1
|
Gutzen R, De Bonis G, De Luca C, Pastorelli E, Capone C, Allegra Mascaro AL, Resta F, Manasanch A, Pavone FS, Sanchez-Vives MV, Mattia M, Grün S, Paolucci PS, Denker M. A modular and adaptable analysis pipeline to compare slow cerebral rhythms across heterogeneous datasets. CELL REPORTS METHODS 2024; 4:100681. [PMID: 38183979 PMCID: PMC10831958 DOI: 10.1016/j.crmeth.2023.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/07/2023] [Revised: 08/11/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Neuroscience is moving toward a more integrative discipline where understanding brain function requires consolidating the accumulated evidence seen across experiments, species, and measurement techniques. A remaining challenge on that path is integrating such heterogeneous data into analysis workflows such that consistent and comparable conclusions can be distilled as an experimental basis for models and theories. Here, we propose a solution in the context of slow-wave activity (<1 Hz), which occurs during unconscious brain states like sleep and general anesthesia and is observed across diverse experimental approaches. We address the issue of integrating and comparing heterogeneous data by conceptualizing a general pipeline design that is adaptable to a variety of inputs and applications. Furthermore, we present the Collaborative Brain Wave Analysis Pipeline (Cobrawap) as a concrete, reusable software implementation to perform broad, detailed, and rigorous comparisons of slow-wave characteristics across multiple, openly available electrocorticography (ECoG) and calcium imaging datasets.
Collapse
Affiliation(s)
- Robin Gutzen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany.
| | - Giulia De Bonis
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Chiara De Luca
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy; Institute of Neuroinformatics, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Elena Pastorelli
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Cristiano Capone
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Florence, Italy; Neuroscience Institute, National Research Council, Pisa, Italy
| | - Francesco Resta
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Florence, Italy; Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Arnau Manasanch
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesco Saverio Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Florence, Italy; Department of Physics and Astronomy, University of Florence, Florence, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maurizio Mattia
- National Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | | | - Michael Denker
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
2
|
Capone C, De Luca C, De Bonis G, Gutzen R, Bernava I, Pastorelli E, Simula F, Lupo C, Tonielli L, Resta F, Allegra Mascaro AL, Pavone F, Denker M, Paolucci PS. Simulations approaching data: cortical slow waves in inferred models of the whole hemisphere of mouse. Commun Biol 2023; 6:266. [PMID: 36914748 PMCID: PMC10011502 DOI: 10.1038/s42003-023-04580-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
The development of novel techniques to record wide-field brain activity enables estimation of data-driven models from thousands of recording channels and hence across large regions of cortex. These in turn improve our understanding of the modulation of brain states and the richness of traveling waves dynamics. Here, we infer data-driven models from high-resolution in-vivo recordings of mouse brain obtained from wide-field calcium imaging. We then assimilate experimental and simulated data through the characterization of the spatio-temporal features of cortical waves in experimental recordings. Inference is built in two steps: an inner loop that optimizes a mean-field model by likelihood maximization, and an outer loop that optimizes a periodic neuro-modulation via direct comparison of observables that characterize cortical slow waves. The model reproduces most of the features of the non-stationary and non-linear dynamics present in the high-resolution in-vivo recordings of the mouse brain. The proposed approach offers new methods of characterizing and understanding cortical waves for experimental and computational neuroscientists.
Collapse
Affiliation(s)
| | - Chiara De Luca
- INFN, Sezione di Roma, Rome, Italy
- PhD Program in Behavioural Neuroscience, "Sapienza" University of Rome, Rome, Italy
| | | | - Robin Gutzen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | - Francesco Resta
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Francesco Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- University of Florence, Physics and Astronomy Department, Sesto Fiorentino, Italy
| | - Michael Denker
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | | |
Collapse
|
3
|
Tiddia G, Golosio B, Albers J, Senk J, Simula F, Pronold J, Fanti V, Pastorelli E, Paolucci PS, van Albada SJ. Fast Simulation of a Multi-Area Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster. Front Neuroinform 2022; 16:883333. [PMID: 35859800 PMCID: PMC9289599 DOI: 10.3389/fninf.2022.883333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Spiking neural network models are increasingly establishing themselves as an effective tool for simulating the dynamics of neuronal populations and for understanding the relationship between these dynamics and brain function. Furthermore, the continuous development of parallel computing technologies and the growing availability of computational resources are leading to an era of large-scale simulations capable of describing regions of the brain of ever larger dimensions at increasing detail. Recently, the possibility to use MPI-based parallel codes on GPU-equipped clusters to run such complex simulations has emerged, opening up novel paths to further speed-ups. NEST GPU is a GPU library written in CUDA-C/C++ for large-scale simulations of spiking neural networks, which was recently extended with a novel algorithm for remote spike communication through MPI on a GPU cluster. In this work we evaluate its performance on the simulation of a multi-area model of macaque vision-related cortex, made up of about 4 million neurons and 24 billion synapses and representing 32 mm2 surface area of the macaque cortex. The outcome of the simulations is compared against that obtained using the well-known CPU-based spiking neural network simulator NEST on a high-performance computing cluster. The results show not only an optimal match with the NEST statistical measures of the neural activity in terms of three informative distributions, but also remarkable achievements in terms of simulation time per second of biological activity. Indeed, NEST GPU was able to simulate a second of biological time of the full-scale macaque cortex model in its metastable state 3.1× faster than NEST using 32 compute nodes equipped with an NVIDIA V100 GPU each. Using the same configuration, the ground state of the full-scale macaque cortex model was simulated 2.4× faster than NEST.
