1
|
Aknouch I, Sridhar A, Freeze E, Giugliano FP, van Keulen BJ, Romijn M, Calitz C, García-Rodríguez I, Mulder L, Wildenberg ME, Muncan V, van Gils MJ, van Goudoever JB, Stittelaar KJ, Wolthers KC, Pajkrt D. Human milk inhibits some enveloped virus infections, including SARS-CoV-2, in an intestinal model. Life Sci Alliance 2022; 5:e202201432. [PMID: 35926873 PMCID: PMC9354649 DOI: 10.26508/lsa.202201432] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
Human milk is important for antimicrobial defense in infants and has well demonstrated antiviral activity. We evaluated the protective ability of human milk against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in a human fetal intestinal cell culture model. We found that, in this model, human milk blocks SARS-CoV-2 replication, irrespective of the presence of SARS-CoV-2 spike-specific antibodies. Complete inhibition of both enveloped Middle East respiratory syndrome coronavirus and human respiratory syncytial virus infections was also observed, whereas no inhibition of non-enveloped enterovirus A71 infection was seen. Transcriptome analysis after 24 h of the intestinal monolayers treated with human milk showed large transcriptomic changes from human milk treatment, and subsequent analysis suggested that <i>ATP1A1</i> down-regulation by milk might be of importance. Inhibition of ATP1A1 blocked SARS-CoV-2 infection in our intestinal model, whereas no effect on EV-A71 infection was seen. Our data indicate that human milk has potent antiviral activity against particular (enveloped) viruses by potentially blocking the ATP1A1-mediated endocytic process.
Collapse
Affiliation(s)
- Ikrame Aknouch
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Viroclinics Xplore, Schaijk, The Netherlands
| | - Adithya Sridhar
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Eline Freeze
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Francesca Paola Giugliano
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology and Metabolism, Tytgat Institute for Intestinal and Liver Research, Amsterdam, The Netherlands
| | - Britt J van Keulen
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit Emma Children's Hospital, Dutch National Human Milk Bank, Amsterdam, The Netherlands
| | - Michelle Romijn
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit Emma Children's Hospital, Dutch National Human Milk Bank, Amsterdam, The Netherlands
| | - Carlemi Calitz
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Inés García-Rodríguez
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Lance Mulder
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology and Metabolism, Tytgat Institute for Intestinal and Liver Research, Amsterdam, The Netherlands
| | - Vanesa Muncan
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology and Metabolism, Tytgat Institute for Intestinal and Liver Research, Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit Emma Children's Hospital, Dutch National Human Milk Bank, Amsterdam, The Netherlands
| | - Koert J Stittelaar
- Department of Epidemiology, Bioinformatics and Animals Models, Wageningen University, Wageningen Bioveterinary Research, Wageningen, The Netherlands
| | - Katja C Wolthers
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Ota S, Yui Y, Sato T, Yoshimoto N, Yamamoto S. Rapid Purification of Immunoglobulin G Using a Protein A-immobilized Monolithic Spin Column with Hydrophilic Polymers. ANAL SCI 2021; 37:985-990. [PMID: 33281136 DOI: 10.2116/analsci.20p378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/29/2020] [Indexed: 08/09/2023]
Abstract
A rapid purification method was developed for antibody production in Chinese hamster ovary (CHO) cells using a Protein A-immobilized monolithic silica spin column with hydrophilic polymers. Monolithic silica modified with copolymers of 2-hydroxyethylmethacrylate (HEMA) and glycidyl methacrylate (GMA) showed lower non-specific protein absorption than that modified with a silane reagent. The epoxy group of GMA was converted to an amino group, and Protein A was modified by the coupling reagent. The amount of immobilized Protein A was controlled by changing the ratio of GMA to HEMA and the mesopore size of monolith. A modified monolith disk was fixed to a spin column for rapid antibody purification. The linear curves (for the antibody concentrations over 10 - 300 μg/mL) had a correlation coefficient of >0.999. Our column had various analytical advantages over previously reported columns, including a shorter preparation time (<10 min) and smaller sample volumes for purification with Protein A-immobilized agarose.
Collapse
Affiliation(s)
- Shigenori Ota
- Bio-Process Engineering Laboratory, Graduate School of Yamaguchi University Biomedical Engineering Center (YUBEC), 2-16-1 Tokiwadai, Ube, 755-8611, Japan.
| | - Yuko Yui
- GL Sciences Inc., 237-2 Sayamagahara, Iruma, Saitama, 358-0032, Japan
| | - Tsutomu Sato
- GL Sciences Inc., 237-2 Sayamagahara, Iruma, Saitama, 358-0032, Japan
| | - Noriko Yoshimoto
- Bio-Process Engineering Laboratory, Graduate School of Yamaguchi University Biomedical Engineering Center (YUBEC), 2-16-1 Tokiwadai, Ube, 755-8611, Japan
| | - Shuichi Yamamoto
- Bio-Process Engineering Laboratory, Graduate School of Yamaguchi University Biomedical Engineering Center (YUBEC), 2-16-1 Tokiwadai, Ube, 755-8611, Japan
| |
Collapse
|