1
|
Yamamoto T, Yoshida Y, Ose T, Murata Y, Hayashi T, Higo N. Cerebellar Molecular Signatures in Non-Human Primates. J Comp Neurol 2024; 532:e25678. [PMID: 39439015 DOI: 10.1002/cne.25678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Cerebellar molecular signatures in primates remain largely unexplored. Here, we investigated the immunoreactivity of neuroplasticity-related molecular markers, including aldolase C (Aldoc), phospholipase C beta 3 (PLCB3), and phospholipase C beta 4 (PLCB4) in the cerebellar cortex and associated nuclei of rhesus macaque monkeys (Macaca mulatta). Our main findings are as follows: First, the cerebellar vermis in macaques exhibited striped compartmentalization for all markers, with the striped expression boundary of PLCB3 being less distinct than those of Aldoc and PLCB4. Second, the striped pattern was less pronounced in the cerebellar hemisphere compared to the vermis, with signals in the hemisphere being predominantly intense throughout. Third, distinct zonal patterns and elevated signals for Aldoc and PLCB3 were observed in the cerebellar deep nuclei. Specifically, the fastigial nucleus displayed intense Aldoc signals in both caudal and rostral regions, while the dentate nucleus displayed strong Aldoc signals in both ventral and dorsal regions. Compared to previous rodent studies, the macaque cerebellum demonstrated a higher proportion of intense signal areas and distinct compartmentalization patterns in both cortical and deep nuclei. These findings offer crucial insights into the unique molecular organization of the primate cerebellum, enhancing our understanding of the advanced neuroplasticity, cognitive, and motor capabilities in primates.
Collapse
Grants
- JP18dm0307006 Japan Agency for Medical Research and Development
- JP19wm0525006 Japan Agency for Medical Research and Development
- JP21wm0525006 Japan Agency for Medical Research and Development
- JP23wm0625001 Japan Agency for Medical Research and Development
- 16H03300 Ministry of Education, Culture, Sports, Science and Technology
- 18K17683 Ministry of Education, Culture, Sports, Science and Technology
- 20H04061 Ministry of Education, Culture, Sports, Science and Technology
- 20H05490 Ministry of Education, Culture, Sports, Science and Technology
- 22K11318 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Tatsuya Yamamoto
- Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Ibaraki, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yuko Yoshida
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takayuki Ose
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Yumi Murata
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Noriyuki Higo
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Perez-Pouchoulen M, Jaiyesimi A, Bardhi K, Waddell J, Banerjee A. Hypothermia increases cold-inducible protein expression and improves cerebellar-dependent learning after hypoxia ischemia in the neonatal rat. Pediatr Res 2023; 94:539-546. [PMID: 36810641 PMCID: PMC10403381 DOI: 10.1038/s41390-023-02535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Hypoxic ischemic encephalopathy remains a significant cause of developmental disability.1,2 The standard of care for term infants is hypothermia, which has multifactorial effects.3-5 Therapeutic hypothermia upregulates the cold-inducible protein RNA binding motif 3 (RBM3) that is highly expressed in developing and proliferative regions of the brain.6,7 The neuroprotective effects of RBM3 in adults are mediated by its ability to promote the translation of mRNAs such as reticulon 3 (RTN3).8 METHODS: Hypoxia ischemia or control procedure was conducted in Sprague Dawley rat pups on postnatal day 10 (PND10). Pups were immediately assigned to normothermia or hypothermia at the end of the hypoxia. In adulthood, cerebellum-dependent learning was tested using the conditioned eyeblink reflex. The volume of the cerebellum and the magnitude of cerebral injury were measured. A second study quantified RBM3 and RTN3 protein levels in the cerebellum and hippocampus collected during hypothermia. RESULTS Hypothermia reduced cerebral tissue loss and protected cerebellar volume. Hypothermia also improved learning of the conditioned eyeblink response. RBM3 and RTN3 protein expression were increased in the cerebellum and hippocampus of rat pups subjected to hypothermia on PND10. CONCLUSIONS Hypothermia was neuroprotective in male and female pups and reversed subtle changes in the cerebellum after hypoxic ischemic. IMPACT Hypoxic ischemic produced tissue loss and a learning deficit in the cerebellum. Hypothermia reversed both the tissue loss and learning deficit. Hypothermia increased cold-responsive protein expression in the cerebellum and hippocampus. Our results confirm cerebellar volume loss contralateral to the carotid artery ligation and injured cerebral hemisphere, suggesting crossed-cerebellar diaschisis in this model. Understanding the endogenous response to hypothermia might improve adjuvant interventions and expand the clinical utility of this intervention.
Collapse
Affiliation(s)
| | - Ayodele Jaiyesimi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Keti Bardhi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Okuno Y, Sakoori K, Matsuyama K, Yamasaki M, Watanabe M, Hashimoto K, Watanabe T, Kano M. PTPδ is a presynaptic organizer for the formation and maintenance of climbing fiber to Purkinje cell synapses in the developing cerebellum. Front Mol Neurosci 2023; 16:1206245. [PMID: 37426069 PMCID: PMC10323364 DOI: 10.3389/fnmol.2023.1206245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Functionally mature neural circuits are shaped during postnatal development by eliminating redundant synapses formed during the perinatal period. In the cerebellum of neonatal rodents, each Purkinje cell (PC) receives synaptic inputs from multiple (more than 4) climbing fibers (CFs). During the first 3 postnatal weeks, synaptic inputs from a single CF become markedly larger and those from the other CFs are eliminated in each PC, leading to mono-innervation of each PC by a strong CF in adulthood. While molecules involved in the strengthening and elimination of CF synapses during postnatal development are being elucidated, much less is known about the molecular mechanisms underlying CF synapse formation during the early postnatal period. Here, we show experimental evidence that suggests that a synapse organizer, PTPδ, is required for early postnatal CF synapse formation and the subsequent establishment of CF to PC synaptic wiring. We showed that PTPδ was localized at CF-PC synapses from postnatal day 0 (P0) irrespective of the expression of Aldolase C (Aldoc), a major marker of PC that distinguishes the cerebellar compartments. We found that the extension of a single strong CF along PC dendrites (CF translocation) was impaired in global PTPδ knockout (KO) mice from P12 to P29-31 predominantly in PCs that did not express Aldoc [Aldoc (-) PCs]. We also demonstrated via morphological and electrophysiological analyses that the number of CFs innervating individual PCs in PTPδ KO mice were fewer than in wild-type (WT) mice from P3 to P13 with a significant decrease in the strength of CF synaptic inputs in cerebellar anterior lobules where most PCs are Aldoc (-). Furthermore, CF-specific PTPδ-knockdown (KD) caused a reduction in the number of CFs innervating PCs with decreased CF synaptic inputs at P10-13 in anterior lobules. We found a mild impairment of motor performance in adult PTPδ KO mice. These results indicate that PTPδ acts as a presynaptic organizer for CF-PC formation and is required for normal CF-PC synaptic transmission, CF translocation, and presumably CF synapse maintenance predominantly in Aldoc (-) PCs. Furthermore, this study suggests that the impaired CF-PC synapse formation and development by the lack of PTPδ causes mild impairment of motor performance.
