1
|
Tia B, Takemi M, Pozzo T. Theta oscillations in observers' temporal cortex index postural instability of point-light displays. Neuroscience 2024; 561:107-118. [PMID: 39427702 DOI: 10.1016/j.neuroscience.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
This study investigates whether postural equilibration follows the same principles of motor resonance as goal-oriented actions, namely, whether an individual activates the same neuronal substrates when experiencing postural perturbation as when observing another individual in this condition. To address this question, we examined electroencephalographic dynamics while subjects observed point-light displays featuring an unstable human display, a stable human display, and their respective scrambled counterparts lacking shape information and biological motion. We focused on theta band (4-7 Hz), which is a fundamental frequency for modulating brain activity during challenging balance tasks and reflects postural stability monitoring. Rather than mirroring activity, our findings suggest an inhibitory response to postural instability. Theta event-related synchronization in the left temporal cortex was dampened for the unstable display as compared to its scramble counterpart and to the stable display. This low theta response coincided with an increase in left temporal-prefrontal connectivity, compatible with top-down inhibitory mechanisms. By contrast, the stronger theta response to the stable display as compared to the unstable one could be due to the difficulty of recognizing low-motion biological stimuli, or alternatively, to a facilitation of stimulus processing and strengthening of the mirroring response. The response facilitation for stable posture, coupled with a diminished response to the unstable display, could contribute to a broader mechanism mitigating postural threats and ensuring stable balance. Future investigations should leverage these findings to explore how posture-related responses correlate with perceptual and motor expertise, and to more clearly define these mechanisms during dynamic social interactions.
Collapse
Affiliation(s)
- Banty Tia
- Institute of Neuroscience of la Timone (CNRS UMR 7289) and Aix-Marseille University, Marseille, France.
| | - Mitsuaki Takemi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan; Graduate School of Science and Technology, Keio University, Kanagawa, Japan; Japan Science and Technology Agency, PRESTO, Saitama, Japan
| | - Thierry Pozzo
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Université de Bourgogne, Dijon, France; IIT@Unife Center for Translational Neurophysiology, Istituto Italiano Di Tecnologia, Ferrara, Italy
| |
Collapse
|
2
|
Poikonen H, Tervaniemi M, Trainor L. Cortical oscillations are modified by expertise in dance and music: Evidence from live dance audience. Eur J Neurosci 2024; 60:6000-6014. [PMID: 39279232 DOI: 10.1111/ejn.16525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
Over the past decades, the focus of brain research has expanded from using strictly controlled stimuli towards understanding brain functioning in complex naturalistic contexts. Interest has increased in measuring brain processes in natural interaction, including classrooms, theatres, concerts and museums to understand the brain functions in the real world. Here, we examined how watching a live dance performance with music in a real-world dance performance setting engages the brains of the spectators. Expertise in dance or music has been shown to modify brain functions, including when watching dance or listening to music. Therefore, we recorded electroencephalography (EEG) from an audience of dancers, musicians and novices as they watched the live dance performance and analysed their cortical oscillations. We compared intrabrain oscillations when participants watched the performance (with music) or listened to the music alone without the dance. We found that dancers have stronger fronto-central and parieto-occipital theta phase synchrony (4-8 Hz) than novices when watching dance, likely reflecting the effects of dance experience on motor imagery, multisensory and social interaction processes. Also, compared with novices, dancers had stronger delta phase synchrony (0.5-4 Hz) when listening to music, and musicians had stronger delta phase synchrony when watching dance, suggesting expertise in music and dance enhances sensitivity or attention to temporal regularities in movement and sound.
Collapse
Affiliation(s)
- Hanna Poikonen
- Centre of Excellence in Music, Mind, Body and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
- Professorship for Social Brain Sciences, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Mari Tervaniemi
- Centre of Excellence in Music, Mind, Body and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
- Cognitive Brain Research Unit, Department of Psychology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laurel Trainor
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Canada
- McMaster Institute for Music and the Mind, McMaster University, Hamilton, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, Canada
| |
Collapse
|
3
|
Hüche Larsen H, Justiniano MD, Frisk RF, Lundbye-Jensen J, Farmer SF, Nielsen JB. Task difficulty of visually guided gait modifications involves differences in central drive to spinal motor neurons. J Neurophysiol 2024; 132:1126-1141. [PMID: 39196679 DOI: 10.1152/jn.00466.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/30/2024] Open
Abstract
Walking in natural environments requires visually guided modifications, which can be more challenging when involving sideways steps rather than longer steps. This exploratory study investigated whether these two types of modifications involve different changes in the central drive to spinal motor neurons of leg muscles. Fifteen adults [age: 36 ± 6 (SD) years] walked on a treadmill (4 km/h) while observing a screen displaying the real-time position of their toes. At the beginning of the swing phase, a visual target appeared in front (forward) or medial-lateral (sideways) of the ground contact in random step cycles (approximately every third step). We measured three-dimensional kinematics and electromyographic activity from leg muscles bilaterally. Intermuscular coherence was calculated in the alpha (5-15 Hz), beta (15-30 Hz), and gamma bands (30-45 Hz) approximately 230 ms before and after ground contact in control and target steps. Results showed that adjustments toward sideways targets were associated with significantly higher error, lower foot lift, and higher cocontraction between antagonist ankle muscles. Movements toward sideways targets were associated with larger beta-band soleus (SOL): medial gastrocnemius (MG) coherence and a more narrow and larger peak of synchronization in the cumulant density before ground contact. In contrast, movements toward forward targets showed no significant differences in coherence or synchronization compared with control steps. Larger SOL:MG beta-band coherence and short-term synchronization were observed during sideways, but not forward, gait modifications. This suggests that visually guided gait modifications may involve differences in the central drive to spinal ankle motor neurons dependent on the level of task difficulty.NEW & NOTEWORTHY This exploratory study suggests a specific and temporally restricted increase of central (likely corticospinal) drive to ankle muscles in relation to visually guided gait modifications. The findings indicate that a high level of visual attention to control the position of the ankle joint precisely before ground contact may involve increased central drive to ankle muscles. These findings are important for understanding the neural mechanisms underlying visually guided gait and may help develop rehabilitation interventions.
