1
|
Ji X, Fan D, Wang J, Zhang B, Hu Y, Lv H, Wu J, Sun Y, Liu J, Zhang Y, Wang S. Cronobacter sakazakii lysozyme inhibitor LprI mediated by HmsP and c-di-GMP is essential for biofilm formation and virulence. Appl Environ Microbiol 2024; 90:e0156424. [PMID: 39297664 PMCID: PMC11497839 DOI: 10.1128/aem.01564-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
Cronobacter sakazakii poses a significant threat, particularly to neonates and infants. Despite its strong pathogenicity, understanding of C. sakazakii biofilms and their role in infections remains limited. This study investigates the roles of HmsP and c-di-GMP in biofilm formation and identifies key genetic and proteomic elements involved. Gene knockout experiments reveal that HmsP and c-di-GMP are linked to biofilm formation in C. sakazakii. Comparative proteomic profiling identifies the lysozyme inhibitor protein LprI, which is downregulated in hmsP knockouts and upregulated in c-di-GMP knockouts, as a potential biofilm formation factor. Further investigation of the lprI knockout strain shows significantly reduced biofilm formation and decreased virulence in a rat infection model. Additionally, LprI is demonstrated to bind extracellular DNA, suggesting a role in anchoring C. sakazakii within the biofilm matrix. These findings enhance our understanding of the molecular mechanisms underlying biofilm formation and virulence in C. sakazakii, offering potential targets for therapeutic intervention and food production settings.IMPORTANCECronobacter sakazakii is a bacterium that poses a severe threat to neonates and infants. This research elucidates the role of the lysozyme inhibitor LprI, modulated by HmsP and c-di-GMP, and uncovers a key factor in biofilm formation and virulence. The findings offer crucial insights into the molecular interactions that enable C. sakazakii to form resilient biofilms and persist in hostile environments, such as those found in food production facilities. These insights not only enhance our understanding of C. sakazakii pathogenesis but also identify potential targets for novel therapeutic interventions to prevent or mitigate infections. This work is particularly relevant to public health and the food industry, where controlling C. sakazakii contamination in powdered infant formula is vital for safeguarding vulnerable populations.
Collapse
Affiliation(s)
- Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yi Sun
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Chen X, Liu P, Wang J, He X, Wang J, Chen H, Wang G. TMT-Based Quantitative Proteomics Revealed the Antibacterial Mechanism of Cinnamaldehyde against MRSA. J Proteome Res 2024; 23:4637-4647. [PMID: 39269200 DOI: 10.1021/acs.jproteome.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Natural plant extracts have demonstrated significant potential in alternative antibiotic therapies. Cinnamaldehyde (CA) has garnered considerable attention as a natural antibacterial agent. In this study, Tandem mass tag (TMT) quantitative proteomics combined with Western blot and RT-qPCR methods were employed to explore the antibacterial mechanism of CA against Methicillin-Resistant Staphylococcus aureus (MRSA) at the protein level. The results showed that a total of 254 differentially expressed proteins (DEPs) were identified in the control group and CA treatment group, of which 161 were significantly upregulated and 93 were significantly downregulated. DEPs related to nucleotide synthesis, homeostasis of the internal environment, and protein biosynthesis were significantly upregulated, while DEPs involved in the cell wall, cell membrane, and virulence factors were significantly downregulated. The results of GO and KEGG enrichment analyses demonstrated that CA could exert its antibacterial effects by influencing pyruvate metabolism, the tricarboxylic acid (TCA) cycle, teichoic acid biosynthesis, and the Staphylococcus aureus (S. aureus) infection pathway in MRSA. CA significantly inhibited the expression of recombinant protein MgrA (p < 0.05), significantly reduced the mRNA transcription levels of mgrA, hla, and sdrD genes (p < 0.05), and thermostability migration assays demonstrated that CA can directly interact with MgrA protein, thereby inhibiting its activity. These findings suggest that CA exerts its antibacterial mechanism by regulating the expression of related proteins, providing a theoretical basis for further development of clinical applications of antimicrobial agents derived from natural plant essential oils in the treatment of dairy cow mastitis.
