1
|
Nan W, Yin J, Hao W, Meng H, Wu J, Yin X, Wu H. Cardamonin protects against diabetic cardiomyopathy by activating macrophage NRF2 signaling through molecular interaction with KEAP1. Food Funct 2024; 15:11083-11095. [PMID: 39431579 DOI: 10.1039/d4fo03543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Diabetic cardiomyopathy (DCM) contributes to a large proportion of heart failure incidents in the diabetic population, but effective therapeutic approaches are rare. Cardamonin (CAD), a flavonoid found in Alpinia, possesses anti-inflammatory and anti-oxidative activities. Here we report a profound protective effect of CAD on DCM in a mouse model of type 2 diabetes induced by streptozotocin and a high-fat diet, in which gavage with CAD improved hyperglycemia and glucose intolerance and mitigated diabetic cardiac injuries including cardiac dysfunction, hypertrophy, apoptotic cell death and infiltration of inflammatory cells, especially M1 polarized macrophages. To verify whether CAD could protect against cardiomyocyte injury through inhibiting macrophage M1 polarization, M1 polarized macrophages were treated with CAD, followed by washing out and co-culturing with cardiomyocytes, showing that CAD remarkably inhibited macrophage M1 polarization and the following cardiomyocyte injury, along with activation of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant signaling pathway. Molecular docking and surface plasmon resonance assays found Kelch-like ECH-associated protein 1 (KEAP1) as the molecular target of CAD. Both CAD and the Kelch domain inhibitor Ki696 promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2). This work may provide CAD as a novel NRF2 activator in future interventions for DCM.
Collapse
Affiliation(s)
- Wenshan Nan
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
| | - Jialin Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Wenhao Hao
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Huali Meng
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang St., Changchun, Jilin 130041, China
| | - Xiao Yin
- Department of Endocrinology and Metabolic Diseases, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
- Shandong Provincial Engineering and Technology Research Center for Food Safety Monitoring and Evaluation, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| |
Collapse
|
2
|
Meng F, Qiu J, Chen H, Shi X, Yin M, Zhu M, Yang G. Dietary supplementation with N-3 polyunsaturated fatty acid-enriched fish oil promotes wound healing after ultraviolet B-induced sunburn in mice. Food Sci Nutr 2021; 9:3693-3700. [PMID: 34262728 PMCID: PMC8269668 DOI: 10.1002/fsn3.2330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/25/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFA) can alleviate ultraviolet B (UVB)-induced skin cancers, but their effects on sunburn and upcoming wound healing remain controversial. This study aimed to explore the impact of n-3 PUFA-enriched fish oil (n-3 PUFA-FO) on UVB-induced sunburns and subsequent healing. Sixty C57BL/6 female mice were divided into two groups. The treated group mice were fed n-3 PUFA-FO for the entire duration of the experiment. Mice in the control group were fed a standard diet. After two weeks of n-3 PUFA-FO feeding, mice were exposed to UVB for 20 min and sacrificed 20 d later. Skin photodamage and lesion area were recorded during wound healing. Epidermal lesion thickness was quantified in hematoxylin and eosin-stained skin sections. Inflammation and macrophage polarization were assessed by qRT-PCR. Oxidative stress and antioxidant enzyme activity were quantified using specific ELISA kits. N-3 PUFA-FO feeding decreased UVB photodamage and accelerated wound healing progression, both of which were coupled with less intense inflammation and increased macrophage M2 phenotype polarization. Furthermore, n-3 PUFA-FO brought about a decrease in malondialdehyde (MDA) levels but increased the activity of catalase (CAT) and glutathione peroxidase (GP), without changing superoxide dismutase (SOD) activity. N-3 PUFA-FO protects against UVB-induced skin photodamage and promotes wound healing by modulating macrophage phenotypic polarization and antioxidant enzyme activities. N-3 PUFA-FO could be a novel therapeutic approach for both the prevention and treatment of sunburns.