Collapse
Affiliation(s)
- Helle Hüche Larsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Elsass Foundation, Charlottenlund, Denmark
| | | | - Rasmus Feld Frisk
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Elsass Foundation, Charlottenlund, Denmark
| | - Jesper Lundbye-Jensen
- Movement and Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simon Francis Farmer
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Elsass Foundation, Charlottenlund, Denmark
| |
Collapse
|
4
|
Studenova A, Forster C, Engemann DA, Hensch T, Sanders C, Mauche N, Hegerl U, Loffler M, Villringer A, Nikulin V. Event-related modulation of alpha rhythm explains the auditory P300-evoked response in EEG. eLife 2023; 12:RP88367. [PMID: 38038725 PMCID: PMC10691803 DOI: 10.7554/elife.88367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Evoked responses and oscillations represent two major electrophysiological phenomena in the human brain yet the link between them remains rather obscure. Here we show how most frequently studied EEG signals: the P300-evoked response and alpha oscillations (8-12 Hz) can be linked with the baseline-shift mechanism. This mechanism states that oscillations generate evoked responses if oscillations have a non-zero mean and their amplitude is modulated by the stimulus. Therefore, the following predictions should hold: (1) the temporal evolution of P300 and alpha amplitude is similar, (2) spatial localisations of the P300 and alpha amplitude modulation overlap, (3) oscillations are non-zero mean, (4) P300 and alpha amplitude correlate with cognitive scores in a similar fashion. To validate these predictions, we analysed the data set of elderly participants (N=2230, 60-82 years old), using (a) resting-state EEG recordings to quantify the mean of oscillations, (b) the event-related data, to extract parameters of P300 and alpha rhythm amplitude envelope. We showed that P300 is indeed linked to alpha rhythm, according to all four predictions. Our results provide an unifying view on the interdependency of evoked responses and neuronal oscillations and suggest that P300, at least partly, is generated by the modulation of alpha oscillations.
Collapse
Affiliation(s)
- Alina Studenova
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Max Planck School of CognitionLeipzigGermany
| | - Carina Forster
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Bernstein Center for Computational Neuroscience, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Denis Alexander Engemann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann–La Roche Ltd.BaselSwitzerland
| | - Tilman Hensch
- LIFE – Leipzig Research Center for Civilization Diseases, University of LeipzigLeipzigGermany
- Department of Psychology, IU International University of Applied SciencesErfurtGermany
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical CenterLeipzigGermany
| | - Christian Sanders
- LIFE – Leipzig Research Center for Civilization Diseases, University of LeipzigLeipzigGermany
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical CenterLeipzigGermany
| | - Nicole Mauche
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical CenterLeipzigGermany
| | - Ulrich Hegerl
- Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe University FrankfurtFrankfurtGermany
| | - Markus Loffler
- LIFE – Leipzig Research Center for Civilization Diseases, University of LeipzigLeipzigGermany
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of LeipzigLeipzigGermany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Clinic for Cognitive Neurology, University Hospital LeipzigLeipzigGermany
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
| |
Collapse
|
5
|
Guo J, Li L, Zheng Y, Quratul A, Liu T, Wang J. Effect of Visual Feedback on Behavioral Control and Functional Activity During Bilateral Hand Movement. Brain Topogr 2023:10.1007/s10548-023-00969-6. [PMID: 37198376 DOI: 10.1007/s10548-023-00969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2023] [Indexed: 05/19/2023]
Abstract
Previous researches state vision as a vital source of information for movement control and more precisely for accurate hand movement. Further, fine bimanual motor activity may be associated with various oscillatory activities within distinct brain areas and inter-hemispheric interactions. However, neural coordination among the distinct brain areas responsible to enhance motor accuracy is still not adequate. In the current study, we investigated task-dependent modulation by simultaneously measuring high time resolution electroencephalogram (EEG), electromyogram (EMG) and force along with bi-manual and unimanual motor tasks. The errors were controlled using visual feedback. To complete the unimanual tasks, the participant was asked to grip the strain gauge using the index finger and thumb of the right hand thereby exerting force on the connected visual feedback system. Whereas the bi-manual task involved finger abduction of the left index finger in two contractions along with visual feedback system and at the same time the right hand gripped using definite force on two conditions that whether visual feedback existed or not for the right hand. Primarily, the existence of visual feedback for the right hand significantly decreased brain network global and local efficiency in theta and alpha bands when compared with the elimination of visual feedback using twenty participants. Brain network activity in theta and alpha bands coordinates to facilitate fine hand movement. The findings may provide new neurological insight on virtual reality auxiliary equipment and participants with neurological disorders that cause movement errors requiring accurate motor training. The current study investigates task-dependent modulation by simultaneously measuring high time resolution electroencephalogram, electromyogram and force along with bi-manual and unimanual motor tasks. The findings show that visual feedback for right hand decreases the force root mean square error of right hand. Visual feedback for right hand decreases local and global efficiency of brain network in theta and alpha bands.
