1
|
Dharsini SP, Suganya K, Sumathi S. Identification of potential probiotics from fermented sour traditional rice varieties and in vitro simulation studies. Nat Prod Res 2024; 38:2723-2730. [PMID: 37403623 DOI: 10.1080/14786419.2023.2230608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Fermented products contain probiotic organisms that have beneficial and therapeutic effects on the gastrointestinal tract. The main objective of the study is to isolate probiotic bacteria from fermented sour traditional rice water and to evaluate their probiotic activity. The microbes were isolated from the fermented rice water and the characterization of the organisms was determined using MALDI-TOF MS. The morphological analysis, biochemical test, and carbohydrate fermentation test were done for further characterization. The colonization and therapeutic properties of organisms were evaluated by performing in vitro simulation studies. The results indicated that the isolated gram-positive organisms Pediococcus pentosaecus and Lactococcus lactis from traditional fermented sour rice water possessed desirable in vitro probiotic properties. Consuming fermented sour rice water enriches intestinal flora with beneficial bacteria and enzymes. Fermented rice water improves gut microbiome health, immune system function, and is also used to treat chronic conditions.
Collapse
Affiliation(s)
- S P Dharsini
- Department of Biochemistry, Biotechnology, and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Kanagaraj Suganya
- Department of Biochemistry, Biotechnology, and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Sundaravadivelu Sumathi
- Department of Biochemistry, Biotechnology, and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
2
|
Subramanian V, Dhandayuthapani UN, Kandasamy S, Sivaprakasam JV, Balasubramaniam P, Shanmugam MK, Nagappan S, Elangovan S, Subramani UK, Palaniyappan K, Vellingiri G, Muthurajan R. Unravelling the metabolomic diversity of pigmented and non-pigmented traditional rice from Tamil Nadu, India. BMC PLANT BIOLOGY 2024; 24:402. [PMID: 38745317 PMCID: PMC11095017 DOI: 10.1186/s12870-024-05123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Rice metabolomics is widely used for biomarker research in the fields of pharmacology. As a consequence, characterization of the variations of the pigmented and non-pigmented traditional rice varieties of Tamil Nadu is crucial. These varieties possess fatty acids, sugars, terpenoids, plant sterols, phenols, carotenoids and other compounds that plays a major role in achieving sustainable development goal 2 (SDG 2). Gas-chromatography coupled with mass spectrometry was used to profile complete untargeted metabolomics of Kullkar (red colour) and Milagu Samba (white colour) for the first time and a total of 168 metabolites were identified. The metabolite profiles were subjected to data mining processes, including principal component analysis (PCA), Orthogonal Partial Least Square Discrimination Analysis (OPLS-DA) and Heat map analysis. OPLS-DA identified 144 differential metabolites between the 2 rice groups, variable importance in projection (VIP) ≥ 1 and fold change (FC) ≥ 2 or FC ≤ 0.5. Volcano plot (64 down regulated, 80 up regulated) was used to illustrate the differential metabolites. OPLS-DA predictive model showed good fit (R2X = 0.687) and predictability (Q2 = 0.977). The pathway enrichment analysis revealed the presence of three distinct pathways that were enriched. These findings serve as a foundation for further investigation into the function and nutritional significance of both pigmented and non-pigmented rice grains thereby can achieve the SDG 2.