Collapse
Affiliation(s)
- Fanxing Meng
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | | | - Houjie Chen
- The Shenzhen Key Laboratory of Health Sciences and TechnologyInternational Graduate School at ShenzhenTsinghua UniversityShenzhenChina
| | - Xiaojun Shi
- The Shenzhen Key Laboratory of Health Sciences and TechnologyInternational Graduate School at ShenzhenTsinghua UniversityShenzhenChina
| | - Meifang Yin
- Department of Burn and Plastic SurgeryDepartment of Wound RepairShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen Second People's HospitalShenzhenChina
| | - Meishu Zhu
- Department of Burn and Plastic SurgeryDepartment of Wound RepairShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen Second People's HospitalShenzhenChina
| | - Guang Yang
- Department of Burn and Plastic SurgeryDepartment of Wound RepairShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen Second People's HospitalShenzhenChina
| |
Collapse
|
3
|
Monk JM, Liddle DM, Hutchinson AL, Robinson LE. Studying Adipocyte and Immune Cell Cross Talk Using a Co-culture System. Methods Mol Biol 2021; 2184:111-130. [PMID: 32808222 DOI: 10.1007/978-1-0716-0802-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The co-culture of adipocytes and immune cells, such as macrophages or T cells (CD4+ or CD8+ subsets), is a novel experimental approach used to study paracrine interactions (or the cross talk) between cultured cell types in isolation, in order to understand their role in obese adipose tissue (AT) inflammation and dysfunction. Here we describe the general methodologies required for the co-culture of mature adipocytes (differentiated 3T3-L1 pre-adipocyte cell line) with primary immune cell subsets purified from mouse splenic mononuclear cells using a magnetic MicroBead positive selection, wherein multiple immune cell populations can be purified sequentially from a single mouse spleen, thereby providing diversity in the types of immune cells that can be co-cultured with adipocytes. Additionally, we describe experimental procedures for co-culturing adipocytes and immune cells in two different co-culture systems, including a cell contact-dependent co-culture system, wherein the cells are in direct physical contact, and a cell contact-independent, soluble mediator-driven co-culture system wherein the cells are physically separated by a trans-well semipermeable membrane. Finally, we discuss how these co-culture models can be utilized to recapitulate the AT microenvironment in obesity by utilizing physiologically relevant ratios of adipocytes:immune cells (specifically CDllb+ macrophages, CD4+ T cells, or CD8+ T cells) and lipopolysaccharide stimulation that mimics endotoxin concentrations observed in obesity.
Collapse
Affiliation(s)
- Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| | - Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Rice Bran Oil Attenuates Chronic Inflammation by Inducing M2 Macrophage Switching in High-Fat Diet-Fed Obese Mice. Foods 2021; 10:foods10020359. [PMID: 33562395 PMCID: PMC7914799 DOI: 10.3390/foods10020359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/05/2023] Open
Abstract
Macrophages are involved in all inflammatory processes from killing pathogens to repairing damaged tissue. In the obese state, macrophages infiltrate into enlarged adipose tissue and polarize into pro-inflammatory M1 macrophages, resulting in chronic low-grade inflammation due to the secretion of inflammatory mediators. Rice bran oil (RBO) is an edible oil containing tocopherols, tocotrienols, and γ-oryzanol. Previous research in normal diet-fed mice suggested that RBO mitigates inflammatory responses by modulating mitochondrial respiration of macrophages. Therefore, we investigated if RBO had an anti-inflammatory effect in diet-induced obese mice by assessing the expression of inflammatory markers in epididymal white adipose tissue (eWAT) and polarization of bone marrow-derived macrophages (BMDMs). Rice bran oil exerted a local anti-inflammatory effect in white adipose tissue by suppressing the production of inflammatory mediators and upregulating transcription of anti-inflammatory genes. Rice bran oil also promoted anti-inflammatory M2 macrophage polarization in BMDMs thereby affecting systemic inflammation. Overall, our in vivo and ex vivo results highlight the potential of RBO as a dietary mediator that can ameliorate obesity-induced chronic low-grade inflammation by mediating the expression of inflammation-related factors and macrophage polarization.