Collapse
Affiliation(s)
- Jing Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Long Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Yang Zheng
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Ain Quratul
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China.
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China.
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China.
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China.
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China.
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Cracco E, Oomen D, Papeo L, Wiersema JR. Using EEG movement tagging to isolate brain responses coupled to biological movements. Neuropsychologia 2022; 177:108395. [PMID: 36272677 DOI: 10.1016/j.neuropsychologia.2022.108395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
Detecting biological motion is essential for adaptive social behavior. Previous research has revealed the brain processes underlying this ability. However, brain activity during biological motion perception captures a multitude of processes. As a result, it is often unclear which processes reflect movement processing and which processes reflect secondary processes that build on movement processing. To address this issue, we developed a new approach to measure brain responses directly coupled to observed movements. Specifically, we showed 30 male and female adults a point-light walker moving at a pace of 2.4 Hz and used EEG frequency tagging to measure the brain response coupled to that pace ('movement tagging'). The results revealed a reliable response at the walking frequency that was reduced by two manipulations known to disrupt biological motion perception: phase scrambling and inversion. Interestingly, we also identified a brain response at half the walking frequency (i.e., 1.2 Hz), corresponding to the rate at which the individual dots completed a cycle. In contrast to the 2.4 Hz response, the response at 1.2 Hz was increased for scrambled (vs. unscrambled) walkers. These results show that frequency tagging can be used to capture the visual processing of biological movements and can dissociate between global (2.4 Hz) and local (1.2 Hz) processes involved in biological motion perception, at different frequencies of the brain signal.
Collapse
Affiliation(s)
- Emiel Cracco
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium.
| | - Danna Oomen
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| | - Liuba Papeo
- Institut des Sciences Cognitives-Marc Jeannerod, UMR5229, Centre National de La Recherche Scientifique (CNRS) & Université Claude Bernard Lyon 1, 69675 Bron, France
| | - Jan R Wiersema
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| |
Collapse
|
7
|
Mustile M, Kourtis D, Edwards MG, Donaldson DI, Ietswaart M. The neural response is heightened when watching a person approaching compared to walking away: Evidence for dynamic social neuroscience. Neuropsychologia 2022; 175:108352. [PMID: 36007672 DOI: 10.1016/j.neuropsychologia.2022.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/30/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
The action observation network has been proposed to play a key role in predicting the action intentions (or goals) of others, thereby facilitating social interaction. Key information when interacting with others is whether someone (an agent) is moving towards or away from us, indicating whether we are likely to interact with the person. In addition, to determine the nature of a social interaction, we also need to take into consideration the distance of the agent relative to us as the observer. How this kind of information is processed within the brain is unknown, at least in part because prior studies have not involved live whole-body motion. Consequently, here we recorded mobile EEG in 18 healthy participants, assessing the neural response to the modulation of direction (walking towards or away) and distance (near vs. far distance) during the observation of an agent walking. We evaluated whether cortical alpha and beta oscillations were modulated differently by direction and distance during action observation. We found that alpha was only modulated by distance, with a stronger decrease of power when the agent was further away from the observer, regardless of direction. Critically, by contrast, beta was found to be modulated by both distance and direction, with a stronger decrease of power when the agent was near and facing the participant (walking towards) compared to when they were near but viewed from the back (walking away). Analysis revealed differences in both the timing and distribution of alpha and beta oscillations. We argue that these data suggest a full understanding of action observation requires a new dynamic neuroscience, investigating actual interactions between real people, in real world environments.
Collapse
Affiliation(s)
- Magda Mustile
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK.
