1
|
Scaglione A, Resta F, Goretti F, Pavone FS. Group ICA of wide-field calcium imaging data reveals the retrosplenial cortex as a major contributor to cortical activity during anesthesia. Front Cell Neurosci 2024; 18:1258793. [PMID: 38799987 PMCID: PMC11116703 DOI: 10.3389/fncel.2024.1258793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/14/2024] [Indexed: 05/29/2024] Open
Abstract
Large-scale cortical dynamics play a crucial role in many cognitive functions such as goal-directed behaviors, motor learning and sensory processing. It is well established that brain states including wakefulness, sleep, and anesthesia modulate neuronal firing and synchronization both within and across different brain regions. However, how the brain state affects cortical activity at the mesoscale level is less understood. This work aimed to identify the cortical regions engaged in different brain states. To this end, we employed group ICA (Independent Component Analysis) to wide-field imaging recordings of cortical activity in mice during different anesthesia levels and the awake state. Thanks to this approach we identified independent components (ICs) representing elements of the cortical networks that are common across subjects under decreasing levels of anesthesia toward the awake state. We found that ICs related to the retrosplenial cortices exhibited a pronounced dependence on brain state, being most prevalent in deeper anesthesia levels and diminishing during the transition to the awake state. Analyzing the occurrence of the ICs we found that activity in deeper anesthesia states was characterized by a strong correlation between the retrosplenial components and this correlation decreases when transitioning toward wakefulness. Overall these results indicate that during deeper anesthesia states coactivation of the posterior-medial cortices is predominant over other connectivity patterns, whereas a richer repertoire of dynamics is expressed in lighter anesthesia levels and the awake state.
Collapse
Affiliation(s)
- Alessandro Scaglione
- Department of Physics and Astronomy, University of Florence, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Florence, Italy
| | - Francesco Resta
- European Laboratory for Non-Linear Spectroscopy (LENS), Florence, Italy
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
| | - Francesco Goretti
- European Laboratory for Non-Linear Spectroscopy (LENS), Florence, Italy
| | - Francesco S. Pavone
- Department of Physics and Astronomy, University of Florence, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Florence, Italy
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Sodero A, Conti E, Piccardi B, Sarti C, Palumbo V, Kennedy J, Gori AM, Giusti B, Fainardi E, Nencini P, Allegra Mascaro AL, Pavone FS, Baldereschi M. Acute ischemic STROKE - from laboratory to the Patient's BED (STROKELABED): A translational approach to reperfusion injury. Study Protocol. Transl Neurosci 2024; 15:20220344. [PMID: 39005711 PMCID: PMC11245877 DOI: 10.1515/tnsci-2022-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Cerebral edema (CE) and hemorrhagic transformation (HT) are frequent and unpredictable events in patients with acute ischemic stroke (AIS), even when an effective vessel recanalization has been achieved. These complications, related to blood-brain barrier (BBB) disruption, remain difficult to prevent or treat and may offset the beneficial effect of recanalization, and lead to poor outcomes. The aim of this translational study is to evaluate the association of circulating and imaging biomarkers with subsequent CE and HT in stroke patients with the dual purpose of investigating possible predictors as well as molecular dynamics underpinning those events and functional outcomes. Concurrently, the preclinical study will develop a new mouse model of middle cerebral artery (MCA) occlusion and recanalization to explore BBB alterations and their potentially harmful effects on tissue. The clinical section of the study is based on a single-center observational design enrolling consecutive patients with AIS in the anterior circulation territory, treated with recanalization therapies from October 1, 2015 to May 31, 2020. The study will employ an innovative evaluation of routine CT scans: in fact, we will assess and quantify the presence of CE and HT after stroke in CT scans at 24 h, through the quantification of anatomical distortion (AD), a measure of CE and HT. We will investigate the relationship of AD and several blood biomarkers of inflammation and extracellular matrix, with functional outcomes at 3 months. In parallel, we will employ a newly developed mouse model of stroke and recanalization, to investigate the emergence of BBB changes 24 h after the stroke onset. The close interaction between clinical and preclinical research can enhance our understanding of findings from each branch of research, enabling a deeper interpretation of the underlying mechanisms of reperfusion injury following recanalization treatment for AIS.
Collapse
Affiliation(s)
- Alessandro Sodero
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Emilia Conti
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Benedetta Piccardi
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Cristina Sarti
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Vanessa Palumbo
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - James Kennedy
- Acute Multidisciplinary Imaging & Interventional Centre, John Radcliffe Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anna Maria Gori
- Atherothrombotic Diseases Center, Department of Experimental and Clinical Medicine, University of Florence - Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Betti Giusti
- Atherothrombotic Diseases Center, Department of Experimental and Clinical Medicine, University of Florence - Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio,”, University of Florence, 50121 Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Patrizia Nencini
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Anna Letizia Allegra Mascaro
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, 50019, Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, 50019, Sesto Fiorentino, Italy
| | - Marzia Baldereschi
- Neuroscience Institute, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Conti E, Carlini N, Piccardi B, Allegra Mascaro AL, Pavone FS. Photothrombotic Middle Cerebral Artery Occlusion in Mice: A Novel Model of Ischemic Stroke. eNeuro 2023; 10:ENEURO.0244-22.2022. [PMID: 36650068 PMCID: PMC9910575 DOI: 10.1523/eneuro.0244-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 01/19/2023] Open
Abstract
Stroke is one of the main causes of death and disability worldwide. Over the past decades, several animal models of focal cerebral ischemia have been developed allowing to investigate pathophysiological mechanisms underlying stroke progression. Despite intense preclinical research efforts, the need for noninvasive mouse models of vascular occlusion targeting the middle cerebral artery yet avoiding mechanical intervention is still pressing. Here, by applying the photothrombotic stroke model to the distal branch of the middle cerebral artery, we developed a novel strategy to induce a targeted occlusion of a large blood vessel in mice. This approach induces unilateral damage encompassing most of the dorsal cortex from the motor up to the visual regions 1 week after stroke. Pronounced limb dystonia one day after the damage is partially recovered after one week. Furthermore, we observe the insurgence of blood vessel leakage and edema formation in the peri-infarct area. Finally, this model elicits a notable inflammatory response revealed as a strong increase in astrocyte density and morphologic complexity in the perilesional region of the cortex compared with both other regions of the ipsilesional and contralesional hemispheres, and in sham-operated mice. To conclude, the stroke model we developed induces in mice the light-mediated occlusion of one of the main targets of human ischemic stroke, the middle cerebral artery, free from the limitations of commonly used preclinical models.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, National Research Council, 56124 Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, 50019 Sesto Fiorentino, Italy
- Translational Research on Stroke (TREES) Working Group, Florence, Italy
| | - Noemi Carlini
- Neuroscience Institute, National Research Council, 56124 Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, 50019 Sesto Fiorentino, Italy
| | - Benedetta Piccardi
- Neurofarba Department, University of Florence, 50139 Florence, Italy
- Translational Research on Stroke (TREES) Working Group, Florence, Italy
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, 56124 Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, 50019 Sesto Fiorentino, Italy
- Translational Research on Stroke (TREES) Working Group, Florence, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, 50019 Sesto Fiorentino, Italy
| |
Collapse
|