Collapse
Affiliation(s)
- Xiaohui Chen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Panpan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jingge Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaoqiang He
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jianchong Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Haorong Chen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Guiqin Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
3
|
Zhou K, Tang M, Zhang W, Chen Y, Guan Y, Huang R, Duan J, Liu Z, Ji X, Jiang Y, Hu Y, Zhang X, Zhou J, Chen M. Exposure to Molybdate Results in Metabolic Disorder: An Integrated Study of the Urine Elementome and Serum Metabolome in Mice. TOXICS 2024; 12:288. [PMID: 38668511 PMCID: PMC11053804 DOI: 10.3390/toxics12040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
The increasing use of molybdate has raised concerns about its potential toxicity in humans. However, the potential toxicity of molybdate under the current level of human exposure remains largely unknown. Endogenous metabolic alterations that are caused in humans by environmental exposure to pollutants are associated with the occurrence and progression of many diseases. This study exposed eight-week-old male C57 mice to sodium molybdate at doses relevant to humans (0.01 and 1 mg/kg/day) for eight weeks. Inductively coupled plasma mass spectrometry (ICP-MS) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS) were utilized to assess changes in urine element levels and serum metabolites in mice, respectively. A total of 838 subjects from the NHANES 2017-2018 population database were also included in our study to verify the associations between molybdenum and cadmium found in mice. Analysis of the metabolome in mice revealed that four metabolites in blood serum exhibited significant changes, including 5-aminolevulinic acid, glycolic acid, l-acetylcarnitine, and 2,3-dihydroxypropyl octanoate. Analysis of the elementome revealed a significant increase in urine levels of cadmium after molybdate exposure in mice. Notably, molybdenum also showed a positive correlation with cadmium in humans from the NHANES database. Further analysis identified a positive correlation between cadmium and 2,3-dihydroxypropyl octanoate in mice. In conclusion, these findings suggest that molybdate exposure disrupted amino acid and lipid metabolism, which may be partially mediated by molybdate-altered cadmium levels. The integration of elementome and metabolome data provides sensitive information on molybdate-induced metabolic disorders and associated toxicities at levels relevant to human exposure.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Miaomiao Tang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Zhang
- Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, China; (W.Z.); (Y.H.)
| | - Yanling Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yusheng Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiawei Duan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zibo Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoming Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingtong Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanhui Hu
- Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, China; (W.Z.); (Y.H.)
| | - Xiaoling Zhang
- Department of Hygienic Analysis and Detection, Nanjing Medical University, Nanjing 211166, China;
| | - Jingjing Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
4
|
Bonaldo F, Avot BJP, De Cesare A, Aarestrup FM, Otani S. Foodborne Pathogen Dynamics in Meat and Meat Analogues Analysed Using Traditional Microbiology and Metagenomic Sequencing. Antibiotics (Basel) 2023; 13:16. [PMID: 38275326 PMCID: PMC10812575 DOI: 10.3390/antibiotics13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Meat analogues play an increasing role in meeting global nutritional needs. However, while it is well known that meat possesses inherent characteristics that create favourable conditions for the growth of various pathogenic bacteria, much less is known about meat analogues. This study aimed to compare the growth and survival of Escherichia coli HEHA16, Listeria monocytogenes, Salmonella enterica Typhi, Cronobacter sakazakii, and a cocktail of these bacteria in sterile juices from minced chicken, pig, and beef, as well as pea-based and soy-based minced meat. Traditional microbiology and next-generation sequencing of those metagenomes were employed to analyse the pathogen variability, abundance, and survival after an incubation period. Our findings show that all the meat juices provided favourable conditions for the growth and proliferation of the studied bacteria, with the exception of E. coli HEHA16, which showed lower survival rates in the chicken matrix. Meat analogue juice mainly supported L. monocytogenes survival, with C. sakazakii survival supported to a lesser extent. A correlation was observed between the traditional culturing and metagenomic analysis results, suggesting that further work is needed to compare these technologies in foodborne setups. Our results indicate that plant-based meats could serve as vectors for the transmission of certain, but likely not all, foodborne pathogens, using two accurate detection methods. This warrants the need for additional research to better understand and characterise their safety implications, including their potential association with additional pathogens.
Collapse
Affiliation(s)
- Francesco Bonaldo
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy;
| | - Baptiste Jacques Philippe Avot
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark; (B.J.P.A.); (F.M.A.)