Collapse
Affiliation(s)
- Yuto Okuno
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoko Matsuyama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Monteverdi A, Di Domenico D, D'Angelo E, Mapelli L. Anisotropy and Frequency Dependence of Signal Propagation in the Cerebellar Circuit Revealed by High-Density Multielectrode Array Recordings. Biomedicines 2023; 11:biomedicines11051475. [PMID: 37239146 DOI: 10.3390/biomedicines11051475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The cerebellum is one of the most connected structures of the central nervous system and receives inputs over an extended frequency range. Nevertheless, the frequency dependence of cerebellar cortical processing remains elusive. In this work, we characterized cerebellar cortex responsiveness to mossy fibers activation at different frequencies and reconstructed the spread of activity in the sagittal and coronal planes of acute mouse cerebellar slices using a high-throughput high-density multielectrode array (HD-MEA). The enhanced spatiotemporal resolution of HD-MEA revealed the frequency dependence and spatial anisotropy of cerebellar activation. Mossy fiber inputs reached the Purkinje cell layer even at the lowest frequencies, but the efficiency of transmission increased at higher frequencies. These properties, which are likely to descend from the topographic organization of local inhibition, intrinsic electroresponsiveness, and short-term synaptic plasticity, are critical elements that have to be taken into consideration to define the computational properties of the cerebellar cortex and its pathological alterations.
Collapse
Affiliation(s)
- Anita Monteverdi
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Danila Di Domenico
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Egidio D'Angelo
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Viet NM, Wang T, Tran-Anh K, Sugihara I. Heterogeneity of intrinsic plasticity in cerebellar Purkinje cells linked with cortical molecular zones. iScience 2022; 25:103705. [PMID: 35059609 PMCID: PMC8760437 DOI: 10.1016/j.isci.2021.103705] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/26/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022] Open
Abstract
In the cerebellar cortex, heterogeneous populations of Purkinje cells (PCs), classified into zebrin (aldolase C)-positive (Z+) and -negative (Z-) types, are arranged into separate longitudinal zones. They have different topographic neuronal connections and show different patterns of activity in behavior tasks. However, whether the zebrin type of PCs directly links with the physiological properties of the PC has not been well clarified. Therefore, we applied in vitro whole-cell patch-clamp recording in Z+ and Z- PCs in vermal and hemispheric neighboring zebrin zones in zebrin-visualized mice. Intrinsic excitability is significantly higher in Z- PCs than in Z+ PCs. Furthermore, intrinsic plasticity and synaptic long-term potentiation are enhanced more in Z- PCs than in Z+ PCs. The difference was mediated by different modulation of SK channel activities between Z+ and Z- PCs. The results indicate that cellular physiology differentially tunes to the functional compartmentalization of heterogeneous PCs.
Collapse
Affiliation(s)
- Nguyen-Minh Viet
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tianzhuo Wang
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Khoa Tran-Anh
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Toscano Márquez B, Cook AA, Rice M, Smileski A, Vieira-Lomasney K, Charron F, McKinney RA, Watt AJ. Molecular Identity and Location Influence Purkinje Cell Vulnerability in Autosomal-Recessive Spastic Ataxia of Charlevoix-Saguenay Mice. Front Cell Neurosci 2022; 15:707857. [PMID: 34970120 PMCID: PMC8712330 DOI: 10.3389/fncel.2021.707857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Patterned cell death is a common feature of many neurodegenerative diseases. In patients with autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and mouse models of ARSACS, it has been observed that Purkinje cells in anterior cerebellar vermis are vulnerable to degeneration while those in posterior vermis are resilient. Purkinje cells are known to express certain molecules in a highly stereotyped, patterned manner across the cerebellum. One patterned molecule is zebrin, which is expressed in distinctive stripes across the cerebellar cortex. The different zones delineated by the expression pattern of zebrin and other patterned molecules have been implicated in the patterning of Purkinje cell death, raising the question of whether they contribute to cell death in ARSACS. We found that zebrin patterning appears normal prior to disease onset in Sacs–/– mice, suggesting that zebrin-positive and -negative Purkinje cell zones develop normally. We next observed that zebrin-negative Purkinje cells in anterior lobule III were preferentially susceptible to cell death, while anterior zebrin-positive cells and posterior zebrin-negative and -positive cells remained resilient even at late disease stages. The patterning of Purkinje cell innervation to the target neurons in the cerebellar nuclei (CN) showed a similar pattern of loss: neurons in the anterior CN, where inputs are predominantly zebrin-negative, displayed a loss of Purkinje cell innervation. In contrast, neurons in the posterior CN, which is innervated by both zebrin-negative and -positive puncta, had normal innervation. These results suggest that the location and the molecular identity of Purkinje cells determine their susceptibility to cell death in ARSACS.