Collapse
Affiliation(s)
- Venkatesan Subramanian
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Udhaya Nandhini Dhandayuthapani
- Centre of Excellence in sustaining Soil Health, Anbil Dharmalingam Agricultural College & Research Institute, Trichy, Tamil Nadu, 620 027, India
| | - Senthilraja Kandasamy
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | | | - Prabha Balasubramaniam
- Department of Renewable Energy Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Mohan Kumar Shanmugam
- Agro-Climatic Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Sriram Nagappan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | | | - Umesh Kanna Subramani
- Office of the Vice Chancellor, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Kumaresan Palaniyappan
- Agribusiness Development, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Geethalakshmi Vellingiri
- Agro-Climatic Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| | - Raveendran Muthurajan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| |
Collapse
|
3
|
Udhaya Nandhini D, Venkatesan S, Senthilraja K, Janaki P, Prabha B, Sangamithra S, Vaishnavi SJ, Meena S, Balakrishnan N, Raveendran M, Geethalakshmi V, Somasundaram E. Metabolomic analysis for disclosing nutritional and therapeutic prospective of traditional rice cultivars of Cauvery deltaic region, India. Front Nutr 2023; 10:1254624. [PMID: 37841397 PMCID: PMC10568072 DOI: 10.3389/fnut.2023.1254624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Traditional rice is gaining popularity worldwide due to its high nutritional and pharmaceutical value, as well as its high resistance to abiotic and biotic stresses. This has attracted significant attention from breeders, nutritionists, and plant protection scientists in recent years. Hence, it is critical to investigate the grain metabolome to reveal germination and nutritional importance. This research aimed to explore non-targeted metabolites of five traditional rice varieties, viz., Chinnar, Chithiraikar, Karunguruvai, Kichili samba, and Thooyamalli, for their nutritional and therapeutic properties. Approximately 149 metabolites were identified using the National Institute of Standards and Technology (NIST) library and Human Metabolome Database (HMDB) and were grouped into 34 chemical classes. Major classes include fatty acids (31.1-56.3%), steroids and their derivatives (1.80-22.4%), dihydrofurans (8.98-11.6%), prenol lipids (0.66-4.44%), organooxygen compounds (0.12-6.45%), benzene and substituted derivatives (0.53-3.73%), glycerolipids (0.36-2.28%), and hydroxy acids and derivatives (0.03-2.70%). Significant variations in metabolite composition among the rice varieties were also observed through the combination of univariate and multivariate statistical analyses. Principal component analysis (PCA) reduced the dimensionality of 149 metabolites into five principle components (PCs), which explained 96% of the total variance. Two clusters were revealed by hierarchical cluster analysis, indicating the distinctiveness of the traditional varieties. Additionally, a partial least squares-discriminant analysis (PLS-DA) found 17 variables important in the projection (VIP) scores of metabolites. The findings of this study reveal the biochemical intricate and distinctive metabolomes of the traditional therapeutic rice varieties. This will serve as the foundation for future research on developing new rice varieties with traditional rice grain metabolisms to increase grain quality and production with various nutritional and therapeutic benefits.
Collapse
Affiliation(s)
- Dhandayuthapani Udhaya Nandhini
- Centre of Excellence in Sustaining Soil Health, Anbil Dharmalingam Agricultural College and Research Institute, Trichy, Tamil Nadu, India
| | - Subramanian Venkatesan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Kandasamy Senthilraja
- Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Ponnusamy Janaki
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Balasubramaniam Prabha
- Department of Renewable Energy Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sadasivam Sangamithra
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Sadasivam Meena
- Centre of Excellence in Sustaining Soil Health, Anbil Dharmalingam Agricultural College and Research Institute, Trichy, Tamil Nadu, India
| | - Natarajan Balakrishnan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Muthurajan Raveendran
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Vellingiri Geethalakshmi
- Agro-Climatic Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Eagan Somasundaram
- Agribusiness Development, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
4
|
Kowsalya P, Sharanyakanth P, Mahendran R. Traditional rice varieties: A comprehensive review on its nutritional, medicinal, therapeutic and health benefit potential. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Beaulieu J, Grimm C, Obando‐Ulloa J, McClung A. Volatiles recovered in novel, diverse and uncharacterized rice varieties. Cereal Chem 2022. [DOI: 10.1002/cche.10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- J.C. Beaulieu
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Food Processing & Sensory Quality Research Unit1100 Allen Toussaint BlvdNew OrleansLAUSA70124
