
Sladek AL, Thoreson WB. Using optogenetics to dissect rod inputs to OFF ganglion cells in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1146785. [PMID: 37426783 PMCID: PMC10327572 DOI: 10.3389/fopht.2023.1146785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Introduction Light responses of rod photoreceptor cells traverse the retina through three pathways. The primary pathway involves synapses from rods to ON-type rod bipolar cells with OFF signals reaching retinal ganglion cells (RGCs) via sign-inverting glycinergic synapses. Secondly, rod signals can enter cones through gap junctions. Finally, rods can synapse directly onto cone OFF bipolar cells. Methods To analyze these pathways, we obtained whole cell recordings from OFF-type α RGCs in mouse retinas while expressing channelrhodopsin-2 in rods and/or cones. Results Optogenetic stimulation of rods or cones evoked large fast currents in OFF RGCs. Blocking the primary rod pathway with L-AP4 and/or strychnine reduced rod-driven optogenetic currents in OFF RGCs by ~1/3. Blocking kainate receptors of OFF cone bipolar cells suppressed both rod- and cone-driven optogenetic currents in OFF RGCs. Inhibiting gap junctions between rods and cones with mecloflenamic acid or quinpirole reduced rod-driven responses in OFF RGCs. Eliminating the exocytotic Ca2+ sensor, synaptotagmin 1 (Syt1), from cones abolished cone-driven optogenetic responses in RGCs. Rod-driven currents were not significantly reduced after isolating the secondary pathway by eliminating Syt1 and synaptotagmin 7 (Syt7) to block synaptic release from rods. Eliminating Syt1 from both rods and cones abolished responses to optogenetic stimulation. In Cx36 KO retinas lacking rod-cone gap junctions, optogenetic activation of rods evoked small and slow responses in most OFF RGCs suggesting rod signals reached them through an indirect pathway. Two OFF cells showed faster responses consistent with more direct input from cone OFF bipolar cells. Discussion These data show that the secondary rod pathway supports robust inputs into OFF α RGCs and suggests the tertiary pathway recruits both direct and indirect inputs.
Collapse
Affiliation(s)
- Asia L. Sladek
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, United States
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
5
|
Percival KA, Gayet J, Khanjian R, Taylor WR, Puthussery T. Calcium-permeable AMPA receptors on AII amacrine cells mediate sustained signaling in the On-pathway of the primate retina. Cell Rep 2022; 41:111484. [PMID: 36223749 PMCID: PMC10518213 DOI: 10.1016/j.celrep.2022.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022] Open
Abstract
Midget and parasol ganglion cells (GCs) represent the major output channels from the primate eye to the brain. On-type midget and parasol GCs exhibit a higher background spike rate and thus can respond more linearly to contrast changes than their Off-type counterparts. Here, we show that a calcium-permeable AMPA receptor (CP-AMPAR) antagonist blocks background spiking and sustained light-evoked firing in On-type GCs while preserving transient light responses. These effects are selective for On-GCs and are occluded by a gap-junction blocker suggesting involvement of AII amacrine cells (AII-ACs). Direct recordings from AII-ACs, cobalt uptake experiments, and analyses of transcriptomic data confirm that CP-AMPARs are expressed by primate AII-ACs. Overall, our data demonstrate that under some background light levels, CP-AMPARs at the rod bipolar to AII-AC synapse drive sustained signaling in On-type GCs and thus contribute to the more linear contrast signaling of the primate On- versus Off-pathway.
Collapse
Affiliation(s)
- Kumiko A Percival
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jacqueline Gayet
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA 94720-2020, USA
| | - Roupen Khanjian
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - W Rowland Taylor
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA 94720-2020, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-2020, USA
| | - Teresa Puthussery
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA 94720-2020, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-2020, USA.
| |
Collapse
|
6
|
Van Hook MJ. Influences of Glaucoma on the Structure and Function of Synapses in the Visual System. Antioxid Redox Signal 2022; 37:842-861. [PMID: 35044228 PMCID: PMC9587776 DOI: 10.1089/ars.2021.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022]
Abstract
Significance: Glaucoma is an age-related neurodegenerative disorder of the visual system associated with sensitivity to intraocular pressure (IOP). It is the leading irreversible cause of vision loss worldwide, and vision loss results from damage and dysfunction of the retinal output neurons known as retinal ganglion cells (RGCs). Recent Advances: Elevated IOP and optic nerve injury triggers pruning of RGC dendrites, altered morphology of excitatory inputs from presynaptic bipolar cells, and disrupted RGC synaptic function. Less is known about RGC outputs, although evidence to date indicates that glaucoma is associated with altered mitochondrial and synaptic structure and function in RGC-projection targets in the brain. These early functional changes likely contribute to vision loss and might be a window into early diagnosis and treatment. Critical Issues: Glaucoma affects different RGC populations to varying extents and along distinct time courses. The influence of glaucoma on RGC synaptic function as well as the mechanisms underlying these effects remain to be determined. Since RGCs are an especially energetically demanding population of neurons, altered intracellular axon transport of mitochondria and mitochondrial function might contribute to RGC synaptic dysfunction in the retina and brain as well as RGC vulnerability in glaucoma. Future Directions: The mechanisms underlying differential RGC vulnerability remain to be determined. Moreover, the timing and mechanisms of RGCs synaptic dysfunction and degeneration will provide valuable insight into the disease process in glaucoma. Future work will be able to capitalize on these findings to better design diagnostic and therapeutic approaches to detect disease and prevent vision loss. Antioxid. Redox Signal. 37, 842-861.