Collapse
Affiliation(s)
| | - Anna A Cook
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Max Rice
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Alexia Smileski
- Department of Biology, McGill University, Montreal, QC, Canada
| | | | - François Charron
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Niewiadomska-Cimicka A, Doussau F, Perot JB, Roux MJ, Keime C, Hache A, Piguet F, Novati A, Weber C, Yalcin B, Meziane H, Champy MF, Grandgirard E, Karam A, Messaddeq N, Eisenmann A, Brouillet E, Nguyen HHP, Flament J, Isope P, Trottier Y. SCA7 Mouse Cerebellar Pathology Reveals Preferential Downregulation of Key Purkinje Cell-Identity Genes and Shared Disease Signature with SCA1 and SCA2. J Neurosci 2021; 41:4910-4936. [PMID: 33888607 PMCID: PMC8260160 DOI: 10.1523/jneurosci.1882-20.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease mainly characterized by motor incoordination because of progressive cerebellar degeneration. SCA7 is caused by polyglutamine expansion in ATXN7, a subunit of the transcriptional coactivator SAGA, which harbors histone modification activities. Polyglutamine expansions in specific proteins are also responsible for SCA1-SCA3, SCA6, and SCA17; however, the converging and diverging pathomechanisms remain poorly understood. Using a new SCA7 knock-in mouse, SCA7140Q/5Q, we analyzed gene expression in the cerebellum and assigned gene deregulation to specific cell types using published datasets. Gene deregulation affects all cerebellar cell types, although at variable degree, and correlates with alterations of SAGA-dependent epigenetic marks. Purkinje cells (PCs) are by far the most affected neurons and show reduced expression of 83 cell-type identity genes, including these critical for their spontaneous firing activity and synaptic functions. PC gene downregulation precedes morphologic alterations, pacemaker dysfunction, and motor incoordination. Strikingly, most PC genes downregulated in SCA7 have also decreased expression in SCA1 and SCA2 mice, revealing converging pathomechanisms and a common disease signature involving cGMP-PKG and phosphatidylinositol signaling pathways and LTD. Our study thus points out molecular targets for therapeutic development, which may prove beneficial for several SCAs. Furthermore, we show that SCA7140Q/5Q males and females exhibit the major disease features observed in patients, including cerebellar damage, cerebral atrophy, peripheral nerves pathology, and photoreceptor dystrophy, which account for progressive impairment of behavior, motor, and visual functions. SCA7140Q/5Q mice represent an accurate model for the investigation of different aspects of SCA7 pathogenesis.SIGNIFICANCE STATEMENT Spinocerebellar ataxia 7 (SCA7) is one of the several forms of inherited SCAs characterized by cerebellar degeneration because of polyglutamine expansion in specific proteins. The ATXN7 involved in SCA7 is a subunit of SAGA transcriptional coactivator complex. To understand the pathomechanisms of SCA7, we determined the cell type-specific gene deregulation in SCA7 mouse cerebellum. We found that the Purkinje cells are the most affected cerebellar cell type and show downregulation of a large subset of neuronal identity genes, critical for their spontaneous firing and synaptic functions. Strikingly, the same Purkinje cell genes are downregulated in mouse models of two other SCAs. Thus, our work reveals a disease signature shared among several SCAs and uncovers potential molecular targets for their treatment.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Frédéric Doussau
- Université de Strasbourg, Illkirch 67404, France
- Centre National de la Recherche Scientifique UPR3212, Strasbourg 67000, France
| | - Jean-Baptiste Perot
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Celine Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Françoise Piguet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Ariana Novati
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Chantal Weber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Binnaz Yalcin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Hamid Meziane
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
- Celphedia, Phenomin, Institut Clinique de la Souris, Illkirch 67404, France
| | - Marie-France Champy
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
- Celphedia, Phenomin, Institut Clinique de la Souris, Illkirch 67404, France
| | - Erwan Grandgirard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Alice Karam
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Aurélie Eisenmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Hoa Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Julien Flament
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Philippe Isope
- Université de Strasbourg, Illkirch 67404, France
- Centre National de la Recherche Scientifique UPR3212, Strasbourg 67000, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
8
|
van der Heijden ME, Sillitoe RV. Interactions Between Purkinje Cells and Granule Cells Coordinate the Development of Functional Cerebellar Circuits. Neuroscience 2021; 462:4-21. [PMID: 32554107 PMCID: PMC7736359 DOI: 10.1016/j.neuroscience.2020.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Cerebellar development has a remarkably protracted morphogenetic timeline that is coordinated by multiple cell types. Here, we discuss the intriguing cellular consequences of interactions between inhibitory Purkinje cells and excitatory granule cells during embryonic and postnatal development. Purkinje cells are central to all cerebellar circuits, they are the first cerebellar cortical neurons to be born, and based on their cellular and molecular signaling, they are considered the master regulators of cerebellar development. Although rudimentary Purkinje cell circuits are already present at birth, their connectivity is morphologically and functionally distinct from their mature counterparts. The establishment of the Purkinje cell circuit with its mature firing properties has a temporal dependence on cues provided by granule cells. Granule cells are the latest born, yet most populous, neuronal type in the cerebellar cortex. They provide a combination of mechanical, molecular and activity-based cues that shape the maturation of Purkinje cell structure, connectivity and function. We propose that the wiring of Purkinje cells for function falls into two developmental phases: an initial phase that is guided by intrinsic mechanisms and a later phase that is guided by dynamically-acting cues, some of which are provided by granule cells. In this review, we highlight the mechanisms that granule cells use to help establish the unique properties of Purkinje cell firing.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
9
|
Thanawalla AR, Chen AI, Azim E. The Cerebellar Nuclei and Dexterous Limb Movements. Neuroscience 2020; 450:168-183. [PMID: 32652173 PMCID: PMC7688491 DOI: 10.1016/j.neuroscience.2020.06.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 01/21/2023]
Abstract
Dexterous forelimb movements like reaching, grasping, and manipulating objects are fundamental building blocks of the mammalian motor repertoire. These behaviors are essential to everyday activities, and their elaboration underlies incredible accomplishments by human beings in art and sport. Moreover, the susceptibility of these behaviors to damage and disease of the nervous system can lead to debilitating deficits, highlighting a need for a better understanding of function and dysfunction in sensorimotor control. The cerebellum is central to coordinating limb movements, as defined in large part by Joseph Babinski and Gordon Holmes describing motor impairment in patients with cerebellar lesions over 100 years ago (Babinski, 1902; Holmes, 1917), and supported by many important human and animal studies that have been conducted since. Here, with a focus on output pathways of the cerebellar nuclei across mammalian species, we describe forelimb movement deficits observed when cerebellar circuits are perturbed, the mechanisms through which these circuits influence motor output, and key challenges in defining how the cerebellum refines limb movement.
Collapse
Affiliation(s)
- Ayesha R Thanawalla
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Albert I Chen
- Nanyang Technological University (NTU), School of Biological Sciences, 11 Mandalay Road, Singapore 308232, Singapore; A*STAR, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 308232, Singapore.