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy;
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark; (B.J.P.A.); (F.M.A.)
| | - Saria Otani
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark; (B.J.P.A.); (F.M.A.)
| |
Collapse
|
5
|
Hashem HR, Amin BH, Yosri M. Investigation of the potential roles of adipose stem cells and substances of natural origin in the healing process of E. coli infected wound model in Rats. Tissue Cell 2023; 85:102214. [PMID: 37690258 DOI: 10.1016/j.tice.2023.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Skin infections by pathogenic microorganisms are a serious problem due to the potential of dissemination through the bloodstream to various organs causing toxic effects that may be up to mortality. Escherichia coli (E. coli) is one of the most predominant Gram-negative bacterial species present globally with great attention for investigation. The current study is designed to investigate the possible role of adipose tissue-derived stem cells (ADSCs), as well as natural products such as Trichoderma viride (T. viride) extract, Saccharomyces boulardii (S. boulardii) solution in the enhancement of wound healing process in the infected skin with E. coli. Ninety-six female rats were divided into 8 groups (12 animal/group): normal skin, wounded skin, wounded skin infected with E. coli, infected-wounded skin treated by ADSCs, infected-wounded skin treated by T. viride extract, infected-wounded skin treated by S. boulardii solution, infected-wounded skin treated a combination of treatments, infected-wounded skin treated by gentamicin. At day 21 animal weights and bacterial count were detected and compared. Animals were sacrificed and skin from various groups was investigated using a light microscope for sections stained by (hematoxylin eosin, Masson trichrome, and PCNA) as well as transmission electron microscopy. Pro-inflammatory (IL-1β, TNF- α, and IL-13), anti-inflammatory cytokine (IL-4), and antioxidant enzymes (Superoxide dismutase, glutathione, and catalase) were assessed in various groups revealing that ADSCs lightly shift levels of these parameters in various rat groups to regular levels, while administration of T. viride extract, S. boulardii solution, their combination with ADSCs and gentamicin treatment drive the tested cytokines and enzymes to significant levels similar to a normal level where combination therapy gave the best result. The current findings revealed the possibility of using certain natural products as possible substitutes to regularly applied antibiotics with successive protective results in the wound infection model.
Collapse
Affiliation(s)
- Heba R Hashem
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Basma H Amin
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt.
| |
Collapse
|
6
|
Lin C, Li LJ, Ren K, Zhou SYD, Isabwe A, Yang LY, Neilson R, Yang XR, Cytryn E, Zhu YG. Phagotrophic protists preserve antibiotic-resistant opportunistic human pathogens in the vegetable phyllosphere. ISME COMMUNICATIONS 2023; 3:94. [PMID: 37660098 PMCID: PMC10475086 DOI: 10.1038/s43705-023-00302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Food safety of leafy greens is an emerging public health issue as they can harbor opportunistic human pathogens (OHPs) and expose OHPs to consumers. Protists are an integral part of phyllosphere microbial ecosystems. However, our understanding of protist-pathogen associations in the phyllosphere and their consequences on public health remains poor. Here, we examined phyllosphere protists, human pathogen marker genes (HPMGs), and protist endosymbionts from four species of leafy greens from major supermarkets in Xiamen, China. Our results showed that Staphylococcus aureus and Klebsiella pneumoniae were the dominant human pathogens in the vegetable phyllosphere. The distribution of HPMGs and protistan communities differed between vegetable species, of which Chinese chive possessed the most diverse protists and highest abundance of HPMGs. HPMGs abundance positively correlated with the diversity and relative abundance of phagotrophic protists. Whole genome sequencing further uncovered that most isolated phyllosphere protists harbored multiple OHPs which carried antibiotic resistance genes, virulence factors, and metal resistance genes and had the potential to HGT. Colpoda were identified as key phagotrophic protists which positively linked to OHPs and carried diverse resistance and virulence potential endosymbiont OHPs including Pseudomonas nitroreducens, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. We highlight that phyllosphere protists contribute to the transmission of resistant OHPs through internalization and thus pose risks to the food safety of leafy greens and human health. Our study provides insights into the protist-OHP interactions in the phyllosphere, which will help in food safety surveillance and human health.