Collapse
Affiliation(s)
- Gianmarco Tiddia
- Department of Physics, University of Cagliari, Monserrato, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Monserrato, Italy
| | - Bruno Golosio
- Department of Physics, University of Cagliari, Monserrato, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Monserrato, Italy
| | - Jasper Albers
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Johanna Senk
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Francesco Simula
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Jari Pronold
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Viviana Fanti
- Department of Physics, University of Cagliari, Monserrato, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Monserrato, Italy
| | - Elena Pastorelli
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | | | - Sacha J. van Albada
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Golosio B, De Luca C, Capone C, Pastorelli E, Stegel G, Tiddia G, De Bonis G, Paolucci PS. Thalamo-cortical spiking model of incremental learning combining perception, context and NREM-sleep. PLoS Comput Biol 2021; 17:e1009045. [PMID: 34181642 PMCID: PMC8270441 DOI: 10.1371/journal.pcbi.1009045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2020] [Revised: 07/09/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
The brain exhibits capabilities of fast incremental learning from few noisy examples, as well as the ability to associate similar memories in autonomously-created categories and to combine contextual hints with sensory perceptions. Together with sleep, these mechanisms are thought to be key components of many high-level cognitive functions. Yet, little is known about the underlying processes and the specific roles of different brain states. In this work, we exploited the combination of context and perception in a thalamo-cortical model based on a soft winner-take-all circuit of excitatory and inhibitory spiking neurons. After calibrating this model to express awake and deep-sleep states with features comparable with biological measures, we demonstrate the model capability of fast incremental learning from few examples, its resilience when proposed with noisy perceptions and contextual signals, and an improvement in visual classification after sleep due to induced synaptic homeostasis and association of similar memories. We created a thalamo-cortical spiking model (ThaCo) with the purpose of demonstrating a link among two phenomena that we believe to be essential for the brain capability of efficient incremental learning from few examples in noisy environments. Grounded in two experimental observations—the first about the effects of deep-sleep on pre- and post-sleep firing rate distributions, the second about the combination of perceptual and contextual information in pyramidal neurons—our model joins these two ingredients. ThaCo alternates phases of incremental learning, classification and deep-sleep. Memories of handwritten digit examples are learned through thalamo-cortical and cortico-cortical plastic synapses. In absence of noise, the combination of contextual information with perception enables fast incremental learning. Deep-sleep becomes crucial when noisy inputs are considered. We observed in ThaCo both homeostatic and associative processes: deep-sleep fights noise in perceptual and internal knowledge and it supports the categorical association of examples belonging to the same digit class, through reinforcement of class-specific cortico-cortical synapses. The distributions of pre-sleep and post-sleep firing rates during classification change in a manner similar to those of experimental observation. These changes promote energetic efficiency during recall of memories, better representation of individual memories and categories and higher classification performances.
Collapse
Affiliation(s)
- Bruno Golosio
- Dipartimento di Fisica, Università di Cagliari, Cagliari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Cagliari, Italy
| | - Chiara De Luca
- Ph.D. Program in Behavioural Neuroscience, “Sapienza” Università di Roma, Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
- * E-mail:
| | - Cristiano Capone
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Elena Pastorelli
- Ph.D. Program in Behavioural Neuroscience, “Sapienza” Università di Roma, Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Giovanni Stegel
- Dipartimento di Chimica e Farmacia, Università di Sassari, Sassari, Italy
| | - Gianmarco Tiddia
- Dipartimento di Fisica, Università di Cagliari, Cagliari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Cagliari, Italy
| | - Giulia De Bonis
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | | |
Collapse
|
5
|
De Bonis G, Dasilva M, Pazienti A, Sanchez-Vives MV, Mattia M, Paolucci PS. Analysis Pipeline for Extracting Features of Cortical Slow Oscillations. Front Syst Neurosci 2019; 13:70. [PMID: 31824271 PMCID: PMC6882866 DOI: 10.3389/fnsys.2019.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022] Open
Abstract
Cortical slow oscillations (≲1 Hz) are an emergent property of the cortical network that integrate connectivity and physiological features. This rhythm, highly revealing of the characteristics of the underlying dynamics, is a hallmark of low complexity brain states like sleep, and represents a default activity pattern. Here, we present a methodological approach for quantifying the spatial and temporal properties of this emergent activity. We improved and enriched a robust analysis procedure that has already been successfully applied to both in vitro and in vivo data acquisitions. We tested the new tools of the methodology by analyzing the electrocorticography (ECoG) traces recorded from a custom 32-channel multi-electrode array in wild-type isoflurane-anesthetized mice. The enhanced analysis pipeline, named SWAP (Slow Wave Analysis Pipeline), detects Up and Down states, enables the characterization of the spatial dependency of their statistical properties, and supports the comparison of different subjects. The SWAP is implemented in a data-independent way, allowing its application to other data sets (acquired from different subjects, or with different recording tools), as well as to the outcome of numerical simulations. By using the SWAP, we report statistically significant differences in the observed slow oscillations (SO) across cortical areas and cortical sites. Computing cortical maps by interpolating the features of SO acquired at the electrode positions, we give evidence of gradients at the global scale along an oblique axis directed from fronto-lateral toward occipito-medial regions, further highlighting some heterogeneity within cortical areas. The results obtained using the SWAP will be essential for producing data-driven brain simulations. A spatial characterization of slow oscillations will also trigger a discussion on the role of, and the interplay between, the different regions in the cortex, improving our understanding of the mechanisms of generation and propagation of delta rhythms and, more generally, of cortical properties.
Collapse
Affiliation(s)
- Giulia De Bonis
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Miguel Dasilva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Maria V. Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avanc˛ats (ICREA), Barcelona, Spain
| | | | | |
Collapse
|