1
|
Fuentes-Santamaría V, Benítez-Maicán Z, Alvarado JC, Fernández Del Campo IS, Gabaldón-Ull MC, Merchán MA, Juiz JM. Surface electrical stimulation of the auditory cortex preserves efferent medial olivocochlear neurons and reduces cochlear traits of age-related hearing loss. Hear Res 2024; 447:109008. [PMID: 38636186 DOI: 10.1016/j.heares.2024.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The auditory cortex is the source of descending connections providing contextual feedback for auditory signal processing at almost all levels of the lemniscal auditory pathway. Such feedback is essential for cognitive processing. It is likely that corticofugal pathways are degraded with aging, becoming important players in age-related hearing loss and, by extension, in cognitive decline. We are testing the hypothesis that surface, epidural stimulation of the auditory cortex during aging may regulate the activity of corticofugal pathways, resulting in modulation of central and peripheral traits of auditory aging. Increased auditory thresholds during ongoing age-related hearing loss in the rat are attenuated after two weeks of epidural stimulation with direct current applied to the surface of the auditory cortex for two weeks in alternate days (Fernández del Campo et al., 2024). Here we report that the same cortical electrical stimulation protocol induces structural and cytochemical changes in the aging cochlea and auditory brainstem, which may underlie recovery of age-degraded auditory sensitivity. Specifically, we found that in 18 month-old rats after two weeks of cortical electrical stimulation there is, relative to age-matched non-stimulated rats: a) a larger number of choline acetyltransferase immunoreactive neuronal cell body profiles in the ventral nucleus of the trapezoid body, originating the medial olivocochlear system.; b) a reduction of age-related dystrophic changes in the stria vascularis; c) diminished immunoreactivity for the pro-inflammatory cytokine TNFα in the stria vascularis and spiral ligament. d) diminished immunoreactivity for Iba1 and changes in the morphology of Iba1 immunoreactive cells in the lateral wall, suggesting reduced activation of macrophage/microglia; d) Increased immunoreactivity levels for calretinin in spiral ganglion neurons, suggesting excitability modulation by corticofugal stimulation. Altogether, these findings support that non-invasive neuromodulation of the auditory cortex during aging preserves the cochlear efferent system and ameliorates cochlear aging traits, including stria vascularis dystrophy, dysregulated inflammation and altered excitability in primary auditory neurons.
Collapse
Affiliation(s)
- V Fuentes-Santamaría
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain
| | - Z Benítez-Maicán
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain
| | - J C Alvarado
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain
| | - I S Fernández Del Campo
- Lab. of Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - M C Gabaldón-Ull
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain
| | - M A Merchán
- Lab. of Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - J M Juiz
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain; Hannover Medical School, Dept. of Otolaryngology and Cluster of Excellence "H4all" of the German Research Foundation, DFG, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
2
|
Fernández Del Campo IS, Carmona-Barrón VG, Diaz I, Plaza I, Alvarado JC, Merchán MA. Multisession anodal epidural direct current stimulation of the auditory cortex delays the progression of presbycusis in the Wistar rat. Hear Res 2024; 444:108969. [PMID: 38350175 DOI: 10.1016/j.heares.2024.108969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
Presbycusis or age-related hearing loss (ARHL) is one of the most prevalent chronic health problems facing aging populations. Along the auditory pathway, the stations involved in transmission and processing, function as a system of interconnected feedback loops. Regulating hierarchically auditory processing, auditory cortex (AC) neuromodulation can, accordingly, activate both peripheral and central plasticity after hearing loss. However, previous ARHL-prevention interventions have mainly focused on preserving the structural and functional integrity of the inner ear, overlooking the central auditory system. In this study, using an animal model of spontaneous ARHL, we aim at assessing the effects of multisession epidural direct current stimulation of the AC through stereotaxic implantation of a 1-mm silver ball anode in Wistar rats. Consisting of 7 sessions (0.1 mA/10 min), on alternate days, in awake animals, our stimulation protocol was applied at the onset of hearing loss (threshold shift detection at 16 months). Click- and pure-tone auditory brainstem responses (ABRs) were analyzed in two animal groups, namely electrically stimulated (ES) and non-stimulated (NES) sham controls, comparing recordings at 18 months of age. At 18 months, NES animals showed significantly increased threshold shifts, decreased wave amplitudes, and increased wave latencies after click and tonal ABRs, reflecting a significant, spontaneous ARHL evolution. Conversely, in ES animals, no significant differences were detected in any of these parameters when comparing 16 and 18 months ABRs, indicating a delay in ARHL progression. Electrode placement in the auditory cortex was accurate, and the stimulation did not cause significant damage, as shown by the limited presence of superficial reactive microglial cells after IBA1 immunostaining. In conclusion, multisession DC stimulation of the AC has a protective effect on auditory function, delaying the progression of presbycusis.
