1
|
Rosenkranz JA. Shaping behaviors through social experience and their proposed sensitivity to stress. Learn Mem 2024; 31:a053926. [PMID: 39681461 DOI: 10.1101/lm.053926.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 12/18/2024]
Abstract
Mammals have evolved with a range of innate drives, such as thirst and hunger, that promote motivated behaviors to ensure survival. A drive for social engagement promotes social interaction and bond formation. While a stable social environment maintains the opportunity for resource sharing and protection, an additional benefit is provided by the social transmission of information. Social experiences, and information obtained from conspecifics, can be used to learn about threats and opportunities in the environment. This review examines the primary forms of social learning and how they can shape behavior. Additionally, while there is much known about the effects of stress on learning and memory, there is much less known about its effects on social learning and memory. This review will therefore dissect the major factors that contribute to social learning and propose how stress may impact these factors. This may serve as a way to formulate new hypotheses about how stress might impact social learning and the effects of social experiences on behavior.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| |
Collapse
|
2
|
Kuhn HM, Serrano LC, Stys GA, Smith BL, Speckmaier J, Dawson BD, Murray BR, He J, Robison AJ, Eagle AL. Lateral entorhinal cortex neurons that project to nucleus accumbens mediate contextual associative memory. Learn Mem 2024; 31:a054026. [PMID: 39592189 PMCID: PMC11606517 DOI: 10.1101/lm.054026.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
The lateral entorhinal cortex (LEC) contains glutamatergic projections that innervate the nucleus accumbens (NAc) and may be involved in the encoding of contextual associations with both positive and negative valences, such as those encountered in drug cues or fear conditioning. To determine whether LEC-NAc neurons are activated by the encoding and recall of contexts associated with cocaine or footshock, we measured c-fos expression in these neurons and found that LEC-NAc neurons are activated in both contexts. Specifically, activation patterns of the LEC-NAc were observed in a novel context and reexposure to the same context, highlighting the specific role for LEC-NAc neurons in encoding rather than the valence of a specific event-related memory. Using a combination of circuit-specific chemogenetic tools and behavioral assays, we selectively inactivated LEC-NAc neurons in mice during the encoding and retrieval of memories of contexts associated with cocaine or footshock. Chemogenetic inactivation of LEC-NAc neurons impaired the formation of both positive and negative context-associated memories without affecting the retrieval of an established memory. This finding suggests a critical role for this circuit in the initial encoding of contextual associations. In summary, LEC-NAc neurons facilitate the encoding of contextual information, guiding motivational behaviors without directly mediating the hedonic or aversive properties of these associations.
Collapse
Affiliation(s)
- Hayley M Kuhn
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | - Grace A Stys
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Brianna L Smith
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | - Brooklynn R Murray
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jin He
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Andrew L Eagle
- Department of Neuroscience, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
3
|
Vázquez D, Peña-Flores N, Maulhardt SR, Solway A, Charpentier CJ, Roesch MR. Anterior cingulate cortex lesions impair multiple facets of task engagement not mediated by dorsomedial striatum neuron firing. Cereb Cortex 2024; 34:bhae332. [PMID: 39128939 DOI: 10.1093/cercor/bhae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
The anterior cingulate cortex (ACC) has been implicated across multiple highly specialized cognitive functions-including task engagement, motivation, error detection, attention allocation, value processing, and action selection. Here, we ask if ACC lesions disrupt task performance and firing in dorsomedial striatum (DMS) during the performance of a reward-guided decision-making task that engages many of these cognitive functions. We found that ACC lesions impacted several facets of task performance-including decreasing the initiation and completion of trials, slowing reaction times, and resulting in suboptimal and inaccurate action selection. Reductions in movement times towards the end of behavioral sessions further suggested attenuations in motivation, which paralleled reductions in directional action selection signals in the DMS that were observed later in recording sessions. Surprisingly, however, beyond altered action signals late in sessions-neural correlates in the DMS were largely unaffected, even though behavior was disrupted at multiple levels. We conclude that ACC lesions result in overall deficits in task engagement that impact multiple facets of task performance during our reward-guided decision-making task, which-beyond impacting motivated action signals-arise from dysregulated attentional signals in the ACC and are mediated via downstream targets other than DMS.
