1
|
Nguyen PT, Nguyen-Thi TU, Nguyen HT, Pham MN, Nguyen TT. Halophilic lactic acid bacteria - Play a vital role in the fermented food industry. Folia Microbiol (Praha) 2024; 69:305-321. [PMID: 38372951 DOI: 10.1007/s12223-024-01149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Halophilic lactic acid bacteria have been widely found in various high-salt fermented foods. The distribution of these species in salt-fermented foods contributes significantly to the development of the product's flavor. Besides, these bacteria also have the ability to biosynthesize bioactive components which potentially apply to different areas. In this review, insights into the metabolic properties, salt stress responses, and potential applications of these bacteria have been have been elucidated. The purpose of this review highlights the important role of halophilic lactic acid bacteria in improving the quality and safety of salt-fermented products and explores the potential application of these bacteria.
Collapse
Affiliation(s)
- Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | | | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
2
|
Martins D, Lemos A, Silva J, Rodrigues M, Simões J. Mycotoxins evaluation of total mixed ration (TMR) in bovine dairy farms: An update. Heliyon 2024; 10:e25693. [PMID: 38370215 PMCID: PMC10867658 DOI: 10.1016/j.heliyon.2024.e25693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The total mixed ration (TMR) is currently a widespread method to feed dairy cows. It is a mixture of raw fodder and concentrate feed that can be contaminated by several mycotoxins. The main aim of this paper was to provide a critical review on TMR mycotoxin occurrence and its usefulness to monitor and control them on-farm. Aflatoxins, zearalenone, deoxynivalenol, T-2 toxin and fumonisins (regulated mycotoxins) are the most prevalent mycotoxins evaluated in TMR. Nonetheless, several emerging mycotoxins represent a health risk at the animal level regarding their prevalence and level in TMR. Even when measured at low levels, the co-occurrence of mycotoxins is frequent and synergistic effects on animal health are still underevaluated. Similar to the animal feed industry, on-farm plans monitoring mycotoxin feed contamination can be developed as a herd health management program. The estimated daily intake of mycotoxins should be implemented, but thresholds for each mycotoxin are not currently defined in dairy farms.
Collapse
Affiliation(s)
- Daniela Martins
- Department of Veterinary Science, Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Ana Lemos
- Animal Nutrition, DSM-Firmenich, the Netherlands
| | - João Silva
- CapêloVet, Lda, 4755-252, Barcelos, Portugal
| | | | - João Simões
- Department of Veterinary Science, Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| |
Collapse
|
3
|
Wang Z, Tang H, Liu G, Gong H, Li Y, Chen Y, Yang Y. Compound probiotics producing cellulase could replace cellulase preparations during solid-state fermentation of millet bran. BIORESOURCE TECHNOLOGY 2023; 385:129457. [PMID: 37422095 DOI: 10.1016/j.biortech.2023.129457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Low-value agricultural by-products can be converted into high-value biological products by fermentation with probiotic strains or by enzymatic hydrolysis. However, the high costs of enzyme preparations significantly limit their applications in fermentation. In this study, the solid-state fermentation of millet bran was performed using a cellulase preparation and compound probiotics producing cellulase (CPPC), respectively. The results showed that both factors effectively destroyed the fiber structure, reduced the crude fiber content by 23.78% and 28.32%, respectively, and significantly increased the contents of beneficial metabolites and microorganisms. Moreover, CPPC could more effectively reduce the anti-nutrient factors and increase the content of anti-inflammatory metabolites. The correlation analysis revealed that Lactiplantibacillus and Issatchenkia had synergistic growth during fermentation. Overall, these results suggested that CPPC could replace cellulase preparation and improve antioxidant properties while reducing anti-nutrient factors of millet bran, thus providing a theoretical reference for the efficient utilization of agricultural by-products.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haoran Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gongwei Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hanxuan Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangguang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
4
|