Collapse
Affiliation(s)
- Inés S Fernández Del Campo
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain
| | - Venezia G Carmona-Barrón
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain
| | - I Diaz
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain
| | - I Plaza
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain
| | - J C Alvarado
- Facultad de Medicina, IDINE, Universidad de Castilla la Mancha, Albacete, Spain
| | - M A Merchán
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain.
| |
Collapse
|
3
|
Parker A, Parham K, Skoe E. Age-related declines to serum prestin levels in humans. Hear Res 2022; 426:108640. [DOI: 10.1016/j.heares.2022.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/04/2022]
|
4
|
Noise exposure levels predict blood levels of the inner ear protein prestin. Sci Rep 2022; 12:1154. [PMID: 35064195 PMCID: PMC8783004 DOI: 10.1038/s41598-022-05131-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
Serological biomarkers of inner ear proteins are a promising new approach for studying human hearing. Here, we focus on the serological measurement of prestin, a protein integral to a human’s highly sensitive hearing, expressed in cochlear outer hair cells (OHCs). Building from recent nonhuman studies that associated noise-induced OHC trauma with reduced serum prestin levels, and studies suggesting subclinical hearing damage in humans regularly engaging in noisy activities, we investigated the relation between serum prestin levels and environmental noise levels in young adults with normal clinical audiograms. We measured prestin protein levels from circulating blood and collected noise level data multiple times over the course of the experiment using body-worn sound recorders. Results indicate that serum prestin levels have a negative relation with noise exposure: individuals with higher routine noise exposure levels tended to have lower prestin levels. Moreover, when grouping participants based on their risk for a clinically-significant noise-induced hearing loss, we found that prestin levels differed significantly between groups, even though behavioral hearing thresholds were similar. We discuss possible interpretations for our findings including whether lower serum levels may reflect subclinical levels of OHC damage, or possibly an adaptive, protective mechanism in which prestin expression is downregulated in response to loud environments.
Collapse
|
5
|
Díaz I, Colmenárez-Raga AC, Pérez-González D, Carmona VG, Plaza Lopez I, Merchán MA. Effects of Multisession Anodal Electrical Stimulation of the Auditory Cortex on Temporary Noise-Induced Hearing Loss in the Rat. Front Neurosci 2021; 15:642047. [PMID: 34393701 PMCID: PMC8358804 DOI: 10.3389/fnins.2021.642047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
The protective effect of the efferent system against acoustic trauma (AT) has been shown by several experimental approaches, including damage to one ear, sectioning of the olivocochlear bundle (OCB) in the floor of the IV ventricle, and knock-in mice overexpressing outer hair cell (OHC) cholinergic receptors, among others. Such effects have been related to changes in the regulation of the cholinergic efferent system and in cochlear amplification, which ultimately reverse upon protective hearing suppression. In addition to well-known circuits of the brainstem, the descending corticofugal pathway also regulates efferent neurons of the olivary complex. In this study, we applied our recently developed experimental paradigm of multiple sessions of electrical stimulation (ES) to activate the efferent system in combination with noise overstimulation. ABR thresholds increased 1 and 2 days after AT (8-16 kHz bandpass noise at 107 dB for 90 min) recovering at AT + 14 days. However, after multiple sessions of epidural anodal stimulation, no changes in thresholds were observed following AT. Although an inflammatory response was also observed 1 day after AT in both groups, the counts of reactive macrophages in both experimental conditions suggest decreased inflammation in the epidural stimulation group. Quantitative immunocytochemistry for choline acetyltransferase (ChAT) showed a significant decrease in the size and optical density of the efferent terminals 1 day after AT and a rebound at 14 days, suggesting depletion of the terminals followed by a long-term compensatory response. Such a synthesis recovery was significantly higher upon cortical stimulation. No significant correlation was found between ChAT optical density and size of the buttons in sham controls (SC) and ES/AT + 1day animals; however, significant negative correlations were shown in all other experimental conditions. Therefore, our comparative analysis suggests that cochleotopic cholinergic neurotransmission is also better preserved after multisession epidural stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Miguel A. Merchán