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Lin YC, Hsu CCH, Wang PN, Lin CP, Chang LH. The Relationship Between Zebrin Expression and Cerebellar Functions: Insights From Neuroimaging Studies. Front Neurol 2020; 11:315. [PMID: 32390933 PMCID: PMC7189018 DOI: 10.3389/fneur.2020.00315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 12/26/2022] Open
Abstract
The cerebellum has long been known to play an important role in motor and balance control, and accumulating evidence has revealed that it is also involved in multiple cognitive functions. However, the evidence from neuroimaging studies and clinical observations is not well-integrated at the anatomical or molecular level. The goal of this review is to summarize and link different aspects of the cerebellum, including molecular patterning, functional topography images, and clinical cerebellar disorders. More specifically, we explored the potential relationships between the cerebrocerebellar connections and the expression of particular molecules and, in particular, zebrin stripe (a Purkinje cell-specific antibody molecular marker, which is a glycolytic enzyme expressed in cerebellar Purkinje cells). We hypothesized that the zebrin patterns contribute to cerebellar functional maps—especially when cerebrocerebellar circuit changes exist in cerebellar-related diseases. The zebrin stripe receives input from climbing fibers and project to different parts of the cerebral cortex through its cerebrocerebellar connection. Since zebrin-positive cerebellar Purkinje cells are resistant to excitotoxicity and cell injury while zebrin-negative zones are more prone to damage, we suggest that motor control dysfunction symptoms such as ataxia and dysmetria present earlier and are easier to observe than non-ataxia symptoms due to zebrin-negative cell damage by cerebrocerebellar connections. In summary, we emphasize that the molecular zebrin patterns provide the basis for a new viewpoint from which to investigate cerebellar functions and clinico-neuroanatomic correlations.
Collapse
Affiliation(s)
- Yi-Cheng Lin
- Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chin Heather Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Li-Hung Chang
- Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan.,Education Center for Humanities and Social Sciences, School of Humanities and Social Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
11
|
Lackey EP, Sillitoe RV. Eph/ephrin Function Contributes to the Patterning of Spinocerebellar Mossy Fibers Into Parasagittal Zones. Front Syst Neurosci 2020; 14:7. [PMID: 32116578 PMCID: PMC7033604 DOI: 10.3389/fnsys.2020.00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Purkinje cell microcircuits perform diverse functions using widespread inputs from the brain and spinal cord. The formation of these functional circuits depends on developmental programs and molecular pathways that organize mossy fiber afferents from different sources into a complex and precisely patterned map within the granular layer of the cerebellum. During development, Purkinje cell zonal patterns are thought to guide mossy fiber terminals into zones. However, the molecular mechanisms that mediate this process remain unclear. Here, we used knockout mice to test whether Eph/ephrin signaling controls Purkinje cell-mossy fiber interactions during cerebellar circuit formation. Loss of ephrin-A2 and ephrin-A5 disrupted the patterning of spinocerebellar terminals into discrete zones. Zone territories in the granular layer that normally have limited spinocerebellar input contained ectopic terminals in ephrin-A2 -/-;ephrin-A5 -/- double knockout mice. However, the overall morphology of the cerebellum, lobule position, and Purkinje cell zonal patterns developed normally in the ephrin-A2 -/-;ephrin-A5 -/- mutant mice. This work suggests that communication between Purkinje cell zones and mossy fibers during postnatal development allows contact-dependent molecular cues to sharpen the innervation of sensory afferents into functional zones.
Collapse
Affiliation(s)
- Elizabeth P Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.,Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States.,Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Abstract
Supervised learning plays a key role in the operation of many biological and artificial neural networks. Analysis of the computations underlying supervised learning is facilitated by the relatively simple and uniform architecture of the cerebellum, a brain area that supports numerous motor, sensory, and cognitive functions. We highlight recent discoveries indicating that the cerebellum implements supervised learning using the following organizational principles: ( a) extensive preprocessing of input representations (i.e., feature engineering), ( b) massively recurrent circuit architecture, ( c) linear input-output computations, ( d) sophisticated instructive signals that can be regulated and are predictive, ( e) adaptive mechanisms of plasticity with multiple timescales, and ( f) task-specific hardware specializations. The principles emerging from studies of the cerebellum have striking parallels with those in other brain areas and in artificial neural networks, as well as some notable differences, which can inform future research on supervised learning and inspire next-generation machine-based algorithms.
Collapse
Affiliation(s)
- Jennifer L Raymond
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
13
|
Knogler LD, Kist AM, Portugues R. Motor context dominates output from purkinje cell functional regions during reflexive visuomotor behaviours. eLife 2019; 8:e42138. [PMID: 30681408 PMCID: PMC6374073 DOI: 10.7554/elife.42138] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022] Open
Abstract
The cerebellum integrates sensory stimuli and motor actions to enable smooth coordination and motor learning. Here we harness the innate behavioral repertoire of the larval zebrafish to characterize the spatiotemporal dynamics of feature coding across the entire Purkinje cell population during visual stimuli and the reflexive behaviors that they elicit. Population imaging reveals three spatially-clustered regions of Purkinje cell activity along the rostrocaudal axis. Complementary single-cell electrophysiological recordings assign these Purkinje cells to one of three functional phenotypes that encode a specific visual, and not motor, signal via complex spikes. In contrast, simple spike output of most Purkinje cells is strongly driven by motor-related tail and eye signals. Interactions between complex and simple spikes show heterogeneous modulation patterns across different Purkinje cells, which become temporally restricted during swimming episodes. Our findings reveal how sensorimotor information is encoded by individual Purkinje cells and organized into behavioral modules across the entire cerebellum.
Collapse
Affiliation(s)
- Laura D Knogler
- Max Planck Institute of Neurobiology, Sensorimotor Control Research GroupMartinsriedGermany
| | - Andreas M Kist
- Max Planck Institute of Neurobiology, Sensorimotor Control Research GroupMartinsriedGermany
| | - Ruben Portugues
- Max Planck Institute of Neurobiology, Sensorimotor Control Research GroupMartinsriedGermany
| |
Collapse
|
14
|
Nguyen-Minh VT, Tran-Anh K, Luo Y, Sugihara I. Electrophysiological Excitability and Parallel Fiber Synaptic Properties of Zebrin-Positive and -Negative Purkinje Cells in Lobule VIII of the Mouse Cerebellar Slice. Front Cell Neurosci 2019; 12:513. [PMID: 30670950 PMCID: PMC6331690 DOI: 10.3389/fncel.2018.00513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/10/2018] [Indexed: 01/29/2023] Open
Abstract
Heterogeneous populations of cerebellar Purkinje cells (PCs) are arranged into separate longitudinal stripes, which have different topographic afferent and efferent axonal connections presumably involved in different functions, and also show different electrophysiological properties in firing pattern and synaptic plasticity. However, whether the differences in molecular expression that define heterogeneous PC populations affect their electrophysiological properties has not been much clarified. Since the expression pattern of many of such molecules, including glutamate transporter EAAT4, replicates that of aldolase C or zebrin II, we recorded from PCs of different "zebrin types" (zebrin-positive = aldolase C-positive = Z+; and Z-) in identified neighboring stripes in vermal lobule VIII, in which Z+ and Z- stripes occupy similar widths, in the Aldoc-Venus mouse cerebellar slice preparation. Regarding basic cellular electrophysiological properties, no significant differences were observed in input resistance or in occurrence probability of types of firing patterns between Z+ and Z- PCs. However, the firing frequency of the tonic firing type was higher in Z- PCs than in Z+ PCs. In the case of parallel fiber (PF)-PC synaptic transmission, no significant differences were observed between Z+ and Z- PCs in interval dependency of paired pulse facilitation or in time course of synaptic current measured without or with the blocker of glutamate receptor desensitization. These results indicate that different expression levels of the molecules that are associated with the zebrin type may affect the intrinsic firing property of PCs but not directly affect the basic electrophysiological properties of PF-PC synaptic transmission significantly in lobule VIII. The results suggest that the zebrin types of PCs in lobule VIII is linked with some intrinsic electrophysiological neuronal characteristics which affect the firing frequency of PCs. However, the results also suggest that the molecular expression differences linked with zebrin types of PCs does not much affect basic electrophysiological properties of PF-PC synaptic transmission in a physiological condition in lobule VIII.