| | - Dimitrios Kourtis
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Martin G Edwards
- Institute of Research in the Psychological Sciences, Université Catholique de Louvain, Louvain- la- Neuve, Belgium
| | - David I Donaldson
- School of Psychology and Neuroscience, University of St Andrews, St. Andrews, UK
| | - Magdalena Ietswaart
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
8
|
Cheron G, Ristori D, Petieau M, Simar C, Zarka D, Cebolla AM. Effects of Pulsed-Wave Chromotherapy and Guided Relaxation on the Theta-Alpha Oscillation During Arrest Reaction. Front Psychol 2022; 13:792872. [PMID: 35310269 PMCID: PMC8929400 DOI: 10.3389/fpsyg.2022.792872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
The search for the best wellness practice has promoted the development of devices integrating different technologies and guided meditation. However, the final effects on the electrical activity of the brain remain relatively sparse. Here, we have analyzed of the alpha and theta electroencephalographic oscillations during the realization of the arrest reaction (AR; eyes close/eyes open transition) when a chromotherapy session performed in a dedicated room [Rebalance (RB) device], with an ergonomic bed integrating pulsed-wave light (PWL) stimulation, guided breathing, and body scan exercises. We demonstrated that the PWL induced an evoked-related potential characterized by the N2-P3 components maximally recorded on the fronto-central areas and accompanied by an event-related synchronization (ERS) of the delta–theta–alpha oscillations. The power of the alpha and theta oscillations was analyzed during repeated ARs testing realized along with the whole RB session. We showed that the power of the alpha and theta oscillations was significantly increased during the session in comparison to their values recorded before. Of the 14 participants, 11 and 6 showed a significant power increase of the alpha and theta oscillations, respectively. These increased powers were not observed in two different control groups (n = 28) who stayed passively outside or inside the RB room but without any type of stimulation. These preliminary results suggest that PWL chromotherapy and guided relaxation induce measurable electrical brain changes that could be beneficial under neuropsychiatric perspectives.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Neuroscience, Université de Mons, Mons, Belgium
| | - Dominique Ristori
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathieu Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Simar
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, Brussels, Belgium
| | - David Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Ana-Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
9
|
Moore M, Katsumi Y, Dolcos S, Dolcos F. Electrophysiological Correlates of Social Decision-making: An EEG Investigation of a Modified Ultimatum Game. J Cogn Neurosci 2021; 34:54-78. [PMID: 34673955 DOI: 10.1162/jocn_a_01782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cooperation behaviors during social decision-making have been shown to be sensitive to manipulations of context. However, it remains unclear how aspects of context in dynamic social interactions, such as observed nonverbal behaviors, may modulate cooperation decisions and the associated neural mechanisms. In this study, participants responded to offers from proposers to split $10 in an Ultimatum Game following observation of proposer approach (friendly) or avoidance (nonfriendly) behaviors, displayed by dynamic whole-body animated avatars, or following a nonsocial interaction control condition. As expected, behavioral results showed that participants tended to have greater acceptance rates for unfair offers following observed nonverbal social interactions with proposers compared with control, suggesting an enhancing effect of social interactions on cooperative decisions. ERP results showed greater N1 and N2 responses at the beginning of social interaction conditions compared with control, and greater sustained and late positivity responses for observed approach and avoidance proposer behaviors compared with control. Event-related spectral perturbation (ERSP) results showed differential sensitivity within theta, alpha, and beta bands during observation of social interactions and offers that was associated with subsequent decision behaviors. Together, these results point to the impact of proposers' nonverbal behaviors on subsequent cooperation decisions at both behavioral and neural levels. The ERP and ERSP findings suggest modulated attention, monitoring, and processing of biological motion during the observed nonverbal social interactions, influencing the participants' responses to offers. These findings shed light on electrophysiological correlates of response to observed social interactions that predict subsequent social decisions.
Collapse
Affiliation(s)
| | - Yuta Katsumi
- University of Illinois at Urbana-Champaign.,Northeastern University
| | | | | |
Collapse
|
10
|
Quandt LC, Kubicek E, Willis A, Lamberton J. Enhanced biological motion perception in deaf native signers. Neuropsychologia 2021; 161:107996. [PMID: 34425145 DOI: 10.1016/j.neuropsychologia.2021.107996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
We conducted two studies to test how deaf signed language users perceive biological motions. We created 18 Biological Motion point-light displays (PLDs) depicting everyday human actions, and 18 Scrambled control PLDs. First, we conducted an online behavioral rating survey, in which deaf and hearing raters identified the biological motion PLDs and rated how easy it was for them to identify the actions. Then, we conducted an EEG study in which Deaf Signers and Hearing Non-Signers watched both the Biological Motion PLDs and the Scrambled PLDs, and we computed the time-frequency responses within the theta, alpha, and beta EEG rhythms. From the behavioral rating task, we show that the deaf raters reported significantly less effort required for identifying the Biological motion PLDs, across all stimuli. The EEG results showed that the Deaf Signers showed theta, mu, and beta differentiation between Scrambled and Biological PLDs earlier and more consistently than Hearing Non-Signers. We conclude that native ASL users exhibit experience-dependent neuroplasticity in the domain of biological human motion perception.
Collapse
Affiliation(s)
- Lorna C Quandt
- Ph.D in Educational Neuroscience Program, Gallaudet University, 800 Florida Ave NE, Washington, D.C. 20002, USA.
| | - Emily Kubicek
- Ph.D in Educational Neuroscience Program, Gallaudet University, 800 Florida Ave NE, Washington, D.C. 20002, USA
| | - Athena Willis
- Ph.D in Educational Neuroscience Program, Gallaudet University, 800 Florida Ave NE, Washington, D.C. 20002, USA
| | - Jason Lamberton
- VL2 Center, Gallaudet University, 800 Florida Ave NE, Washington, D.C. 20002, USA
| |
Collapse
|
11
|
Zarka D, Cebolla AM, Cheron G. [Mirror neurons, neural substrate of action understanding?]. Encephale 2021; 48:83-91. [PMID: 34625217 DOI: 10.1016/j.encep.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/12/2021] [Indexed: 10/20/2022]
Abstract
In 1992, the Laboratory of Human Physiology at the University of Parma (Italy) publish a study describing "mirror" neurons in the macaque that activate both when the monkey performs an action and when it observes an experimenter performing the same action. The research team behind this discovery postulates that the mirror neurons system is the neural basis of our ability to understand the actions of others, through the motor mapping of the observed action on the observer's motor repertory (direct-matching hypothesis). Nevertheless, this conception met serious criticism. These critics attempt to relativize their function by placing them within a network of neurocognitive and sensory interdependencies. In short, the essential characteristic of these neurons is to combine the processing of sensory information, especially visual, with that of motor information. Their elementary function would be to provide a motor simulation of the observed action, based on visual information from it. They can contribute, with other non-mirror areas, to the identification/prediction of the action goal and to the interpretation of the intention of the actor performing it. Studying the connectivity and high frequency synchronizations of the different brain areas involved in action observation would likely provide important information about the dynamic contribution of mirror neurons to "action understanding". The aim of this review is to provide an up-to-date analysis of the scientific evidence related to mirror neurons and their elementary functions, as well as to shed light on the contribution of these neurons to our ability to interpret and understand others' actions.