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Colmenárez-Raga AC, Díaz I, Pernia M, Pérez-González D, Delgado-García JM, Carro J, Plaza I, Merchán MA. Reversible Functional Changes Evoked by Anodal Epidural Direct Current Electrical Stimulation of the Rat Auditory Cortex. Front Neurosci 2019; 13:356. [PMID: 31031588 PMCID: PMC6473088 DOI: 10.3389/fnins.2019.00356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Rat auditory cortex was subjected to 0.1 mA anodal direct current in seven 10-min sessions on alternate days. Based on the well-known auditory cortex control of olivocochlear regulation through corticofugal projections, auditory brainstem responses (ABRs) were recorded as an indirect test of the effectiveness and reversibility of the multisession protocol of epidural stimulation. Increases of 20-30 dB ABR auditory thresholds shown after epidural stimulation reverted back to control levels 10 min after a single session. However, increases in thresholds revert 4 days after multisession stimulation. Less changes in wave amplitudes and threshold shifts were shown in ABR recorded contralaterally to the electrically stimulated side of the brain. To assess tissue effects of epidural electric stimulation on the brain cortex, well characterized functional anatomical markers of glial cells (GFAP/astrocytes and Iba1/microglial cells) and neurons (c-Fos) were analyzed in alternate serial sections by quantitative immunocytochemistry. Restricted astroglial and microglial reactivity was observed within the cytoarchitectural limits of the auditory cortex. However, interstitial GFAP overstaining was also observed in the ventricular surface and around blood vessels, thus supporting a potential global electrolytic stimulation of the brain. These results correlate with extensive changes in the distribution of c-Fos immunoreactive neurons among layers along sensory cortices after multisession stimulation. Quantitative immunocytochemical analysis supported this idea by showing a significant increase in the number of positive neurons in supragranular layers and a decrease in layer 6 with no quantitative changes detected in layer 5. Our data indicate that epidural stimulation of the auditory cortex induces a reversible decrease in hearing sensitivity due to local, restricted epidural stimulation. A global plastic response of the sensory cortices, also reported here, may be related to electrolytic effects of electric currents.
Collapse
Affiliation(s)
| | - Iván Díaz
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Marianny Pernia
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - David Pérez-González
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | | | - Juan Carro
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ignacio Plaza
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Miguel A. Merchán
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
Lopez-Poveda EA. Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance. Front Neurol 2018; 9:197. [PMID: 29632514 PMCID: PMC5879449 DOI: 10.3389/fneur.2018.00197] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Olivocochlear efferents allow the central auditory system to adjust the functioning of the inner ear during active and passive listening. While many aspects of efferent anatomy, physiology and function are well established, others remain controversial. This article reviews the current knowledge on olivocochlear efferents, with emphasis on human medial efferents. The review covers (1) the anatomy and physiology of olivocochlear efferents in animals; (2) the methods used for investigating this auditory feedback system in humans, their limitations and best practices; (3) the characteristics of medial-olivocochlear efferents in humans, with a critical analysis of some discrepancies across human studies and between animal and human studies; (4) the possible roles of olivocochlear efferents in hearing, discussing the evidence in favor and against their role in facilitating the detection of signals in noise and in protecting the auditory system from excessive acoustic stimulation; and (5) the emerging association between abnormal olivocochlear efferent function and several health conditions. Finally, we summarize some open issues and introduce promising approaches for investigating the roles of efferents in human hearing using cochlear implants.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
8
|
Lamas V, Estévez S, Pernía M, Plaza I, Merchán MA. Stereotactically-guided Ablation of the Rat Auditory Cortex, and Localization of the Lesion in the Brain. J Vis Exp 2017. [PMID: 29053697 PMCID: PMC5752406 DOI: 10.3791/56429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The rat auditory cortex (AC) is becoming popular among auditory neuroscience investigators who are interested in experience-dependence plasticity, auditory perceptual processes, and cortical control of sound processing in the subcortical auditory nuclei. To address new challenges, a procedure to accurately locate and surgically expose the auditory cortex would expedite this research effort. Stereotactic neurosurgery is routinely used in pre-clinical research in animal models to engraft a needle or electrode at a pre-defined location within the auditory cortex. In the following protocol, we use stereotactic methods in a novel way. We identify four coordinate points over the surface of the temporal bone of the rat to define a window that, once opened, accurately exposes both the primary (A1) and secondary (Dorsal and Ventral) cortices of the AC. Using this method, we then perform a surgical ablation of the AC. After such a manipulation is performed, it is necessary to assess the localization, size, and extension of the lesions made in the cortex. Thus, we also describe a method to easily locate the AC ablation postmortem using a coordinate map constructed by transferring the cytoarchitectural limits of the AC to the surface of the brain.The combination of the stereotactically-guided location and ablation of the AC with the localization of the injured area in a coordinate map postmortem facilitates the validation of information obtained from the animal, and leads to a better analysis and comprehension of the data.