Collapse
Affiliation(s)
- Viet T Nguyen-Minh
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Khoa Tran-Anh
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuanjun Luo
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
15
|
Sarpong GA, Vibulyaseck S, Luo Y, Biswas MS, Fujita H, Hirano S, Sugihara I. Cerebellar modules in the olivo-cortico-nuclear loop demarcated by pcdh10 expression in the adult mouse. J Comp Neurol 2018; 526:2406-2427. [PMID: 30004589 DOI: 10.1002/cne.24499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
Topographic connection between corresponding compartments of the cerebellar cortex, cerebellar nuclei, and inferior olive form parallel modules, which are essential for the cerebellar function. Compared to the striped cortical compartmentalization which are labeled by molecular markers, such as aldolase C (Aldoc) or zebrin II, the presumed corresponding organization of the cerebellar nuclei and inferior olivary nucleus has not been much clarified. We focused on the expression pattern of pcdh10 gene coding cell adhesion molecule protocadherin 10 (Pcdh10) in adult mice. In the cortex, pcdh10 was strongly expressed in (a) Aldoc-positive vermal stripes a+//2+ in lobules VI-VII, (b) paravermal narrow stripes c+, d+, 4b+, 5a+ in crus I and neighboring lobules, and (c) paravermal stripes 4+//5+ across all lobules from lobule III to paraflocculus. In the cerebellar nuclei, pcdh10 was expressed strongly in the caudal part of the medial nucleus and the lateral part of the posterior interposed nucleus which project less to the medulla or to the red nucleus than to other metencephalic, mesencephalic, and diencephalic areas. In the inferior olive, pcdh10 was expressed strongly in the rostral and medioventrocaudal parts of the medial accessory olive which has connection with the mesencephalic areas rather than the spinal cord. Olivocerebellar and corticonuclear axonal labeling confirmed that the three cortical pcdh10-positive areas were topographically connected to the nuclear and olivary pcdh10-positive areas, demonstrating their coincidence with modular structures in the olivo-cortico-nuclear loop. We speculate that some of these modules are functionally involved in various nonsomatosensorimotor tasks via their afferent and efferent connections.
Collapse
Affiliation(s)
- Gideon A Sarpong
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Suteera Vibulyaseck
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuanjun Luo
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mohammad S Biswas
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirofumi Fujita
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shinji Hirano
- Department of Biology, Kansai Medical University, Osaka-fu, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
16
|
Ca 2+ signaling and spinocerebellar ataxia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1733-1744. [PMID: 29777722 DOI: 10.1016/j.bbamcr.2018.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 11/22/2022]
Abstract
Spinocerebellar ataxia (SCA) is a neural disorder, which is caused by degenerative changes in the cerebellum. SCA is primarily characterized by gait ataxia, and additional clinical features include nystagmus, dysarthria, tremors and cerebellar atrophy. Forty-four hereditary SCAs have been identified to date, along with >35 SCA-associated genes. Despite the great diversity and distinct functionalities of the SCA-related genes, accumulating evidence supports the occurrence of a common pathophysiological event among several hereditary SCAs. Altered calcium (Ca2+) homeostasis in the Purkinje cells (PCs) of the cerebellum has been proposed as a possible pathological SCA trigger. In support of this, signaling events that are initiated from or lead to aberrant Ca2+ release from the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1), which is highly expressed in cerebellar PCs, seem to be closely associated with the pathogenesis of several SCA types. In this review, we summarize the current research on pathological hereditary SCA events, which involve altered Ca2+ homeostasis in PCs, through IP3R1 signaling.
Collapse
|
17
|
Beckinghausen J, Sillitoe RV. Insights into cerebellar development and connectivity. Neurosci Lett 2018; 688:2-13. [PMID: 29746896 DOI: 10.1016/j.neulet.2018.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
The cerebellum has a well-established role in controlling motor functions such coordination, balance, posture, and skilled learning. There is mounting evidence that it might also play a critical role in non-motor functions such as cognition and emotion. It is therefore not surprising that cerebellar defects are associated with a wide array of diseases including ataxia, dystonia, tremor, schizophrenia, dyslexia, and autism spectrum disorder. What is intriguing is that a seemingly uniform circuit that is often described as being "simple" should carry out all of these behaviors. Analyses of how cerebellar circuits develop have revealed that such descriptions massively underestimate the complexity of the cerebellum. The cerebellum is in fact highly patterned and organized around a series of parasagittal stripes and transverse zones. This topographic architecture partitions all cerebellar circuits into functional modules that are thought to enhance processing power during cerebellar dependent behaviors. What are arguably the most remarkable features of cerebellar topography are the developmental processes that produce them. This review is concerned with the genetic and cellular mechanisms that orchestrate cerebellar patterning. We place a major focus on how Purkinje cells control multiple aspects of cerebellar circuit assembly. Using this model, we discuss evidence for how "zebra-like" patterns in Purkinje cells sculpt the cerebellum, how specific genetic cues mediate the process, and how activity refines the patterns into an adult map that is capable of executing various functions. We also discuss how defective Purkinje cell patterning might impact the pathogenesis of neurological conditions.