Collapse
Affiliation(s)
- D Zarka
- Faculté des Sciences de la Motricité, laboratoire de neurophysiologie et de biomécanique du mouvement, université Libre de Bruxelles, CP640, 808, route de Lennik, 1070 Brussels, Belgique; Unité de Recherche en Sciences de l'Ostéopathie, faculté des Sciences de la Motricité, université Libre de Bruxelles, CP640, 808, route de Lennik, 1070 Brussels, Belgique.
| | - A M Cebolla
- Faculté des Sciences de la Motricité, laboratoire de neurophysiologie et de biomécanique du mouvement, université Libre de Bruxelles, CP640, 808, route de Lennik, 1070 Brussels, Belgique
| | - G Cheron
- Faculté des Sciences de la Motricité, laboratoire de neurophysiologie et de biomécanique du mouvement, université Libre de Bruxelles, CP640, 808, route de Lennik, 1070 Brussels, Belgique; Laboratoire d'électrophysiologie, université de Mons, 7000 Mons, Belgique
| |
Collapse
|
12
|
Basso JC, Satyal MK, Rugh R. Dance on the Brain: Enhancing Intra- and Inter-Brain Synchrony. Front Hum Neurosci 2021; 14:584312. [PMID: 33505255 PMCID: PMC7832346 DOI: 10.3389/fnhum.2020.584312] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Dance has traditionally been viewed from a Eurocentric perspective as a mode of self-expression that involves the human body moving through space, performed for the purposes of art, and viewed by an audience. In this Hypothesis and Theory article, we synthesize findings from anthropology, sociology, psychology, dance pedagogy, and neuroscience to propose The Synchronicity Hypothesis of Dance, which states that humans dance to enhance both intra- and inter-brain synchrony. We outline a neurocentric definition of dance, which suggests that dance involves neurobehavioral processes in seven distinct areas including sensory, motor, cognitive, social, emotional, rhythmic, and creative. We explore The Synchronicity Hypothesis of Dance through several avenues. First, we examine evolutionary theories of dance, which suggest that dance drives interpersonal coordination. Second, we examine fundamental movement patterns, which emerge throughout development and are omnipresent across cultures of the world. Third, we examine how each of the seven neurobehaviors increases intra- and inter-brain synchrony. Fourth, we examine the neuroimaging literature on dance to identify the brain regions most involved in and affected by dance. The findings presented here support our hypothesis that we engage in dance for the purpose of intrinsic reward, which as a result of dance-induced increases in neural synchrony, leads to enhanced interpersonal coordination. This hypothesis suggests that dance may be helpful to repattern oscillatory activity, leading to clinical improvements in autism spectrum disorder and other disorders with oscillatory activity impairments. Finally, we offer suggestions for future directions and discuss the idea that our consciousness can be redefined not just as an individual process but as a shared experience that we can positively influence by dancing together.
Collapse
Affiliation(s)
- Julia C Basso
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States.,Center for Transformative Research on Health Behaviors, Fralin Biomedical Research Institute, Virginia Tech, Blacksburg, VA, United States.,School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Medha K Satyal
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Rachel Rugh
- Center for Communicating Science, Virginia Tech, Blacksburg, VA, United States.,School of Performing Arts, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
13
|
Mishra S, Kumar A, Padmanabhan P, Gulyás B. Neurophysiological Correlates of Cognition as Revealed by Virtual Reality: Delving the Brain with a Synergistic Approach. Brain Sci 2021; 11:brainsci11010051. [PMID: 33466371 PMCID: PMC7824819 DOI: 10.3390/brainsci11010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 12/11/2022] Open
Abstract
The synergy of perceptual psychology, technology, and neuroscience can be used to comprehend how virtual reality affects cognition of human brain. Numerous studies have used neuroimaging modalities to assess the cognitive state and response of the brain with various external stimulations. The virtual reality-based devices are well known to incur visual, auditory, and haptic induced perceptions. Neurophysiological recordings together with virtual stimulations can assist in correlating humans’ physiological perception with response in the environment designed virtually. The effective combination of these two has been utilized to study human behavior, spatial navigation performance, and spatial presence, to name a few. Moreover, virtual reality-based devices can be evaluated for the neurophysiological correlates of cognition through neurophysiological recordings. Challenges exist in the integration of real-time neuronal signals with virtual reality-based devices, and enhancing the experience together with real-time feedback and control through neuronal signals. This article provides an overview of neurophysiological correlates of cognition as revealed by virtual reality experience, together with a description of perception and virtual reality-based neuromodulation, various applications, and existing challenges in this field of research.
Collapse
Affiliation(s)
- Sachin Mishra
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore; (S.M.); (A.K.)
| | - Ajay Kumar
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore; (S.M.); (A.K.)
- Institute of Biomedical Sciences, National Sun Yat-sen University, Gushan District, Kaohsiung 804, Taiwan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Gushan District, Kaohsiung 804, Taiwan
| | - Parasuraman Padmanabhan
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore; (S.M.); (A.K.)
- Correspondence: (P.P.); (B.G.)
| | - Balázs Gulyás
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore; (S.M.); (A.K.)