Collapse
|
5
|
Liddle DM, Hutchinson AL, Monk JM, DeBoer AA, Ma DWL, Robinson LE. Dietary long-chain n-3 PUFAs mitigate CD4 + T cell/adipocyte inflammatory interactions in co-culture models of obese adipose tissue. J Nutr Biochem 2020; 86:108488. [PMID: 32827664 DOI: 10.1016/j.jnutbio.2020.108488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Obese adipose tissue (AT) inflammation is partly driven by accumulation of CD4+ T helper (Th)1 cells and reduced Th2 and T regulatory subsets, which promotes macrophage chemotaxis and ensuing AT metabolic dysfunction. This study investigated CD4+ T cell/adipocyte cytokine-mediated paracrine interactions (cross talk) as a target for dietary intervention to mitigate obese AT inflammation. Using an in vitro co-culture model designed to recapitulate CD4+ T cell accumulation in obese AT (5% of stromal vascular cellular fraction), 3T3-L1 adipocytes were co-cultured with purified splenic CD4+ T cells from C57Bl/6 mice consuming one of two isocaloric diets containing either 10% w/w safflower oil (control, CON) or 7% w/w safflower oil+3% w/w fish oil (FO) for 4 weeks (n=8-11/diet). The FO diet provided 1.9% kcal from the long-chain (LC) n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid, a dose that can be achieved by supplementation. Co-cultures were stimulated for 48 h with lipopolysaccharide (LPS) to mimic in vivo obese endotoxin levels or with conditioned media collected from LPS-stimulated visceral AT isolated from CON-fed mice. In both stimulation conditions, FO reduced mRNA expression and/or secreted protein levels of Th1 markers (T-bet, IFN-γ) and increased Th2 markers (GATA3, IL-4), concomitant with reduced inflammatory cytokines (IL-1β, IL-6, IL-12p70, TNF-α), macrophage chemokines (MCP-1, MCP-3, MIP-1α, MIP-2) and levels of activated central regulators of inflammatory signaling (NF-κB, STAT-1, STAT-3) (P<.05). Therefore, CD4+ T cell/adipocyte cross talk represents a potential target for LC n-3 PUFAs to mitigate obese AT inflammation.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Amber L Hutchinson
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Jennifer M Monk
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Anna A DeBoer
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - David W L Ma
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Lindsay E Robinson
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
6
|
Dahik VD, Frisdal E, Le Goff W. Rewiring of Lipid Metabolism in Adipose Tissue Macrophages in Obesity: Impact on Insulin Resistance and Type 2 Diabetes. Int J Mol Sci 2020; 21:ijms21155505. [PMID: 32752107 PMCID: PMC7432680 DOI: 10.3390/ijms21155505] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity and its two major comorbidities, insulin resistance and type 2 diabetes, represent worldwide health issues whose incidence is predicted to steadily rise in the coming years. Obesity is characterized by an accumulation of fat in metabolic tissues resulting in chronic inflammation. It is now largely accepted that adipose tissue inflammation underlies the etiology of these disorders. Adipose tissue macrophages (ATMs) represent the most enriched immune fraction in hypertrophic, chronically inflamed adipose tissue, and these cells play a key role in diet-induced type 2 diabetes and insulin resistance. ATMs are triggered by the continuous influx of dietary lipids, among other stimuli; however, how these lipids metabolically activate ATM depends on their nature, composition and localization. This review will discuss the fate and molecular programs elicited within obese ATMs by both exogenous and endogenous lipids, as they mediate the inflammatory response and promote or hamper the development of obesity-associated insulin resistance and type 2 diabetes.