Collapse
Affiliation(s)
- Jaclyn Beckinghausen
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Long RM, Pakan JMP, Graham DJ, Hurd PL, Gutierrez-Ibañez C, Wylie DR. Modulation of complex spike activity differs between zebrin-positive and -negative Purkinje cells in the pigeon cerebellum. J Neurophysiol 2018; 120:250-262. [PMID: 29589816 DOI: 10.1152/jn.00797.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebellum is organized into parasagittal zones defined by its climbing and mossy fiber inputs, efferent projections, and Purkinje cell (PC) response properties. Additionally, parasagittal stripes can be visualized with molecular markers, such as heterogeneous expression of the isoenzyme zebrin II (ZII), where sagittal stripes of high ZII expression (ZII+) are interdigitated with stripes of low ZII expression (ZII-). In the pigeon vestibulocerebellum, a ZII+/- stripe pair represents a functional unit, insofar as both ZII+ and ZII- PCs within a stripe pair respond best to the same pattern of optic flow. In the present study, we attempted to determine whether there were any differences in the responses between ZII+ and ZII- PCs within a functional unit in response to optic flow stimuli. In pigeons of either sex, we recorded complex spike activity (CSA) from PCs in response to optic flow, marked recording sites with a fluorescent tracer, and determined the ZII identity of recorded PCs by immunohistochemistry. We found that CSA of ZII+ PCs showed a greater depth of modulation in response to the preferred optic flow pattern compared with ZII- PCs. We suggest that these differences in the depth of modulation to optic flow stimuli are due to differences in the connectivity of ZII+ and ZII- PCs within a functional unit. Specifically, ZII+ PCs project to areas of the vestibular nuclei that provide inhibitory feedback to the inferior olive, whereas ZII- PCs do not. NEW & NOTEWORTHY Although the cerebellum appears to be a uniform structure, Purkinje cells (PCs) are heterogeneous and can be categorized on the basis of the expression of molecular markers. These phenotypes are conserved across species, but the significance is undetermined. PCs in the vestibulocerebellum encode optic flow resulting from self-motion, and those that express the molecular marker zebrin II (ZII+) exhibit more sensitivity to optic flow than those that do not express zebrin II (ZII-).
Collapse
Affiliation(s)
- Rebecca M Long
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Janelle M P Pakan
- German Center for Neurodegenerative Diseases (DZNE) , Magdeburg , Germany.,Institute for Cognitive Neurology (IKND), Medical Faculty, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | | | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada
| | | | - Douglas R Wylie
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
19
|
Craciun I, Gutiérrez-Ibáñez C, Corfield JR, Hurd PL, Wylie DR. Topographic Organization of Inferior Olive Projections to the Zebrin II Stripes in the Pigeon Cerebellar Uvula. Front Neuroanat 2018; 12:18. [PMID: 29599710 PMCID: PMC5862790 DOI: 10.3389/fnana.2018.00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/26/2018] [Indexed: 11/25/2022] Open
Abstract
This study was aimed at mapping the organization of the projections from the inferior olive (IO) to the ventral uvula in pigeons. The uvula is part of the vestibulocerebellum (VbC), which is involved in the processing of optic flow resulting from self-motion. As in other areas of the cerebellum, the uvula is organized into sagittal zones, which is apparent with respect to afferent inputs, the projection patterns of Purkinje cell (PC) efferents, the response properties of PCs and the expression of molecular markers such as zebrin II (ZII). ZII is heterogeneously expressed such that there are sagittal stripes of PCs with high ZII expression (ZII+), alternating with sagittal stripes of PCs with little to no ZII expression (ZII−). We have previously demonstrated that a ZII+/− stripe pair in the uvula constitutes a functional unit, insofar as the complex spike activity (CSA) of all PCs within a ZII+/− stripe pair respond to the same type of optic flow stimuli. In the present study we sought to map the climbing fiber (CF) inputs from the IO to the ZII+ and ZII− stripes in the uvula. We injected fluorescent Cholera Toxin B (CTB) of different colors (red and green) into ZII+ and ZII− bands of functional stripe pair. Injections in the ZII+ and ZII− bands resulted in retrograde labeling of spatially separate, but adjacent regions in the IO. Thus, although a ZII+/− stripe pair represents a functional unit in the pigeon uvula, CF inputs to the ZII+ and ZII− stripes of a unit arise from separate regions of the IO.
Collapse
Affiliation(s)
- Iulia Craciun
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Jeremy R Corfield
- Department of Biological Sciences, Salisbury University, Salisbury, MD, United States
| | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Douglas R Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Wylie DR, Gutiérrez-Ibáñez C, Corfield JR, Craciun I, Graham DJ, Hurd PL. Inferior olivary projection to the zebrin II stripes in lobule IXcd of the pigeon flocculus: A retrograde tracing study. J Comp Neurol 2017. [PMID: 28649766 DOI: 10.1002/cne.24270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Zebrin II (ZII; a.k.a. aldolase C) is expressed heterogeneously in Purkinje cells (PCs) such that there are sagittal stripes of high expression (ZII+) interdigitated with stripes of little or no expression (ZII-). The pigeon flocculus receives visual-optokinetic information and is important for generating compensatory eye movements. It consists of 4 sagittal zones based on PC complex spike activity (CSA) in response to rotational optokinetic stimuli. There are two zones where CSA responds best to rotation about the vertical axis (VA), interdigitated with two zones where CSA responds best to rotation about an horizontal axis (HA). These optokinetic zones relate to the ZII stripes in folium IXcd of the flocculus, such that an optokinetic zone spans a ZII+/- pair: the HA zones span the P5+/- and P7+/- ZII stripe pairs, whereas the VA zones correspond to ZII stripe pairs P4+/- and P6+/-. In the present study, we used fluorescent retrograde tracing to determine the olivary inputs to the ZII+ and ZII- stripes within the functional pairs. We found that separate but adjacent areas of the medial column of the inferior olive (mcIO) project to the ZII+ and ZII- stripes within each of the functional pairs. Thus, although a ZII+/- stripe pair represents a functional unit in the pigeon flocculus insofar as the CSA of all PCs in the stripe pair encodes similar sensory information, the olivary inputs to the ZII+ and ZII- stripes arise from different, although adjacent, regions of the mcIO.
Collapse
Affiliation(s)
- Douglas R Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | | - Jeremy R Corfield
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
| | - Iulia Craciun
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - David J Graham
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| |
Collapse
|
21
|
Tang T, Xiao J, Suh CY, Burroughs A, Cerminara NL, Jia L, Marshall SP, Wise AK, Apps R, Sugihara I, Lang EJ. Heterogeneity of Purkinje cell simple spike-complex spike interactions: zebrin- and non-zebrin-related variations. J Physiol 2017; 595:5341-5357. [PMID: 28516455 DOI: 10.1113/jp274252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/16/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. ABSTRACT Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the amplitudes of the SS modulation phases were generally weak. Division of spikelets into likely axonally propagated and non-propagated groups (based on their interspikelet interval) showed that the correlation of spikelet number with SS firing rate primarily reflected a relationship with non-propagated spikelets. In sum, the results show both zebrin-related and non-zebrin-related physiological heterogeneity in SS-CS interactions among PCs, which suggests that the cerebellar cortex is more functionally diverse than is assumed by standard theories of cerebellar function.