| | - C.C. Grimm
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Food Processing & Sensory Quality Research Unit1100 Allen Toussaint BlvdNew OrleansLAUSA70124
| | - J.M. Obando‐Ulloa
- Doctorate Program on Natural Science for the Development and Agronomy Engineering School. Technology Institute of Costa Rica (ITCR)San Carlos Technology Local Campus, Alajuela, CiudadQuesadaCosta Rica
| | - A.M. McClung
- United States Department of Agriculture, Agricultural Research Service, Dale Bumpers National Rice Research Center2890 Hwy 130 E.StuttgartAR72160
| |
Collapse
|
6
|
Chen T, Chen X, Meng L, Wei Z, Chen B, Wang Y, Chen H, Cheng Q. Characteristic Fingerprint Analysis of the Moldy Odor in Guangxi Fragrant Rice by Gas Chromatography - Ion Mobility Spectrometry (GC-IMS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2043337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tong Chen
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Xinyu Chen
- Department of Physical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Luli Meng
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Ziyu Wei
- School of Economics and Management, Guangxi University of Science and Technology, Liuzhou, China
| | - Bin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yong Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hui Chen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, Jiangsu, China
| | - Qianwei Cheng
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| |
Collapse
|
7
|
Sheng YY, Xiang J, Wang KR, Li ZY, Li K, Lu JL, Ye JH, Liang YR, Zheng XQ. Extraction of Squalene From Tea Leaves (Camellia sinensis) and Its Variations With Leaf Maturity and Tea Cultivar. Front Nutr 2022; 9:755514. [PMID: 35223940 PMCID: PMC8866563 DOI: 10.3389/fnut.2022.755514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Squalene is a precursor of steroids with diverse bioactivities. Tea was previously found to contain squalene, but its variation between tea cultivars remains unknown. In this study, tea leaf squalene sample preparation was optimized and the squalene variation among 30 tea cultivars was investigated. It shows that squalene in the unsaponified tea leaf extracts was well separated on gas chromatography profile. Saponification led to a partial loss of squalene in tea leaf extract and so it is not an essential step for preparing squalene samples from tea leaves. The tea leaf squalene content increased with the maturity of tea leaf and the old leaves grown in the previous year had the highest level of squalene among the tested samples. The squalene levels in the old leaves of the 30 tested cultivars differentiated greatly, ranging from 0.289 to 3.682 mg/g, in which cultivar “Pingyun” had the highest level of squalene. The old tea leaves and pruned littering, which are not used in tea production, are an alternative source for natural squalene extraction.
Collapse
Affiliation(s)
- Yue Yue Sheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jing Xiang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Kai Rong Wang
- Forest Technology Extension Center, Ningbo Agricultural and Rural Affairs Bureau, Ningbo, China
| | - Ze Yu Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Kai Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yue Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China
- *Correspondence: Yue Rong Liang
| | - Xin Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
- Xin Qiang Zheng
| |
Collapse
|
8
|
Tiozon RJN, Sartagoda KJD, Fernie AR, Sreenivasulu N. The nutritional profile and human health benefit of pigmented rice and the impact of post-harvest processes and product development on the nutritional components: A review. Crit Rev Food Sci Nutr 2021:1-28. [PMID: 34709089 DOI: 10.1080/10408398.2021.1995697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pigmented rice has attracted considerable attention due to its nutritional value, which is in large conferred by its abundant content of phenolic compounds, considerable micronutrient concentrations, as well as its higher resistant starch and thereby slower digestibility properties. A wide range of phenolic compounds identified in pigmented rice exhibit biological activities such as antioxidant activity, anti-inflammatory, anticancer, and antidiabetic properties. Post-harvest processes significantly reduce the levels of these phytochemicals, but recent developments in processing methods have allowed greater retention of their contents. Pigmented rice has also been converted to different products for food preservation and to derive functional foods. Profiling a large set of pigmented rice cultivars will thus not only provide new insights into the phytochemical diversity of rice and the genes underlying the vast array of secondary metabolites present in this species but also provide information concerning their nutritional benefits, which will be instrumental in breeding healthier rice. The present review mainly focuses on the nutritional composition of pigmented rice and how it can impact human health alongside the effects of post-harvest processes and product development methods to retain the ambient level of phytochemicals in the final processed form in which it is consumed.