Collapse
Affiliation(s)
- Verónica Lamas
- Institute of Neuroscience of Castilla y León, University of Salamanca; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otolaryngology, Harvard Medical School;
| | - Sheila Estévez
- Institute of Neuroscience of Castilla y León, University of Salamanca
| | - Marianni Pernía
- Institute of Neuroscience of Castilla y León, University of Salamanca
| | - Ignacio Plaza
- Institute of Neuroscience of Castilla y León, University of Salamanca
| | - Miguel A Merchán
- Institute of Neuroscience of Castilla y León, University of Salamanca
| |
Collapse
|
9
|
Bulut E, Öztürk L. Spontaneous otoacoustic emission recordings during contralateral pure-tone activation of medial olivocochlear reflex. Physiol Int 2017. [PMID: 28648121 DOI: 10.1556/2060.104.2017.2.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We hypothesized that cochlear frequency discrimination occurs through medial olivocochlear efferent (MOCE)-induced alterations in outer hair cell (OHC) electromotility, which is independent from basilar membrane traveling waves. After obtaining informed consent, volunteers with normal hearing (n = 10; mean age: 20.6 ± 1.2 years) and patients with unilateral deafness (n = 10; mean age: 30.2 ± 17.9 years) or bilateral deafness (n = 8; mean age: 30.7 ± 13.8 years) underwent a complete physical and audiological examination, and audiological tests including transient evoked otoacoustic emission and spontaneous otoacoustic emission (TEOAE and SOAE, respectively). SOAE recordings were performed during contralateral pure-tone stimuli at 1 and 3 kHz. SOAE recordings in the presence of contralateral pure-tone stimuli showed frequency-specific activation out of the initial frequency range of SOAE responses. Basilar membrane motion during pure-tone stimulation results from OHC activation by means of MOCE neurons rather than from a traveling wave. Eventually, frequency-specific responses obtained from SOAEs suggested that OHC electromotility may be responsible for frequency discrimination of the cochlea independently from basilar membrane motion.
Collapse
Affiliation(s)
- E Bulut
- 1 Department of Audiology, Trakya University Faculty of Health Sciences , Edirne, Turkey.,2 Department of Physiology, Faculty of Medicine, Trakya University , Edirne, Turkey
| | - L Öztürk
- 2 Department of Physiology, Faculty of Medicine, Trakya University , Edirne, Turkey
| |
Collapse
|
10
|
Ablation of the auditory cortex results in changes in the expression of neurotransmission-related mRNAs in the cochlea. Hear Res 2017; 346:71-80. [PMID: 28216123 DOI: 10.1016/j.heares.2017.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 01/02/2023]
Abstract
The auditory cortex (AC) dynamically regulates responses of the Organ of Corti to sound through descending connections to both the medial (MOC) and lateral (LOC) olivocochlear efferent systems. We have recently provided evidence that AC has a reinforcement role in the responses to sound of the auditory brainstem nuclei. In a molecular level, we have shown that descending inputs from AC are needed to regulate the expression of molecules involved in outer hair cell (OHC) electromotility control, such as prestin and the α10 nicotinic acetylcholine receptor (nAchR). In this report, we show that descending connections from AC to olivocochlear neurons are necessary to regulate the expression of molecules involved in cochlear afferent signaling. RT-qPCR was performed in rats at 1, 7 and 15 days after unilateral ablation of the AC, and analyzed the time course changes in gene transcripts involved in neurotransmission at the first auditory synapse. This included the glutamate metabolism enzyme glutamate decarboxylase 1 (glud1) and AMPA glutamate receptor subunits GluA2-4. In addition, gene transcripts involved in efferent regulation of type I spiral ganglion neuron (SGN) excitability mediated by LOC, such as the α7 nAchR, the D2 dopamine receptor, and the α1, and γ2 GABAA receptor subunits, were also investigated. Unilateral AC ablation induced up-regulation of GluA3 receptor subunit transcripts, whereas both GluA2 and GluA4 mRNA receptors were down-regulated already at 1 day after the ablation. Unilateral removal of the AC also resulted in up-regulation of the transcripts for α7 nAchR subunit, D2 dopamine receptor, and α1 GABAA receptor subunit at 1 day after the ablation. Fifteen days after the injury, AC ablations induced an up-regulation of glud1 transcripts.
