1
|
Norata D, Musumeci G, Todisco A, Cruciani A, Motolese F, Capone F, Lattanzi S, Ranieri F, Di Lazzaro V, Pilato F. Bilateral median nerve stimulation and High-Frequency Oscillations unveil interhemispheric inhibition of primary sensory cortex. Clin Neurophysiol 2024; 165:154-165. [PMID: 39033697 DOI: 10.1016/j.clinph.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE This study aimed at investigating the effect of median nerve stimulation on ipsilateral cortical potentials evoked by contralateral median nerve electrical stimulation. METHODS We recorded somatosensory-evoked potentials (SEPs) from the left parietal cortex in 15 right-handed, healthy subjects. We administered bilateral median nerve stimulation, with the ipsilateral stimulation preceding the stimulation on the contralateral by intervals of 5, 10, 20, or 40 ms. We adjusted these intervals based on each individual's N20 latency. As a measure of S1 excitability, the amplitude of the N20 and the area of the High Frequency Oscillation (HFO) burst were analyzed for each condition. RESULTS The results revealed significant inhibition of N20 amplitude by ipsilateral median nerve stimulation at interstimulus intervals (ISIs) between 5 and 40 ms. Late HFO burst was suppressed at short ISIs of 5 and 10 ms, pointing to a transcallosal inhibitory effect on S1 intracortical circuits. CONCLUSIONS Findings suggest interhemispheric interaction between the primary somatosensory areas, supporting the existence of transcallosal transfer of tactile information. SIGNIFICANCE This study provides valuable insights into the interhemispheric connections between primary sensory areas and underscore the potential role of interhemispheric interactions in somatosensory processing.
Collapse
Affiliation(s)
- Davide Norata
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Neurological Clinic and Stroke Unit, Department of Experimental and Clinical Medicine (DiMSC), Marche Polytechnic University, Via Conca 71, 60020 Ancona, Italy.
| | - Gabriella Musumeci
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Antonio Todisco
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Alessandro Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Simona Lattanzi
- Neurological Clinic and Stroke Unit, Department of Experimental and Clinical Medicine (DiMSC), Marche Polytechnic University, Via Conca 71, 60020 Ancona, Italy
| | - Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
2
|
Ishii D, Ishibashi K, Takeda K, Yuine H, Yamamoto S, Kaku Y, Yozu A, Kohno Y. Interaction of the Left-Right Somatosensory Pathways in Patients With Thalamic Hemorrhage: A Case Report. Front Hum Neurosci 2021; 15:761186. [PMID: 34790107 PMCID: PMC8591027 DOI: 10.3389/fnhum.2021.761186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Neural plasticity compensates for the loss of motor function after stroke. However, whether neural plasticity occurs in the somatosensory pathways after stroke is unknown. We investigated the left–right somatosensory interaction in two hemorrhagic patients using a paired somatosensory evoked potentials (p-SEPs) recorded at CP3 and CP4, which was defined as an amplitude difference between the SEPs of paired median nerve stimulations to both sides and that of single stimulation to the affected side. Patient 1 (61-year-old, left thalamic hemorrhage) has a moderate motor impairment, severe sensory deficit, and complained of pain in the affected right upper limb. Patient 2 (72-year-old, right thalamic hemorrhage) had slight motor and sensory impairments with no complaints of pain. Single SEPs (s-SEPs) were obtained by stimulation of the right and left median nerves, respectively. For paired stimulations, 1 ms after the first stimulation to the non-affected side, followed by a second stimulation to the affected side. In patient 1, a s-SEP with stimulation to the non-affected side and a p-SEP were observed in CP4. However, a s-SEP was not observed in either hemisphere with stimulation to the affected side. On the other hand, in patient 2, a s-SEP in CP3 with stimulation to the non-affected side and in CP4 with stimulation to the affected side were observed; however, a p-SEP was not observed. In addition, to investigate the mechanism by which ipsilateral median nerve stimulation enhances contralateral p-SEP in patient 1, we compared the SEP averaged over the first 250 epochs with the SEP averaged over the second 250 epochs (total number of epochs recorded: 500). The results showed that in the patient 1, when the bilateral median nerve was stimulated continuously, the habituation did not occur and the response was larger than that of the s-SEP with unilateral median nerve stimulation. In the current case report, the damage to the thalamus may cause neuroplasticity in terms of the left–right interaction (e.g., left and right S1). The somatosensory input from the affected side may interfere with the habituation of the contralateral somatosensory system and conversely increase the response.
Collapse
Affiliation(s)
- Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Japan.,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kiyoshige Ishibashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Inashiki-gun, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Hiroshi Yuine
- Department of Occupational Therap, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Japan
| | - Satoshi Yamamoto
- Department of Physical Therapy, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Japan
| | - Yuki Kaku
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Japan
| | - Arito Yozu
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Japan
| |
Collapse
|