Collapse
Affiliation(s)
- Matthew J. Van Hook
- Department of Ophthalmology & Visual Science and Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Cellular & Integrative Physiology, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
7
|
Boal AM, McGrady NR, Risner ML, Calkins DJ. Sensitivity to extracellular potassium underlies type-intrinsic differences in retinal ganglion cell excitability. Front Cell Neurosci 2022; 16:966425. [PMID: 35990894 PMCID: PMC9390602 DOI: 10.3389/fncel.2022.966425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal type-specific physiologic heterogeneity can be driven by both extrinsic and intrinsic mechanisms. In retinal ganglion cells (RGCs), which carry visual information from the retina to central targets, evidence suggests intrinsic properties shaping action potential (AP) generation significantly impact the responses of RGCs to visual stimuli. Here, we explored how differences in intrinsic excitability further distinguish two RCG types with distinct presynaptic circuits, alpha ON-sustained (αON-S) cells and alpha OFF-sustained (αOFF-S) cells. We found that αOFF-S RGCs are more excitable to modest depolarizing currents than αON-S RGCs but excitability plateaued earlier as depolarization increased (i.e., depolarization block). In addition to differences in depolarization block sensitivity, the two cell types also produced distinct AP shapes with increasing stimulation. αOFF-S AP width and variability increased with depolarization magnitude, which correlated with the onset of depolarization block, while αON-S AP width and variability remained stable. We then tested if differences in depolarization block observed in αON-S and αOFF-S RGCs were due to sensitivity to extracellular potassium. We found αOFF-S RGCs more sensitive to increased extracellular potassium concentration, which shifted αON-S RGC excitability to that of αOFF-S cells under baseline potassium conditions. Finally, we investigated the influence of the axon initial segment (AIS) dimensions on RGC spiking. We found that the relationship between AIS length and evoked spike rate varied not only by cell type, but also by the strength of stimulation, suggesting AIS structure alone cannot fully explain the observed differences RGC excitability. Thus, sensitivity to extracellular potassium contributes to differences in intrinsic excitability, a key factor that shapes how RGCs encode visual information.
Collapse
|
8
|
Differential susceptibility of retinal ganglion cell subtypes against neurodegenerative diseases. Graefes Arch Clin Exp Ophthalmol 2022; 260:1807-1821. [PMID: 35038014 DOI: 10.1007/s00417-022-05556-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/27/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Retinal ganglion cells (RGCs) are essential to propagate external visual information from the retina to the brain. Death of RGCs is speculated to be closely correlated with blinding retinal diseases, such as glaucoma and traumatic optic neuropathy (TON). Emerging innovative technologies have helped refine and standardize the classification of RGCs; at present, they are classified into more than 40 subpopulations in mammals. These RGC subtypes are identified by a combination of anatomical morphologies, electrophysiological functions, and genetic profiles. Increasing evidence suggests that neurodegenerative diseases do not collectively affect the RGCs. In fact, which RGC subtype exhibits the strongest or weakest susceptibility is hotly debated. Although a consensus has not yet been reached, it is certain that assorted RGCs display differential susceptibility against irreversible degeneration. Interestingly, a single RGC subtype can exhibit various vulnerabilities to optic nerve damage in diverse injury models. Thus, elucidating how susceptible RGC subtypes are to various injuries can protect vulnerable RGCs from damage and improve the possibility of preventing and treating visual impairment caused by neurodegenerative diseases. In this review, we summarize in detail the progress and status quo of research on the type-specific susceptibility of RGCs and point out current limitations and the possible directions for future research in this field.