Collapse
|
7
|
Polarization of Macrophages in Human Adipose Tissue is Related to the Fatty Acid Spectrum in Membrane Phospholipids. Nutrients 2019; 12:nu12010008. [PMID: 31861434 PMCID: PMC7020093 DOI: 10.3390/nu12010008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Residential macrophages in adipose tissue play a pivotal role in the development of inflammation not only within this tissue, but also affect the proinflammatory status of the whole body. Data on human adipose tissue inflammation and the role of macrophages are rather scarce. We previously documented that the proportion of proinflammatory macrophages in human adipose tissue correlates closely with non-HDL cholesterol concentrations. We hypothesized that this is due to the identical influence of diet on both parameters and decided to analyze the fatty acid spectrum in cell membrane phospholipids of the same individuals as a parameter of the diet consumed. Proinflammatory and anti-inflammatory macrophages were isolated from human adipose tissue (n = 43) and determined by flow cytometry as CD14+CD16+CD36high and CD14+CD16−CD163+, respectively. The spectrum of fatty acids in phospholipids in the cell membranes of specimens of the same adipose tissue was analyzed, and the proportion of proinflammatory macrophage increased with the proportions of palmitic and palmitoleic acids. Contrariwise, these macrophages decreased with increasing alpha-linolenic acid, total n-3 fatty acids, n-3/n-6 ratio, and eicosatetraenoic acid. A mirror picture was documented for the proportion of anti-inflammatory macrophages. The dietary score, obtained using a food frequency questionnaire, documented a positive relation to proinflammatory macrophages in individuals who consumed predominantly vegetable fat and fish, and individuals who consumed diets based on animal fat without fish and nut consumption. he present data support our hypothesis that macrophage polarization in human visceral adipose tissue is related to fatty acid metabolism, cell membrane composition, and diet consumed. It is suggested that fatty acid metabolism might participate also in inflammation and the risk of developing cardiovascular disease.
Collapse
|
8
|
Liddle DM, Monk JM, Hutchinson AL, Ma DWL, Robinson LE. CD8 + T cell/adipocyte inflammatory cross talk and ensuing M1 macrophage polarization are reduced by fish-oil-derived n-3 polyunsaturated fatty acids, in part by a TNF-α-dependent mechanism. J Nutr Biochem 2019; 76:108243. [PMID: 31760229 DOI: 10.1016/j.jnutbio.2019.108243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/15/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022]
Abstract
Obese visceral adipose tissue (AT) inflammation is driven by adipokine-mediated cross talk between CD8+ T cells and adipocytes, a process mitigated by long-chain (LC) n-3 polyunsaturated fatty acids (PUFA) but underlying mechanisms and ensuing effects on macrophage polarization status are unknown. Using an in vitro co-culture model that recapitulates the degree of CD8+ T cell infiltration reported in obese AT, 3T3-L1 adipocytes were co-cultured for 24 h with purified splenic CD8+ T cells from C57Bl/6 mice consuming either a 10% w/w safflower oil (control, CON) or 7% w/w safflower oil + 3% w/w fish oil (FO) diet for 4 weeks (n=8-10/diet). Co-cultured cells were in direct contact or in a contact-independent condition separated by a Transwell permeable membrane and stimulated with lipopolysaccharide (10 ng/ml) to mimic in vivo obese endotoxin levels. In contact-dependent co-cultures, FO reduced inflammatory (IL-6, TNFα, IFN-γ) and macrophage chemotactic (CCL2, CCL7, CCL3) mRNA expression and/or secreted protein, NF-κB p65 activation, ROS accumulation, NLRP3 inflammasome priming (Nlrp3, Il1β mRNA) and activation (caspase-1 activity) compared to CON (P<.05). The anti-inflammatory action of FO was reproduced by the addition of a TNF-α neutralizing antibody (1 μg/ml) to CON co-cultures (CON/anti-TNF-α), albeit to a lesser degree. Conditioned media from FO and CON/anti-TNF-α co-cultures, in turn, reduced RAW 264.7 macrophage mRNA expression of M1 polarization markers (iNos, Cd11c, Ccr2) and associated inflammatory cytokines (Il6, Tnfα, Il1β) compared to CON. These data suggest that inflammatory CD8+ T cell/adipocyte cross talk is partially attributable to TNF-α signaling, which can be mitigated by LC n-3 PUFA.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1.