Collapse
Affiliation(s)
- Rhowell Jr N Tiozon
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines.,Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kristel June D Sartagoda
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
9
|
Ashokkumar K, Vellaikumar S, Murugan M, Dhanya M, Karthikeyan A, Akilan M, Ariharasutharsan G, Nimisha M, Aiswarya S. Assessment of phytochemical diversity in essential oil composition of eighteen Piper nigrum (L.) accessions from southern India. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2021.1975578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- K. Ashokkumar
- Cardamom Research Station, Kerala Agricultural University, Idukki, Kerala, India
| | - S. Vellaikumar
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India
| | - M. Murugan
- Cardamom Research Station, Kerala Agricultural University, Idukki, Kerala, India
| | - M.K. Dhanya
- Cardamom Research Station, Kerala Agricultural University, Idukki, Kerala, India
| | - A. Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - M. Akilan
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India
| | - G. Ariharasutharsan
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India
| | - M. Nimisha
- Cardamom Research Station, Kerala Agricultural University, Idukki, Kerala, India
| | - S. Aiswarya
- Cardamom Research Station, Kerala Agricultural University, Idukki, Kerala, India
| |
Collapse
|
10
|
Yisak H, Yaya EE, Chandravanshi BS, Redi-Abshiro M. Volatile compounds in two varieties of teff (Eragrostis tef (Zuccagni) Trotter) cultivated in Ethiopia by gas chromatography-mass spectrometry. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1963275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hagos Yisak
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Estifanos Ele Yaya
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Bhagwan Singh Chandravanshi
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mesfin Redi-Abshiro
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Fernández-Ochoa Á, Leyva-Jiménez FJ, De la Luz Cádiz-Gurrea M, Pimentel-Moral S, Segura-Carretero A. The Role of High-Resolution Analytical Techniques in the Development of Functional Foods. Int J Mol Sci 2021; 22:ijms22063220. [PMID: 33809986 PMCID: PMC8004826 DOI: 10.3390/ijms22063220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
The approaches based on high-resolution analytical techniques, such as nuclear magnetic resonance or mass spectrometry coupled to chromatographic techniques, have a determining role in several of the stages necessary for the development of functional foods. The analyses of botanical extracts rich in bioactive compounds is one of the fundamental steps in order to identify and quantify their phytochemical composition. However, the compounds characterized in the extracts are not always responsible for the bioactive properties because they generally undergo metabolic reactions before reaching the therapeutic targets. For this reason, analytical techniques are also applied to analyze biological samples to know the bioavailability, pharmacokinetics and/or metabolism of the compounds ingested by animal or human models in nutritional intervention studies. In addition, these studies have also been applied to determine changes of endogenous metabolites caused by prolonged intake of compounds with bioactive potential. This review aims to describe the main types and modes of application of high-resolution analytical techniques in all these steps for functional food development.
Collapse
Affiliation(s)
- Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Berlin Institute of Health Metabolomics Platform, 10178 Berlin, Germany
- Correspondence: (Á.F.-O.); (M.D.l.L.C.-G.)
| | - Francisco Javier Leyva-Jiménez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain; (F.J.L.-J.); (A.S.-C.)
| | - María De la Luz Cádiz-Gurrea
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain; (F.J.L.-J.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain;
- Correspondence: (Á.F.-O.); (M.D.l.L.C.-G.)
| | - Sandra Pimentel-Moral
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain;
| | - Antonio Segura-Carretero
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain; (F.J.L.-J.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain;
| |
Collapse
|