Collapse
|
9
|
Guo C, Ma YY. Calcium Permeable-AMPA Receptors and Excitotoxicity in Neurological Disorders. Front Neural Circuits 2021; 15:711564. [PMID: 34483848 PMCID: PMC8416103 DOI: 10.3389/fncir.2021.711564] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Excitotoxicity is one of the primary mechanisms of cell loss in a variety of diseases of the central and peripheral nervous systems. Other than the previously established signaling pathways of excitotoxicity, which depend on the excessive release of glutamate from axon terminals or over-activation of NMDA receptors (NMDARs), Ca2+ influx-triggered excitotoxicity through Ca2+-permeable (CP)-AMPA receptors (AMPARs) is detected in multiple disease models. In this review, both acute brain insults (e.g., brain trauma or spinal cord injury, ischemia) and chronic neurological disorders, including Epilepsy/Seizures, Huntington’s disease (HD), Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), chronic pain, and glaucoma, are discussed regarding the CP-AMPAR-mediated excitotoxicity. Considering the low expression or absence of CP-AMPARs in most cells, specific manipulation of the CP-AMPARs might be a more plausible strategy to delay the onset and progression of pathological alterations with fewer side effects than blocking NMDARs.
Collapse
Affiliation(s)
- Changyong Guo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Cull‐Candy SG, Farrant M. Ca 2+ -permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease. J Physiol 2021; 599:2655-2671. [PMID: 33533533 PMCID: PMC8436767 DOI: 10.1113/jp279029] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
AMPA receptors are tetrameric glutamate-gated ion channels that mediate a majority of fast excitatory neurotransmission in the brain. They exist as calcium-impermeable (CI-) and calcium-permeable (CP-) subtypes, the latter of which lacks the GluA2 subunit. CP-AMPARs display an array of distinctive biophysical and pharmacological properties that allow them to be functionally identified. This has revealed that they play crucial roles in diverse forms of central synaptic plasticity. Here we summarise the functional hallmarks of CP-AMPARs and describe how these are modified by the presence of auxiliary subunits that have emerged as pivotal regulators of AMPARs. A lasting change in the prevalence of GluA2-containing AMPARs, and hence in the fraction of CP-AMPARs, is a feature in many maladaptive forms of synaptic plasticity and neurological disorders. These include modifications of glutamatergic transmission induced by inflammatory pain, fear conditioning, cocaine exposure, and anoxia-induced damage in neurons and glia. Furthermore, defective RNA editing of GluA2 can cause altered expression of CP-AMPARs and is implicated in motor neuron damage (amyotrophic lateral sclerosis) and the proliferation of cells in malignant gliomas. A number of the players involved in CP-AMPAR regulation have been identified, providing useful insight into interventions that may prevent the aberrant CP-AMPAR expression. Furthermore, recent molecular and pharmacological developments, particularly the discovery of TARP subtype-selective drugs, offer the exciting potential to modify some of the harmful effects of increased CP-AMPAR prevalence in a brain region-specific manner.
Collapse
Affiliation(s)
- Stuart G. Cull‐Candy
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Mark Farrant
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| |
Collapse
|
11
|
Van Hook MJ, Monaco C, Bierlein ER, Smith JC. Neuronal and Synaptic Plasticity in the Visual Thalamus in Mouse Models of Glaucoma. Front Cell Neurosci 2021; 14:626056. [PMID: 33584206 PMCID: PMC7873902 DOI: 10.3389/fncel.2020.626056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Homeostatic plasticity plays important role in regulating synaptic and intrinsic neuronal function to stabilize output following perturbations to circuit activity. In glaucoma, a neurodegenerative disease of the visual system commonly associated with elevated intraocular pressure (IOP), the early disease is associated with altered synaptic inputs to retinal ganglion cells (RGCs), changes in RGC intrinsic excitability, and deficits in optic nerve transport and energy metabolism. These early functional changes can precede RGC degeneration and are likely to alter RGC outputs to their target structures in the brain and thereby trigger homeostatic changes in synaptic and neuronal properties in those brain regions. In this study, we sought to determine whether and how neuronal and synaptic function is altered in the dorsal lateral geniculate nucleus (dLGN), an important RGC projection target in the thalamus, and how functional changes related to IOP. We accomplished this using patch-clamp recordings from thalamocortical (TC) relay neurons in the dLGN in two established mouse models of glaucoma—the DBA/2J (D2) genetic mouse model and an inducible glaucoma model with intracameral microbead injections to elevate IOP. We found that the intrinsic excitability of TC neurons was enhanced in D2 mice and these functional changes were mirrored in recordings of TC neurons from microbead-injected mice. Notably, many neuronal properties were correlated with IOP in older D2 mice, when IOP rises. The frequency of miniature excitatory synaptic currents (mEPSCs) was reduced in 9-month-old D2 mice, and vGlut2 staining of RGC synaptic terminals was reduced in an IOP-dependent manner. These data suggest that glaucoma-associated changes to neuronal excitability and synaptic inputs in the dLGN might represent a combination of both stabilizing/homeostatic plasticity and pathological dysfunction.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Corrine Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Elizabeth R Bierlein
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jennie C Smith
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|