Collapse
Affiliation(s)
- Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Norma Peña-Flores
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Sean R Maulhardt
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
| | - Alec Solway
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Caroline J Charpentier
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Vázquez D, Maulhardt SR, Stalnaker TA, Solway A, Charpentier CJ, Roesch MR. Optogenetic Inhibition of Rat Anterior Cingulate Cortex Impairs the Ability to Initiate and Stay on Task. J Neurosci 2024; 44:e1850232024. [PMID: 38569923 PMCID: PMC11097287 DOI: 10.1523/jneurosci.1850-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 04/05/2024] Open
Abstract
Our prior research has identified neural correlates of cognitive control in the anterior cingulate cortex (ACC), leading us to hypothesize that the ACC is necessary for increasing attention as rats flexibly learn new contingencies during a complex reward-guided decision-making task. Here, we tested this hypothesis by using optogenetics to transiently inhibit the ACC, while rats of either sex performed the same two-choice task. ACC inhibition had a profound impact on behavior that extended beyond deficits in attention during learning when expected outcomes were uncertain. We found that ACC inactivation slowed and reduced the number of trials rats initiated and impaired both their accuracy and their ability to complete sessions. Furthermore, drift-diffusion model analysis suggested that free-choice performance and evidence accumulation (i.e., reduced drift rates) were degraded during initial learning-leading to weaker associations that were more easily overridden in later trial blocks (i.e., stronger bias). Together, these results suggest that in addition to attention-related functions, the ACC contributes to the ability to initiate trials and generally stay on task.
Collapse
Affiliation(s)
- Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | - Sean R Maulhardt
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Thomas A Stalnaker
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Alec Solway
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | - Caroline J Charpentier
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
5
|
Kietzman HW, Trinoskey-Rice G, Seo EH, Guo J, Gourley SL. Neuronal Ensembles in the Amygdala Allow Social Information to Motivate Later Decisions. J Neurosci 2024; 44:e1848232024. [PMID: 38499360 PMCID: PMC11026342 DOI: 10.1523/jneurosci.1848-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Social experiences carry tremendous weight in our decision-making, even when social partners are not present. To determine mechanisms, we trained female mice to respond for two food reinforcers. Then, one food was paired with a novel conspecific. Mice later favored the conspecific-associated food, even in the absence of the conspecific. Chemogenetically silencing projections from the prelimbic subregion (PL) of the medial prefrontal cortex to the basolateral amygdala (BLA) obstructed this preference while leaving social discrimination intact, indicating that these projections are necessary for socially driven choice. Further, mice that performed the task had greater densities of dendritic spines on excitatory BLA neurons relative to mice that did not. We next induced chemogenetic receptors in cells active during social interactions-when mice were encoding information that impacted later behavior. BLA neurons stimulated by social experience were necessary for mice to later favor rewards associated with social conspecifics but not make other choices. This profile contrasted with that of PL neurons stimulated by social experience, which were necessary for choice behavior in social and nonsocial contexts alike. The PL may convey a generalized signal allowing mice to favor particular rewards, while units in the BLA process more specialized information, together supporting choice motivated by social information.
Collapse
Affiliation(s)
- Henry W Kietzman
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Gracy Trinoskey-Rice
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Esther H Seo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Jidong Guo
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322
| |
Collapse
|
6
|
Dinckol O, Wenger NH, Zachry JE, Kutlu MG. Nucleus accumbens core single cell ensembles bidirectionally respond to experienced versus observed aversive events. Sci Rep 2023; 13:22602. [PMID: 38114559 PMCID: PMC10730531 DOI: 10.1038/s41598-023-49686-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
Fear learning is a critical feature of survival skills among mammals. In rodents, fear learning manifests itself through direct experience of the aversive event or social transmission of aversive stimuli such as observing and acting on conspecifics' distress. The neuronal network underlying the social transmission of information largely overlaps with the brain regions that mediate behavioral responses to aversive and rewarding stimuli. In this study, we recorded single cell activity patterns of nucleus accumbens (NAc) core neurons using in vivo optical imaging of calcium transients via miniature scopes. This cutting-edge imaging methodology not only allows us to record activity patterns of individual neurons but also lets us longitudinally follow these individual neurons across time and different behavioral states. Using this approach, we identified NAc core single cell ensembles that respond to experienced and/or observed aversive stimuli. Our results showed that experienced and observed aversive stimuli evoke NAc core ensemble activity that is largely positive, with a smaller subset of negative responses. The size of the NAc single cell ensemble response was greater for experienced aversive stimuli compared to observed aversive events. Our results also revealed sex differences in the NAc core single cell ensembles responses to experience aversive stimuli, where females showed a greater accumbal response. Importantly, we found a subpopulation within the NAc core single cell ensembles that show a bidirectional response to experienced aversive stimuli versus observed aversive stimuli (i.e., negative response to experienced and positive response to observed). Our results suggest that the NAc plays a role in differentiating somatosensory experience from social observation of aversion at a single cell level. These results have important implications for psychopathologies where social information processing is maladaptive, such as autism spectrum disorders.
Collapse
Affiliation(s)
- Oyku Dinckol
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan University, Stratford, NJ, 08084, USA
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Noah Harris Wenger
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan University, Stratford, NJ, 08084, USA
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Jennifer E Zachry
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Munir Gunes Kutlu
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan University, Stratford, NJ, 08084, USA.
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
| |
Collapse
|