| |
Collapse
|
9
|
Bashir S, Sharma Y, Jairajpuri D, Rashid F, Nematullah M, Khan F. Alteration of adipose tissue immune cell milieu towards the suppression of inflammation in high fat diet fed mice by flaxseed oil supplementation. PLoS One 2019; 14:e0223070. [PMID: 31622373 PMCID: PMC6797118 DOI: 10.1371/journal.pone.0223070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/12/2019] [Indexed: 01/25/2023] Open
Abstract
The present study evaluates the effect of flaxseed oil (FXO) supplementation on adipose tissue macrophages (ATM’s), E and D series resolvin (Rv) levels and adipose tissue inflammation. Male C57BL/6J mice were divided into five groups (n = 5): lean group (given standard chow diet), HFD group given high fat diet (approx. 18 weeks) till they developed insulin resistance and 4, 8 or 16 mg/kg group (HFD group later orally supplemented with 4, 8 or 16 mg/kg body weight flaxseed oil) for 4 weeks.The present study showed that FXO supplementation led to enhanced DHA, EPA, RvE1-E2, RvD2, RvD5- D6, IL-4, IL-10 and arginase 1 levels in ATMs together with altered immune cell infiltration and reduced NF-κB expression. The FXO supplementation suppresses immune cell infiltration into adipose tissue and alters adipose tissue macrophage phenotype towards the anti-inflammatory state via enhancement of E and D series resolvins, arginase 1 expression and anti-inflammatory cytokines level (IL-4 and IL-10.) leading to amelioration of insulin resistance in flaxseed oil supplemented HFD mice.
Collapse
Affiliation(s)
- Samina Bashir
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Yadhu Sharma
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Deeba Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Faraz Rashid
- 121 DHR, Udyog Vihar, Phase IV, Gurugram, Haryana, India
| | - Md. Nematullah
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Farah Khan
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
- * E-mail:
| |
Collapse
|
10
|
Zhu X, Tu Y, Chen H, Jackson AO, Patel V, Yin K. Micro-environment and intracellular metabolism modulation of adipose tissue macrophage polarization in relation to chronic inflammatory diseases. Diabetes Metab Res Rev 2018; 34:e2993. [PMID: 29475214 DOI: 10.1002/dmrr.2993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 12/13/2022]
Abstract
The accumulation and pro-inflammatory polarization of immune cells, mainly macrophages, in adipose tissue (AT) are considered crucial factors for obesity-induced chronic inflammatory diseases. In this review, we highlighted the role of adipose tissue macrophage (ATM) polarization on AT function in the obese state and the effect of the micro-environment and intracellular metabolism on the dynamic switch of ATMs into their pro-inflammatory or anti-inflammatory phenotypes, which may have distinct influences on obesity-related chronic inflammatory diseases. Obesity-associated metabolic dysfunctions, including those of glucose, fatty acid, cholesterol, and other nutrient substrates such as vitamin D and iron in AT, promote the pro-inflammatory polarization of ATMs and AT inflammation via regulating the interaction between ATMs and adipocytes and intracellular metabolic pathways, including glycolysis, fatty acid oxidation, and reverse cholesterol transportation. Focusing on the regulation of ATM metabolism will provide a novel target for the treatment of obesity-related chronic inflammatory diseases, including insulin resistance, cardiovascular diseases, and cancers.
Collapse
Affiliation(s)
- Xiao Zhu
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| | - Yixuan Tu
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
| | - Hainan Chen
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| | - Ampadu O Jackson
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
| | - Vaibhav Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
11
|
Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction. Nutrients 2017; 9:nu9121289. [PMID: 29186929 PMCID: PMC5748740 DOI: 10.3390/nu9121289] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein.
Collapse
|
12
|
Fish-oil-derived n-3 polyunsaturated fatty acids reduce NLRP3 inflammasome activity and obesity-related inflammatory cross-talk between adipocytes and CD11b+ macrophages. J Nutr Biochem 2016; 34:61-72. [DOI: 10.1016/j.jnutbio.2016.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 11/19/2022]
|