1
|
Moura J, Oliveira J, Santos M, Costa S, Silva L, Lemos C, Barros J, Sequeiros J, Damásio J. Spinocerebellar Ataxias: Phenotypic Spectrum of PolyQ versus Non-Repeat Expansion Forms. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2258-2268. [PMID: 39048885 PMCID: PMC11585503 DOI: 10.1007/s12311-024-01723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Spinocerebellar ataxias (SCA) are most frequently due to (CAG)n (coding for polyglutamine, polyQ) expansions and, less so, to expansion of other oligonucleotide repeats (non-polyQ) or other type of variants (non-repeat expansion SCA). In this study we compared polyQ and non-repeat expansion SCA, in a cohort of patients with hereditary ataxia followed at a tertiary hospital. From a prospective study, 88 patients (51 families) with SCA were selected, 74 (40 families) of whom genetically diagnosed. Thirty-eight patients (51.4%, 19 families) were confirmed as having a polyQ (no other repeat-expansions were identified) and 36 (48.6%, 21 families) a non-repeat expansion SCA. Median age-at-onset was 39.5 [30.0-45.5] for polyQ and 7.0 years [1.00-21.50] for non-repeat expansion SCA. PolyQ SCA were associated with cerebellar onset, and non-repeat expansion forms with non-cerebellar onset. Time to diagnosis was longer for non-repeat expansion SCA. The most common polyQ SCA were Machado-Joseph disease (MJD/SCA3) (73.7%) and SCA2 (15.8%); whereas in non-repeat expansion SCA ATX-CACNA1A (14.3%), ATP1A3-related ataxia, ATX-ITPR1, ATX/HSP-KCNA2, and ATX-PRKCG (9.5% each) predominated. Disease duration (up to inclusion) was significantly higher in non-repeat expansion SCA, but the difference in SARA score was not statistically significant. Cerebellar peduncles and pons atrophy were more common in polyQ ataxias, as was axonal neuropathy. SCA had a wide range of genetic etiology, age-at-onset and presentation. Proportion of polyQ and non-repeat expansion SCA was similar; the latter had a higher genetic heterogeneity. While polyQ ataxias were typically linked to cerebellar onset in adulthood, non-repeat expansion forms associated with early onset and non-cerebellar presentations.
Collapse
Affiliation(s)
- João Moura
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal
| | - Jorge Oliveira
- Centro de Genética Preditiva e Preventiva (CGPP), IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Mariana Santos
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sara Costa
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal
| | - Lénia Silva
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal
| | - Carolina Lemos
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - José Barros
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- Centro de Genética Preditiva e Preventiva (CGPP), IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - Joana Damásio
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal.
- Centro de Genética Preditiva e Preventiva (CGPP), IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Yang YL, Lee HF, Chi CS, Tsai CR, Wu PY, Liu SN. Cerebellar atrophy in genetic epileptic encephalopathies: A cohort study and a systematic review. Seizure 2024; 120:41-48. [PMID: 38897163 DOI: 10.1016/j.seizure.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE To analyze cerebellar atrophy in genetic epileptic encephalopathies (EEs). METHODS This research included a retrospective cohort study conducted from January 2016 to December 2023 and a systematic review on cerebellar atrophy in genetic EEs. Pediatric individuals who were diagnosed with EEs based on electroclinical features, carried causative gene variants, and exhibited cerebellar atrophy were recruited. Electroclinical features, neuroimaging findings, and causative variants of eligible individuals were analyzed. RESULTS The cohort study showed 10 of 67 pediatric individuals (10/67; 15 %) who were diagnosed with genetic EEs had cerebellar atrophy; and 6 of the 10 individuals (6/10; 60 %) exhibited cerebellar signs. Diagnostic delay between the detection of cerebellar atrophy and the identification of genetic diagnosis existed in 6 individuals (6/10; 60 %) and the median duration was 4.4 years. A total of 32 genes, including 31 genes from the literature review and a newly identified SCN2A gene in this cohort, were reported associated with cerebellar atrophy in genetic EEs. Twenty-six genes (26/32; 81 %) accounted for cerebellar atrophy associated with other brain anomalies and 6 genes (6/32; 19 %) caused isolated cerebellar atrophy. Twenty-five genes (25/32; 78 %) showed late-onset cerebellar atrophy identified after the age of 1 year old. CONCLUSION Cerebellar atrophy is not uncommon in genetic EEs and may serve as an indicator for molecular diagnosis in clinical practice. To shorten the diagnostic delay, follow-up neuroimaging study is crucial because of high rate of clinico-radiological dissociation and late-onset cerebellar atrophy in this patient group.
Collapse
Affiliation(s)
- Yao-Lun Yang
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan
| | - Hsiu-Fen Lee
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145, Xingda Rd., Taichung 402, Taiwan.
| | - Ching-Shiang Chi
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan
| | - Chi-Ren Tsai
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan
| | - Pei-Yu Wu
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan
| | - Shu-Ning Liu
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan
| |
Collapse
|
4
|
Van de Vondel L, De Winter J, Timmerman V, Baets J. Overarching pathomechanisms in inherited peripheral neuropathies, spastic paraplegias, and cerebellar ataxias. Trends Neurosci 2024; 47:227-238. [PMID: 38360512 DOI: 10.1016/j.tins.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
International consortia collaborating on the genetics of rare diseases have significantly boosted our understanding of inherited neurological disorders. Historical clinical classification boundaries were drawn between disorders with seemingly different etiologies, such as inherited peripheral neuropathies (IPNs), spastic paraplegias, and cerebellar ataxias. These clinically defined borders are being challenged by the identification of mutations in genes displaying wide phenotypic spectra and by shared pathomechanistic themes, which are valuable indications for therapy development. We highlight common cellular alterations that underlie this genetic landscape, including alteration of cytoskeleton, axonal transport, mitochondrial function, and DNA repair response. Finally, we discuss venues for future research using the long axonopathies of the PNS as a model to explore other neurogenetic disorders.
Collapse
Affiliation(s)
- Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jonathan De Winter
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Vincent Timmerman
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|