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 608232, Singapore
- Correspondence: (P.P.); (B.G.)
| |
Collapse
|
14
|
李 梦, 杨 光. [Influence of the concrete and abstract graphs on N200 and P300 potentials]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:427-433. [PMID: 32597084 PMCID: PMC10319556 DOI: 10.7507/1001-5515.201903042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Indexed: 11/03/2022]
Abstract
Increasing the amplitude of event-related potential is one of the key methods to improve the accuracy of the potential-based brain-computer interface, e.g., P300-based brain-computer interface. The brain-computer interface systems often use symbols or controlled objects as vision stimuli, but what visual stimuli can induce more obvious event-related potential is still unknown. This paper designed three kinds of visual stimuli, i.e., a square, an arrow, and a robot attached with an arrow, to analyze the influence of concreteness degree of the graph on the N200 and P300 potentials, and applied a support vector machine to compare the performance of the brain-computer interface under different stimuli. The results showed that, compared with the square, the robot attached with arrow and the arrow both induced larger N200 potential ( P = 1.6 × 10 -3, P = 4.2 × 10 -2) and longer P300 potential ( P = 2.2 × 10 -3, P = 1.9 × 10 -2) in the frontal area, but the amplitude under the arrow condition is smaller than the one under the robot attached with arrow condition. The robot attached with arrow increased the N200 potential amplitude of the square and arrow from 3.12 μV and 5.19 μV to 7.21 μV ( P = 1.6 × 10 -3, P = 8.9 × 10 -2), and improved the accuracy rate from 59.95%, 61.67% to 74.45% ( P = 2.1 × 10 -2, P = 1.6 × 10 -2), and the information transfer rate from 35.00 bits/min, 35.98 bits/min to 56.71 bits/min ( P = 2.6 × 10 -2, P = 1.6 × 10 -2). This study shows that the concreteness of graphics could affect the N200 potential and the P300 potential. The abstract symbol could represent the meaning and evoke potentials, but the information contained in the concrete robot attached with an arrow is more correlated with the human experience, which is helpful to improve the amplitude. The results may provide new sight in modifying the stimulus interface of the brain-computer interface.
Collapse
Affiliation(s)
- 梦凡 李
- 河北工业大学 电气工程学院 电工装备可靠性与智能化国家重点实验室(天津 300132)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300132, P.R.China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300132)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, School of Electrical Engineering, Hebei University of Technology, Tianjin 300132, P.R.China
| | - 光 杨
- 河北工业大学 电气工程学院 电工装备可靠性与智能化国家重点实验室(天津 300132)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300132, P.R.China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300132)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, School of Electrical Engineering, Hebei University of Technology, Tianjin 300132, P.R.China
| |
Collapse
|
15
|
Katsumi Y, Dolcos F, Moore M, Bartholow BD, Fabiani M, Dolcos S. Electrophysiological Correlates of Racial In-group Bias in Observing Nonverbal Social Encounters. J Cogn Neurosci 2019; 32:167-186. [PMID: 31560271 DOI: 10.1162/jocn_a_01475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Despite evidence identifying the role of group membership in social cognition, the neural mechanisms associated with the perception and evaluation of nonverbal behaviors displayed by in-group versus out-group members remain unclear. Here, 42 white participants underwent electroencephalographic recording while observing social encounters involving dynamic displays of nonverbal behaviors by racial in-group and out-group avatar characters. Dynamic behaviors included approach and avoidance poses and expressions, followed by the participants' ratings of the avatars displaying them. Behaviorally, participants showed longer RTs when evaluating in-group approach behavior compared with other behaviors, possibly suggesting increased interest and attention devoted to processing positive social encounters with their in-group members. Analyses of ERPs revealed differential sensitivity of the N450 and late positivity components to social cues, with the former showing initial sensitivity to the presence of a humanoid avatar character at the beginning of social encounters and the latter showing sensitivity to dynamic nonverbal behaviors displayed by the avatars. Moreover, time-frequency analysis of electroencephalography data also identified suppression of beta-range power linked to the observation of dynamic nonverbal behaviors. Notably, the magnitude of these responses was modulated by the degree of behavioral racial in-group bias. This suggests that differential neural sensitivity to nonverbal cues while observing social encounters is associated with subsequent in-group bias manifested in the evaluation of such encounters. Collectively, these findings shed light on the mechanisms of racial in-group bias in social cognition and have implications for understanding factors related to successful interactions with individuals from diverse racial backgrounds.
Collapse
|
16
|
State-Dependent Effects of Transcranial Oscillatory Currents on the Motor System during Action Observation. Sci Rep 2019; 9:12858. [PMID: 31492895 PMCID: PMC6731229 DOI: 10.1038/s41598-019-49166-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
We applied transcranial alternating current stimulation (tACS) to the primary motor cortex (M1) at different frequencies during an index–thumb pinch-grip observation task. To estimate changes in the corticospinal output, we used the size of motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS) of M1 using an online MRI-guided simultaneous TMS-tACS approach. The results of the beta-tACS confirm a non-selective increase in corticospinal excitability in subjects at rest; an increase was observed for both of the tested hand muscles, the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM). However, during action observation of the pinch-grip movement, the increase of corticospinal excitability was only observed for the prime mover FDI muscle and took place during alpha-tACS, while gamma-tACS affected both the FDI and control muscle (ADM) responses. These phenomena likely reflect the hypothesis that the mu and gamma rhythms specifically index the downstream modulation of primary sensorimotor areas by engaging mirror neuron activity. The current neuromodulation approach confirms that tACS can be used to induce neurophysiologically detectable state-dependent enhancement effects, even in complex motor-cognitive tasks.