Collapse
Affiliation(s)
- Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Li-Juan Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Kexin Ren
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Alain Isabwe
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agriculture Research Organization, 7528809, Rishon Lezion, Israel
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
7
|
Li Q, Li C, Ye Q, Gu Q, Wu S, Zhang Y, Wei X, Xue L, Chen M, Zeng H, Zhang J, Wu Q. Occurrence, molecular characterization and antibiotic resistance of Cronobacter spp. isolated from wet rice and flour products in Guangdong, China. Curr Res Food Sci 2023; 7:100554. [PMID: 37559946 PMCID: PMC10407891 DOI: 10.1016/j.crfs.2023.100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
This study explored the prevalence of Cronobacter spp. in wet rice and flour products from Guangdong province, China, the molecular characteristics and antimicrobial susceptibility profiles of the isolates were identified. Among 249 samples, 100 (40.16%) were positive for Cronobacter spp., including 77 wet rice and 23 wet flour products. Eleven serotypes were characterized among 136 isolates with C. sakazakii O2 (n = 32) predominating. Forty-nine MLST patterns were assigned, 15 of which were new. C. sakazakii ST4 (n = 17) was the dominant ST, which is previously reported to have caused three deaths; followed by C. malonaticus ST7 (n = 15), which is connected to adult infections. All strains presented susceptibility to ampicillin/sulbactam, imipenem, aztreonam and trimethoprim/sulfamethoxazole. The isolates showed maximum resistance to cephalothin, and the resistance and intermediate rates were 91.91% and 3.68%, each. Two strains, croM234A1 and croM283-1, displayed resistance to three antibiotics. High contamination level and predominant number of pathogenic STs of Cronobacter in wet rice and flour products implied a potential risk to public healthiness. This survey could provide comprehensive information for establishing more targeted control methods for Cronobacter spp.
Collapse
Affiliation(s)
| | | | - Qinghua Ye
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qihui Gu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Shi Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Youxiong Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Xianhu Wei
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Liang Xue
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Moutong Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Haiyan Zeng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| |
Collapse
|
8
|
Jiao C, Gong S, Shi M, Guo L, Jiang Y, Man C. Depletion of reactive oxygen species induced by beetroot (Beta vulgaris) extract leads to apoptosis-like death in Cronobacter sakazakii. J Dairy Sci 2023; 106:3827-3837. [PMID: 37105876 DOI: 10.3168/jds.2022-22425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/22/2022] [Indexed: 04/29/2023]
Abstract
This research aimed to disclose the antibacterial activity of beetroot extract (Beta vulgaris) against Cronobacter sakazakii and its possible mechanisms. We evaluated its antibacterial activity by measuring the minimum inhibitory concentration (MIC) and time-kill kinetics. We also evaluated the intracellular ATP levels, bacterial apoptosis-like death (ALD), and reactive oxygen species (ROS) levels to reveal the possible antibacterial mechanisms. Our results showed that the MIC of beetroot extract against C. sakazakii was 25 mg/mL and C. sakazakii (approximately 8 log cfu/mL) was completely inhibited after treatment with 2 MIC of beetroot extract for 3 h. Beetroot extract reduced intracellular ATP levels and facilitated characteristics of ALD in C. sakazakii, such as membrane depolarization, increased intracellular Ca2+ levels, phosphatidylserine externalization, caspase-like protein activation, and DNA fragmentation. Additionally, and different from most bacterial ALD caused by the accumulation of ROS, beetroot extract reduced the intracellular ROS levels in C. sakazakii. Our experimental data provide a rationale for further research of bacterial ALD and demonstrate that beetroot extract can inhibit C. sakazakii in food processing environments.