Collapse
|
11
|
Saldaña E. All the way from the cortex: a review of auditory corticosubcollicular pathways. THE CEREBELLUM 2016; 14:584-96. [PMID: 26142291 DOI: 10.1007/s12311-015-0694-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enrico Mugnaini has devoted part of his long and fruitful neuroscientific career to investigating the structural similarities between the cerebellar cortex and one of the first relay stations of the mammalian auditory pathway: the dorsal cochlear nucleus. The hypothesis of the cerebellar-like nature of the superficial layers of the dorsal cochlear nucleus received definitive support with the discovery and extensive characterization in his laboratory of unipolar brush cells, a neuron type unique to certain regions of the cerebellar cortex and to the granule cell domains of the cochlear nuclei. Paradoxically, a different line of research carried out in his laboratory revealed that, unlike the mammalian cerebellar cortex, the dorsal cochlear nucleus receives direct projections from the cerebral cortex, a fact that constitutes one of the main differences between the cerebellum and the dorsal cochlear nucleus. In an article published in 1995, Mugnaini's group described in detail the novel direct projections from the rat auditory neocortex to various subcollicular auditory centers, including the nucleus sagulum, the paralemniscal regions, the superior olivary complex, and the cochlear nuclei (Feliciano et al., Auditory Neuroscience 1995; 1:287-308). This review gives Enrico Mugnaini credit for his seminal contribution to the knowledge of auditory corticosubcollicular projections and summarizes how this growing field has evolved in the last 20 years.
Collapse
Affiliation(s)
- Enrique Saldaña
- Neurohistology Laboratory, Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, 37007, Salamanca, Spain. .,Department of Cell Biology and Pathology, Medical School, University of Salamanca, 37007, Salamanca, Spain. .,Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
12
|
Aedo C, Terreros G, León A, Delano PH. The Corticofugal Effects of Auditory Cortex Microstimulation on Auditory Nerve and Superior Olivary Complex Responses Are Mediated via Alpha-9 Nicotinic Receptor Subunit. PLoS One 2016; 11:e0155991. [PMID: 27195498 PMCID: PMC4873184 DOI: 10.1371/journal.pone.0155991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
Background and Objective The auditory efferent system is a complex network of descending pathways, which mainly originate in the primary auditory cortex and are directed to several auditory subcortical nuclei. These descending pathways are connected to olivocochlear neurons, which in turn make synapses with auditory nerve neurons and outer hair cells (OHC) of the cochlea. The olivocochlear function can be studied using contralateral acoustic stimulation, which suppresses auditory nerve and cochlear responses. In the present work, we tested the proposal that the corticofugal effects that modulate the strength of the olivocochlear reflex on auditory nerve responses are produced through cholinergic synapses between medial olivocochlear (MOC) neurons and OHCs via alpha-9/10 nicotinic receptors. Methods We used wild type (WT) and alpha-9 nicotinic receptor knock-out (KO) mice, which lack cholinergic transmission between MOC neurons and OHC, to record auditory cortex evoked potentials and to evaluate the consequences of auditory cortex electrical microstimulation in the effects produced by contralateral acoustic stimulation on auditory brainstem responses (ABR). Results Auditory cortex evoked potentials at 15 kHz were similar in WT and KO mice. We found that auditory cortex microstimulation produces an enhancement of contralateral noise suppression of ABR waves I and III in WT mice but not in KO mice. On the other hand, corticofugal modulations of wave V amplitudes were significant in both genotypes. Conclusion These findings show that the corticofugal modulation of contralateral acoustic suppressions of auditory nerve (ABR wave I) and superior olivary complex (ABR wave III) responses are mediated through MOC synapses.
Collapse
Affiliation(s)
- Cristian Aedo
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gonzalo Terreros
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alex León
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Otorrinolaringología, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Bidelman GM, Nelms C, Bhagat SP. Musical experience sharpens human cochlear tuning. Hear Res 2016; 335:40-46. [DOI: 10.1016/j.heares.2016.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/06/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
|