Collapse
|
17
|
Poikonen H, Toiviainen P, Tervaniemi M. Naturalistic music and dance: Cortical phase synchrony in musicians and dancers. PLoS One 2018; 13:e0196065. [PMID: 29672597 PMCID: PMC5908167 DOI: 10.1371/journal.pone.0196065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
Expertise in music has been investigated for decades and the results have been applied not only in composition, performance and music education, but also in understanding brain plasticity in a larger context. Several studies have revealed a strong connection between auditory and motor processes and listening to and performing music, and music imagination. Recently, as a logical next step in music and movement, the cognitive and affective neurosciences have been directed towards expertise in dance. To understand the versatile and overlapping processes during artistic stimuli, such as music and dance, it is necessary to study them with continuous naturalistic stimuli. Thus, we used long excerpts from the contemporary dance piece Carmen presented with and without music to professional dancers, musicians, and laymen in an EEG laboratory. We were interested in the cortical phase synchrony within each participant group over several frequency bands during uni- and multimodal processing. Dancers had strengthened theta and gamma synchrony during music relative to silence and silent dance, whereas the presence of music decreased systematically the alpha and beta synchrony in musicians. Laymen were the only group of participants with significant results related to dance. Future studies are required to understand whether these results are related to some other factor (such as familiarity to the stimuli), or if our results reveal a new point of view to dance observation and expertise.
Collapse
Affiliation(s)
- Hanna Poikonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Petri Toiviainen
- Department of Music, Art and Culture Studies, University of Jyväskylä, Jyväskylä, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cicero Learning, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Poikonen H, Toiviainen P, Tervaniemi M. Dance on cortex: enhanced theta synchrony in experts when watching a dance piece. Eur J Neurosci 2018; 47:433-445. [PMID: 29359365 DOI: 10.1111/ejn.13838] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Hanna Poikonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland
| | - Petri Toiviainen
- Department of Music, Art and Culture Studies, University of Jyväskylä, Jyväskylä, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland.,Cicero Learning, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Pozzo T, Inuggi A, Keuroghlanian A, Panzeri S, Saunier G, Campus C. Natural Translating Locomotion Modulates Cortical Activity at Action Observation. Front Syst Neurosci 2017; 11:83. [PMID: 29163078 PMCID: PMC5681993 DOI: 10.3389/fnsys.2017.00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/18/2017] [Indexed: 11/18/2022] Open
Abstract
The present study verified if the translational component of locomotion modulated cortical activity recorded at action observation. Previous studies focusing on visual processing of biological motion mainly presented point light walker that were fixed on a spot, thus removing the net translation toward a goal that yet remains a critical feature of locomotor behavior. We hypothesized that if biological motion recognition relies on the transformation of seeing in doing and its expected sensory consequences, a significant effect of translation compared to centered displays on sensorimotor cortical activity is expected. To this aim, we explored whether EEG activity in the theta (4–8 Hz), alpha (8–12 Hz), beta 1 (14–20 Hz) and beta 2 (20–32 Hz) frequency bands exhibited selectivity as participants viewed four types of stimuli: a centered walker, a centered scrambled, a translating walker and a translating scrambled. We found higher theta synchronizations for observed stimulus with familiar shape. Higher power decreases in the beta 1 and beta 2 bands, indicating a stronger motor resonance was elicited by translating compared to centered stimuli. Finally, beta bands modulation in Superior Parietal areas showed that the translational component of locomotion induced greater motor resonance than human shape. Using a Multinomial Logistic Regression classifier we found that Dorsal-Parietal and Inferior-Frontal regions of interest (ROIs), constituting the core of action-observation system, were the only areas capable to discriminate all the four conditions, as reflected by beta activities. Our findings suggest that the embodiment elicited by an observed scenario is strongly mediated by horizontal body displacement.
Collapse
Affiliation(s)
- Thierry Pozzo
- Centro di Neurofisiologia Traslazionale, Istituto Italiano di Tecnologia, Ferrara, Italy.,INSERM-U1093, CAPS, Campus Universitaire, Dijon, France
| | - Alberto Inuggi
- Unit of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alejo Keuroghlanian
- Unit of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Panzeri
- Laboratory of Neural Computation, Center for Neuroscience and Cognitive Systems, University of Trento, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ghislain Saunier
- Laboratorio de Cognição Motora, Departamento de Anatomia, Universidade Federal do Pará, Belém, Brasil
| | - Claudio Campus
- U-VIP Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
20
|
Calabrò RS, Naro A, Russo M, Leo A, De Luca R, Balletta T, Buda A, La Rosa G, Bramanti A, Bramanti P. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. J Neuroeng Rehabil 2017; 14:53. [PMID: 28592282 PMCID: PMC5463350 DOI: 10.1186/s12984-017-0268-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/01/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Many studies have demonstrated the usefulness of repetitive task practice by using robotic-assisted gait training (RAGT) devices, including Lokomat, for the treatment of lower limb paresis. Virtual reality (VR) has proved to be a valuable tool to improve neurorehabilitation training. The aim of our pilot randomized clinical trial was to understand the neurophysiological basis of motor function recovery induced by the association between RAGT (by using Lokomat device) and VR (an animated avatar in a 2D VR) by studying electroencephalographic (EEG) oscillations. METHODS Twenty-four patients suffering from a first unilateral ischemic stroke in the chronic phase were randomized into two groups. One group performed 40 sessions of Lokomat with VR (RAGT + VR), whereas the other group underwent Lokomat without VR (RAGT-VR). The outcomes (clinical, kinematic, and EEG) were measured before and after the robotic intervention. RESULTS As compared to the RAGT-VR group, all the patients of the RAGT + VR group improved in the Rivermead Mobility Index and Tinetti Performance Oriented Mobility Assessment. Moreover, they showed stronger event-related spectral perturbations in the high-γ and β bands and larger fronto-central cortical activations in the affected hemisphere. CONCLUSIONS The robotic-based rehabilitation combined with VR in patients with chronic hemiparesis induced an improvement in gait and balance. EEG data suggest that the use of VR may entrain several brain areas (probably encompassing the mirror neuron system) involved in motor planning and learning, thus leading to an enhanced motor performance. TRIAL REGISTRATION Retrospectively registered in Clinical Trials on 21-11-2016, n. NCT02971371 .