Collapse
Affiliation(s)
- Chaoqin Jiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shaoying Gong
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Mingwei Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
9
|
Garbaj AM, Farag SA, Sherif JA, Lawila AF, Eshamah HL, Azwai SM, Gammoudi FT, Naas HT, El Salabi AA, Eldaghayes IM. Thermal tolerance of Cronobacter sakazakii and Cronobacter pulveris in reconstituted infant milk formula. Open Vet J 2023; 13:108-113. [PMID: 36777432 PMCID: PMC9897503 DOI: 10.5455/ovj.2023.v13.i1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/25/2022] [Indexed: 02/05/2023] Open
Abstract
Background Cronobacter sspecies are the most significant foodborne pathogen in infant milk formula (IMF). These pathogens have been incriminated in severe forms of neonatal meningitis, sepsis, and necrotizing enterocolitis with a high mortality rate. Aim This study was performed to elucidate the effect of heat stress on Cronobacter spp. (C. sakazakii and C. pulveris) in reconstituted IMF (RIMF). Methods The reconstituted formula was inoculated with five C. sakazakii isolates and four C. pulveris isolates separately. The nine isolates of Cronobacter spp. were heated in RIMF at 48°C, 52°C, 56°C, 60°C, 64°C, and 66°C. The D- and z-values were determined by using linear regression analysis. Results The D-values of all isolates of C. sakazakii (CS1, CS3, CS4, CS5, and CS6) at 48°C, 52°C, 56°C, 60°C, 64°C, and 66°C were in the ranges 7.29-23.47, 2.77-15.50, 0.62-1.04, 0.62-1.02, 0.62-1.00, 0.62-1.00 minutes, respectively; while, the z-values extended from 2.50°C to 4.28°C. The D- values of C. pulveris isolates (CP1, CP2, CP3, CP4) were in the ranges 7.60-22.32, 1.42-8.45, 0.62-1.08, 0.62-0.78, 0.62-0.78, 0.62-0.79 minutes at 48°C, 52°C, 56°C, 60°C, 64°C, 66°C, respectively and the calculated z-values ranged from 3.33°C to 4.89°C. Conclusion This study may contribute to improving the understanding of the behavior of C. sakazakii and C. pulveris isolates in RIMF at various heat stress temperatures and may participate in the effective control of these pathogens in infant food production.
Collapse
Affiliation(s)
- Aboubaker M. Garbaj
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Samira A. Farag
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Jihan A. Sherif
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | | | - Hanan L. Eshamah
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Salah M. Azwai
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Fatim T. Gammoudi
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Hesham T. Naas
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Allaaeddin A. El Salabi
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
| | - Ibrahim M. Eldaghayes
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya,Corresponding Author: Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, P.O. Box 13662, Tripoli, Libya.
| |
Collapse
|
10
|
Viswanath K, Hayes M, Avni D. Inflammatory bowel disease - A peek into the bacterial community shift and algae-based ‘biotic’ approach to combat the disease. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Yemiş GP, Yemiş O, Drover JC, Delaquis P. Antibacterial activity of a polyphenol-rich haskap (Lonicera caerulea L.) extract and tannic acid against Cronobacter spp. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Schilrreff P, Alexiev U. Chronic Inflammation in Non-Healing Skin Wounds and Promising Natural Bioactive Compounds Treatment. Int J Mol Sci 2022; 23:ijms23094928. [PMID: 35563319 PMCID: PMC9104327 DOI: 10.3390/ijms23094928] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation is one of the hallmarks of chronic wounds and is tightly coupled to immune regulation. The dysregulation of the immune system leads to continuing inflammation and impaired wound healing and, subsequently, to chronic skin wounds. In this review, we discuss the role of the immune system, the involvement of inflammatory mediators and reactive oxygen species, the complication of bacterial infections in chronic wound healing, and the still-underexplored potential of natural bioactive compounds in wound treatment. We focus on natural compounds with antioxidant, anti-inflammatory, and antibacterial activities and their mechanisms of action, as well as on recent wound treatments and therapeutic advancements capitalizing on nanotechnology or new biomaterial platforms.