Collapse
Affiliation(s)
- Tianyu Tang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| | - Jianqiang Xiao
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| | - Colleen Y Suh
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| | - Amelia Burroughs
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Nadia L Cerminara
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Linjia Jia
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| | - Sarah P Marshall
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| | - Andrew K Wise
- Bionics Institute, East Melbourne, Victoria, Australia
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| |
Collapse
|
22
|
Ragagnin A, Ezpeleta J, Guillemain A, Boudet-Devaud F, Haeberlé AM, Demais V, Vidal C, Demuth S, Béringue V, Kellermann O, Schneider B, Grant NJ, Bailly Y. Cerebellar compartmentation of prion pathogenesis. Brain Pathol 2017; 28:240-263. [PMID: 28268246 DOI: 10.1111/bpa.12503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
In prion diseases, the brain lesion profile is influenced by the prion "strain" properties, the invasion route to the brain, and still unknown host cell-specific parameters. To gain insight into those endogenous factors, we analyzed the histopathological alterations induced by distinct prion strains in the mouse cerebellum. We show that 22L and ME7 scrapie prion proteins (PrP22L , PrPME7 ), but not bovine spongiform encephalopathy PrP6PB1 , accumulate in a reproducible parasagittal banding pattern in the cerebellar cortex of infected mice. Such banding pattern of PrP22L aggregation did not depend on the neuroinvasion route, but coincided with the parasagittal compartmentation of the cerebellum mostly defined by the expression of zebrins, such as aldolase C and the excitatory amino acid transporter 4, in Purkinje cells. We provide evidence that Purkinje cells display a differential, subtype-specific vulnerability to 22L prions with zebrin-expressing Purkinje cells being more resistant to prion toxicity, while in stripes where PrP22L accumulated most zebrin-deficient Purkinje cells are lost and spongiosis accentuated. In addition, in PrP22L stripes, enhanced reactive astrocyte processes associated with microglia activation support interdependent events between the topographic pattern of Purkinje cell death, reactive gliosis and PrP22L accumulation. Finally, we find that in preclinically-ill mice prion infection promotes at the membrane of astrocytes enveloping Purkinje cell excitatory synapses, upregulation of tumor necrosis factor-α receptor type 1 (TNFR1), a key mediator of the neuroinflammation process. These overall data show that Purkinje cell sensitivity to prion insult is locally restricted by the parasagittal compartmentation of the cerebellum, and that perisynaptic astrocytes may contribute to prion pathogenesis through prion-induced TNFR1 upregulation.
Collapse
Affiliation(s)
- Audrey Ragagnin
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | - Juliette Ezpeleta
- INSERM UMR-S1124, Cellules Souches, Signalisation et Prions, Université Paris Descartes, Paris, France
| | - Aurélie Guillemain
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | - François Boudet-Devaud
- INSERM UMR-S1124, Cellules Souches, Signalisation et Prions, Université Paris Descartes, Paris, France
| | - Anne-Marie Haeberlé
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | - Valérie Demais
- Plateforme Imagerie In Vitro, CNRS UPS-3156, Université de Strasbourg, Strasbourg, France
| | | | - Stanislas Demuth
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | | | - Odile Kellermann
- INSERM UMR-S1124, Cellules Souches, Signalisation et Prions, Université Paris Descartes, Paris, France
| | - Benoit Schneider
- INSERM UMR-S1124, Cellules Souches, Signalisation et Prions, Université Paris Descartes, Paris, France
| | - Nancy J Grant
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | - Yannick Bailly
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| |
Collapse
|
23
|
Valera AM, Binda F, Pawlowski SA, Dupont JL, Casella JF, Rothstein JD, Poulain B, Isope P. Stereotyped spatial patterns of functional synaptic connectivity in the cerebellar cortex. eLife 2016; 5:e09862. [PMID: 26982219 PMCID: PMC4805550 DOI: 10.7554/elife.09862] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 02/26/2016] [Indexed: 12/12/2022] Open
Abstract
Motor coordination is supported by an array of highly organized heterogeneous modules in the cerebellum. How incoming sensorimotor information is channeled and communicated between these anatomical modules is still poorly understood. In this study, we used transgenic mice expressing GFP in specific subsets of Purkinje cells that allowed us to target a given set of cerebellar modules. Combining in vitro recordings and photostimulation, we identified stereotyped patterns of functional synaptic organization between the granule cell layer and its main targets, the Purkinje cells, Golgi cells and molecular layer interneurons. Each type of connection displayed position-specific patterns of granule cell synaptic inputs that do not strictly match with anatomical boundaries but connect distant cortical modules. Although these patterns can be adjusted by activity-dependent processes, they were found to be consistent and predictable between animals. Our results highlight the operational rules underlying communication between modules in the cerebellar cortex.
Collapse
Affiliation(s)
- Antoine M Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| | - Francesca Binda
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| | - Sophie A Pawlowski
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Dupont
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| | - Jean-François Casella
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, United States
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS Université de Strasbourg, Strasbourg, France
| |
Collapse
|
24
|
White JJ, Lin T, Brown AM, Arancillo M, Lackey EP, Stay TL, Sillitoe RV. An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods 2016; 262:21-31. [PMID: 26777474 DOI: 10.1016/j.jneumeth.2016.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Electrophysiological recording approaches are essential for understanding brain function. Among these approaches are various methods of performing single-unit recordings. However, a major hurdle to overcome when recording single units in vivo is stability. Poor stability results in a low signal-to-noise ratio, which makes it challenging to isolate neuronal signals. Proper isolation is needed for differentiating a signal from neighboring cells or the noise inherent to electrophysiology. Insufficient isolation makes it impossible to analyze full action potential waveforms. A common source of instability is an inadequate surgery. Problems during surgery cause blood loss, tissue damage and poor healing of the surrounding tissue, limited access to the target brain region, and, importantly, unreliable fixation points for holding the mouse's head. NEW METHOD We describe an optimized surgical procedure that ensures limited tissue damage and delineate a method for implanting head plates to hold the animal firmly in place. RESULTS Using the cerebellum as a model, we implement an extracellular recording technique to acquire single units from Purkinje cells and cerebellar nuclear neurons in behaving mice. We validate the stability of our method by holding single units after injecting the powerful tremorgenic drug harmaline. We performed multiple structural analyses after recording. COMPARISON WITH EXISTING METHODS Our approach is ideal for studying neuronal function in active mice and valuable for recording single-neuron activity when considerable motion is unavoidable. CONCLUSIONS The surgical principles we present for accessing the cerebellum can be easily adapted to examine the function of neurons in other brain regions.