Collapse
Affiliation(s)
| | - Antonino Naro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | - Antonino Leo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | - Tina Balletta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Antonio Buda
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | | | | |
Collapse
|
21
|
Cheron G, Petit G, Cheron J, Leroy A, Cebolla A, Cevallos C, Petieau M, Hoellinger T, Zarka D, Clarinval AM, Dan B. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance. Front Psychol 2016; 7:246. [PMID: 26955362 PMCID: PMC4768321 DOI: 10.3389/fpsyg.2016.00246] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/08/2016] [Indexed: 01/20/2023] Open
Abstract
Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de BruxellesBrussels, Belgium; Laboratory of Electrophysiology, Université de Mons-HainautMons, Belgium
| | - Géraldine Petit
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Julian Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Axelle Leroy
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de BruxellesBrussels, Belgium; Haute Ecole CondorcetCharleroi, Belgium
| | - Anita Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Carlos Cevallos
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Mathieu Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Thomas Hoellinger
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - David Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Anne-Marie Clarinval
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Bernard Dan
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de BruxellesBrussels, Belgium; Inkendaal Rehabilitation HospitalVlezembeek, Belgium
| |
Collapse
|
22
|
Cebolla A, Cheron G. Sensorimotor and cognitive involvement of the beta–gamma oscillation in the frontal N30 component of somatosensory evoked potentials. Neuropsychologia 2015; 79:215-22. [DOI: 10.1016/j.neuropsychologia.2015.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/29/2022]
|
23
|
Cheron G. From biomechanics to sport psychology: the current oscillatory approach. Front Psychol 2015; 6:1642. [PMID: 26582999 PMCID: PMC4628124 DOI: 10.3389/fpsyg.2015.01642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/12/2015] [Indexed: 01/13/2023] Open
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium ; Laboratory of Electrophysiology, Université de Mons-Hainaut Mons, Belgium
| |
Collapse
|
24
|
Cevallos C, Zarka D, Hoellinger T, Leroy A, Dan B, Cheron G. Oscillations in the human brain during walking execution, imagination and observation. Neuropsychologia 2015; 79:223-32. [PMID: 26164473 DOI: 10.1016/j.neuropsychologia.2015.06.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023]
Abstract
Gait is an essential human activity which organizes many functional and cognitive behaviors. The biomechanical constraints of bipedalism implicating a permanent control of balance during gait are taken into account by a complex dialog between the cortical, subcortical and spinal networks. This networking is largely based on oscillatory coding, including changes in spectral power and phase-locking of ongoing neural activity in theta, alpha, beta and gamma frequency bands. This coding is specifically modulated in actual gait execution and representation, as well as in contexts of gait observation or imagination. A main challenge in integrative neuroscience oscillatory activity analysis is to disentangle the brain oscillations devoted to gait control. In addition to neuroimaging approaches, which have highlighted the structural components of an extended network, dynamic high-density EEG gives non-invasive access to functioning of this network. Here we revisit the neurophysiological foundations of behavior-related EEG in the light of current neuropsychological theoretic frameworks. We review different EEG rhythms emerging in the most informative paradigms relating to human gait and implications for rehabilitation strategies.
Collapse
Affiliation(s)
- C Cevallos
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institut, Université Libre de Bruxelles, CP 640, 50 Avenue Franklin Rooseveltlaan, 1050 Brussels, Belgium
| | - D Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institut, Université Libre de Bruxelles, CP 640, 50 Avenue Franklin Rooseveltlaan, 1050 Brussels, Belgium
| | - T Hoellinger
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institut, Université Libre de Bruxelles, CP 640, 50 Avenue Franklin Rooseveltlaan, 1050 Brussels, Belgium
| | - A Leroy
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institut, Université Libre de Bruxelles, CP 640, 50 Avenue Franklin Rooseveltlaan, 1050 Brussels, Belgium; Haute Ecole Condorcet, Charleroi, Belgium
| | - B Dan
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institut, Université Libre de Bruxelles, CP 640, 50 Avenue Franklin Rooseveltlaan, 1050 Brussels, Belgium; Department of Neurology, Hopital Universitaire des Enfants reine Fabiola, Université Libre de Bruxelles, Belgium
| | - G Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institut, Université Libre de Bruxelles, CP 640, 50 Avenue Franklin Rooseveltlaan, 1050 Brussels, Belgium; Laboratory of Electrophysiology, Université de Mons-Hainaut, Belgium.
| |
Collapse
|