Collapse
|
13
|
Khorshidian N, Khanniri E, Koushki MR, Sohrabvandi S, Yousefi M. An Overview of Antimicrobial Activity of Lysozyme and Its Functionality in Cheese. Front Nutr 2022; 9:833618. [PMID: 35356735 PMCID: PMC8959614 DOI: 10.3389/fnut.2022.833618] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/09/2022] [Indexed: 12/21/2022] Open
Abstract
Due to the concern of consumers about the presence of synthetic preservatives, researchers and food manufacturers have recently conducted extensive research on the limited use of these preservatives and the introduction and use of natural preservatives, such as herbal extracts and essential oils, bacteriocins, and antimicrobial enzymes. Lysozyme is a natural enzyme with antimicrobial activity that has attracted considerable attention to be potentially utilized in various industries. Since lysozyme is an intrinsic component of the human immune system and has low toxicity; it could be considered as a natural antimicrobial agent for use in food and pharmaceutical industries. Lysozyme exerts antimicrobial activity against microorganisms, especially Gram-positive bacteria, by hydrolyzing 1,4-beta-linkages between N-acetylmuramic acid and N-acetylglucosamine in the cell wall. In addition, increased antimicrobial activity of lysozyme against Gram-negative bacteria could be achieved by the modification of lysozyme through physical or chemical interactions. Lysozyme is presented as a natural preservative in mammalian milk and can be utilized as a bio-preservative in dairy products, such as cheese. Both bacteria and fungi can contaminate and spoil the cheese; especially the one that is made traditionally by raw milk. Furthermore, uncontrolled and improper processes and post-pasteurization contamination can participate in the cheese contamination. Therefore, besides common preservative strategies applied in cheese production, lysozyme could be utilized alone or in combination with other preservative strategies to improve the safety of cheese. Hence, this study aimed to review the antimicrobial properties of lysozyme as natural antimicrobial enzyme and its functionality in cheese.
Collapse
Affiliation(s)
- Nasim Khorshidian
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Koushki
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
14
|
Yousefi M, Nematollahi A, Shadnoush M, Mortazavian AM, Khorshidian N. Antimicrobial Activity of Films and Coatings Containing Lactoperoxidase System: A Review. Front Nutr 2022; 9:828065. [PMID: 35308287 PMCID: PMC8931696 DOI: 10.3389/fnut.2022.828065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The production of safe and healthy foodstuffs is considered as one of the most important challenges in the food industry, and achieving this important goal is impossible without using various processes and preservatives. However, recently, there has been a growing concern about the use of chemical preservatives and attention has been focused on minimal process and/or free of chemical preservatives in food products. Therefore, researchers and food manufacturers have been induced to utilize natural-based preservatives such as antimicrobial enzymes in their production. Lactoperoxidase, as an example of antimicrobial enzymes, is the second most abundant natural enzyme in the milk and due to its wide range of antibacterial activities, it could be potentially applied as a natural preservative in various food products. On the other hand, due to the diffusion of lactoperoxidase into the whole food matrix and its interaction and/or neutralization with food components, the direct use of lactoperoxidase in food can sometimes be restricted. In this regard, lactoperoxidase can be used as a part of packaging material, especially edible and coating, to keep its antimicrobial properties to extend food shelf-life and food safety maintenance. Therefore, this study aims to review various antimicrobial enzymes and introduce lactoperoxidase as a natural antimicrobial enzyme, its antimicrobial properties, and its functionality in combination with an edible film to extend the shelf-life of food products.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Nasim Khorshidian
| |
Collapse
|
15
|
Trans-Cinnamaldehyde Exhibits Synergy with Conventional Antibiotic against Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2021; 22:ijms22052752. [PMID: 33803167 PMCID: PMC7963149 DOI: 10.3390/ijms22052752] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen worldwide and has acquired multiple resistance to a wide range of antibiotics. Hence, there is a pressing need to explore novel strategies to overcome the increase in antimicrobial resistance. The present study aims to investigate the efficacy and mechanism of plant-derived antimicrobials, trans-cinnamaldehyde (TCA) in decreasing MRSA’s resistance to eight conventional antibiotics. A checkerboard dilution test and time–kill curve assay are used to determine the synergistic effects of TCA combined with the antibiotics. The results indicated that TCA increased the antibacterial activity of the antibiotics by 2-16-fold. To study the mechanism of the synergism, we analyzed the mecA transcription gene and the penicillin-binding protein 2a level of MRSA treated with TCA by quantitative RT-PCR or Western blot assay. The gene transcription and the protein level were significantly inhibited. Additionally, it was verified that TCA can significantly inhibit the biofilm, which is highly resistant to antibiotics. The expression of the biofilm regulatory gene hld of MRSA after TCA treatment was also significantly downregulated. These findings suggest that TCA maybe is an exceptionally potent modulator of antibiotics.
Collapse
|