Collapse
Affiliation(s)
- Joshua J White
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Marife Arancillo
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Elizabeth P Lackey
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Trace L Stay
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Rahimi-Balaei M, Afsharinezhad P, Bailey K, Buchok M, Yeganeh B, Marzban H. Embryonic stages in cerebellar afferent development. CEREBELLUM & ATAXIAS 2015; 2:7. [PMID: 26331050 PMCID: PMC4552263 DOI: 10.1186/s40673-015-0026-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/19/2015] [Indexed: 02/04/2023]
Abstract
The cerebellum is important for motor control, cognition, and language processing. Afferent and efferent fibers are major components of cerebellar circuitry and impairment of these circuits causes severe cerebellar malfunction, such as ataxia. The cerebellum receives information from two major afferent types – climbing fibers and mossy fibers. In addition, a third set of afferents project to the cerebellum as neuromodulatory fibers. The spatiotemporal pattern of early cerebellar afferents that enter the developing embryonic cerebellum is not fully understood. In this review, we will discuss the cerebellar architecture and connectivity specifically related to afferents during development in different species. We will also consider the order of afferent fiber arrival into the developing cerebellum to establish neural connectivity.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9 Canada ; College of Medicine, Faculty of Health Sciences, Manitoba Institute of Child Health (MICH), University of Manitoba, Winnipeg, Manitoba Canada
| | - Pegah Afsharinezhad
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9 Canada
| | - Karen Bailey
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9 Canada
| | - Matthew Buchok
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9 Canada
| | - Behzad Yeganeh
- Program in Physiology and Experimental Medicine, Hospital for Sick Children and University of Toronto, Toronto, Ontario Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9 Canada ; College of Medicine, Faculty of Health Sciences, Manitoba Institute of Child Health (MICH), University of Manitoba, Winnipeg, Manitoba Canada
| |
Collapse
|
26
|
Watson TC. "And the little brain said to the big brain…" Editorial: Distributed networks: new outlooks on cerebellar function. Front Syst Neurosci 2015; 9:78. [PMID: 26029063 PMCID: PMC4432673 DOI: 10.3389/fnsys.2015.00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/01/2015] [Indexed: 11/17/2022] Open
Affiliation(s)
- Thomas C Watson
- School of Physiology and Pharmacology, University of Bristol Bristol, UK ; Sorbonne Universites, UPMC Univ Paris 06, Neuroscience Paris Seine, UMR CNRS 8246, INSERM 1130, Institut de Biologie Paris Seine, Cerebellum Navigation and Memory Team Paris, France
| |
Collapse
|
27
|
Ling HH, Mendoza-Viveros L, Mehta N, Cheng HYM. Raf kinase inhibitory protein (RKIP): functional pleiotropy in the mammalian brain. Crit Rev Oncog 2015; 19:505-16. [PMID: 25597360 DOI: 10.1615/critrevoncog.2014011899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In 1984, a cytosolic protein was isolated from bovine brain and coined phosphatidylethanolamine binding protein (PEBP) to describe its phospholipid-binding potential. Its cellular function remained elusive for more than a decade until it was discovered that PEBP had the ability to suppress the Raf1-mitogen activated protein kinase (MAPK) pathway, earning it the new name of Raf1 kinase inhibitory protein (RKIP). This milestone discovery has paved the way for numerous studies that have now extended the reach of RKIP's function to other signaling cascades, within the context of various physiological and pathophysiological systems. This review will summarize our current knowledge of the neurophysiological roles of RKIP in the mammalian brain, including its function in the circadian clock and synaptic plasticity. It will also discuss evidence for an involvement of RKIP and its derived neuropeptide, hippocampal cholinergic neurostimulating peptide (HCNP), in neural development and differentiation. Implications in certain pathologies such as Alzheimer's disease and brain cancer will be highlighted. By chronicling the diverse functions of RKIP in the brain, we hope that this review will serve as a timely resource that ignites future studies on this versatile, multifaceted protein in the nervous system.
Collapse
Affiliation(s)
- Harrod H Ling
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Lucia Mendoza-Viveros
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Neel Mehta
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Hai-Ying M Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
28
|
Idol RA, Wozniak DF, Fujiwara H, Yuede CM, Ory DS, Kornfeld S, Vogel P. Neurologic abnormalities in mouse models of the lysosomal storage disorders mucolipidosis II and mucolipidosis III γ. PLoS One 2014; 9:e109768. [PMID: 25314316 PMCID: PMC4196941 DOI: 10.1371/journal.pone.0109768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/12/2014] [Indexed: 12/02/2022] Open
Abstract
UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is an α2β2γ2 hexameric enzyme that catalyzes the synthesis of the mannose 6-phosphate targeting signal on lysosomal hydrolases. Mutations in the α/β subunit precursor gene cause the severe lysosomal storage disorder mucolipidosis II (ML II) or the more moderate mucolipidosis III alpha/beta (ML III α/β), while mutations in the γ subunit gene cause the mildest disorder, mucolipidosis III gamma (ML III γ). Here we report neurologic consequences of mouse models of ML II and ML III γ. The ML II mice have a total loss of acid hydrolase phosphorylation, which results in depletion of acid hydrolases in mesenchymal-derived cells. The ML III γ mice retain partial phosphorylation. However, in both cases, total brain extracts have normal or near normal activity of many acid hydrolases reflecting mannose 6-phosphate-independent lysosomal targeting pathways. While behavioral deficits occur in both models, the onset of these changes occurs sooner and the severity is greater in the ML II mice. The ML II mice undergo progressive neurodegeneration with neuronal loss, astrocytosis, microgliosis and Purkinje cell depletion which was evident at 4 months whereas ML III γ mice have only mild to moderate astrocytosis and microgliosis at 12 months. Both models accumulate the ganglioside GM2, but only ML II mice accumulate fucosylated glycans. We conclude that in spite of active mannose 6-phosphate-independent targeting pathways in the brain, there are cell types that require at least partial phosphorylation function to avoid lysosomal dysfunction and the associated neurodegeneration and behavioral impairments.
Collapse
Affiliation(s)
- Rachel A Idol
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carla M Yuede
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
29
|
Abstract
Although the wiring of the cerebellar cortex appears to be uniform, the neurons in this region of the brain behave more differently from each other than previously thought.
Collapse
Affiliation(s)
- Catarina Albergaria
- Catarina Albergaria is in the Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Megan R Carey
- Megan R Carey is in the Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|