Li W, Li W, Zhang C, Xu N, Fu C, Wang C, Li D, Wu Q. Study on the mechanism of aflatoxin B1 degradation by Tetragenococcus halophilus. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Biogenesis of nanoparticles with inhibitory effects on aflatoxin B1 production by Aspergillus flavus. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Du S, You S, Jiang X, Li Y, Jia Y. Longitudinal Investigation of the Native Grass Hay from Storage to Market Reveals Mycotoxin-Associated Fungi. Microorganisms 2022; 10:microorganisms10061154. [PMID: 35744671 PMCID: PMC9227807 DOI: 10.3390/microorganisms10061154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to characterize the fungal diversity and mycotoxin concentrations of native grass hay in various storage periods. In the present study, the native grass hay samples were collected when stored for 0 d (D0 group), 30 d (D30 group), and 150 d (D150 group), respectively. Here, mycotoxin analyses combined with ITS gene sequence were performed to reveal the changes in response to the storage period. There were notable differences in deoxynivalenol and aflatoxin B1 concentrations among the three groups. Compared to the D150 group, the diversity of the fungal community was higher in the D0 and D30 groups, which indicating the diversity was significantly influenced by the storage period. No significant (p > 0.05) difference was observed among the three groups on the dominant phyla. Interestingly, a significant (p < 0.05) difference was also observed in Chactomella and Aspergillus among the three groups, the abundance of the Chactomella was significantly (p < 0.05) decreased and the abundance of Aspergillus was statistically (p < 0.05) increased in the D150 group. Correlation analysis of the association of fungi with mycotoxin could provide a comprehensive understanding of the structure and function of the fungal community. These results indicated that the good practices of storage are essential for the prevention of mycotoxin. The information contained in the present study is vital for the further development of strategies for hay storage with high quality in the harsh Mongolian Plateau ecosystem.
Collapse
Affiliation(s)
- Shuai Du
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China;
| | - Sihan You
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China; (S.Y.); (Y.L.)
| | - Xiaowei Jiang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010020, China;
| | - Yuyu Li
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China; (S.Y.); (Y.L.)
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China; (S.Y.); (Y.L.)
- Correspondence:
| |
Collapse
|
7
|
Guo J, Yan WR, Tang JK, Jin X, Xue HH, Wang T, Zhang LW, Sun QY, Liang ZX. Dietary phillygenin supplementation ameliorates aflatoxin B 1-induced oxidative stress, inflammation, and apoptosis in chicken liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113481. [PMID: 35405527 DOI: 10.1016/j.ecoenv.2022.113481] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Aflatoxin B1 (AFB1), a mycotoxin contaminating food and feed, can trigger liver immune toxicity and threaten the poultry industry. Phillygenin (PHI) is a natural lignan derived primarily from Forsythia suspensa with hepatoprotective pharmacological and medicinal properties. This research aimed to investigate the preventive effects of PHI on the toxicity of AFB1 in the liver of chickens. Chickens were administered with AFB1 (2.8 mg/kg) and/or treated with PHI (24 mg/kg) for 33 days. The histopathological changes, serum biochemical indices, oxidative damage, inflammatory mediators, apoptosis, and activation of the NF-κB and Nrf2 signaling pathways were measured. Results revealed that dietary PHI ameliorated liver function indicators, reduced the malondialdehyde and inflammatory mediator production and the apoptotic cell number, and increased the antioxidant enzyme contents and Bcl-2 level. The quantitative realtime PCR and Western blot results revealed that PHI reduced p53, cytochrome c, Bax, caspase-9, and caspase-3 levels, normalized the NF-κB p65 phosphorylation, and upregulated the Nrf2 and its downstream genes expression in chicken liver. These results indicated that PHI has beneficial effects on AFB1-induced liver damage, oxidative damage, inflammatory response, apoptosis, and immunotoxicity by inhibiting NF-κB and activating the Nrf2 signaling pathway in chickens. This study provides new insight into the therapeutic uses of PHI.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Wen-Rui Yan
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian-Kai Tang
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiang Jin
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Huan-Huan Xue
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Tao Wang
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li-Wei Zhang
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Qian-Yun Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| | - Zhan-Xue Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
8
|
Álvarez-Días F, Torres-Parga B, Valdivia-Flores AG, Quezada-Tristán T, Alejos-De La Fuente JI, Sosa-Ramírez J, Rangel-Muñoz EJ. Aspergillus flavus and Total Aflatoxins Occurrence in Dairy Feed and Aflatoxin M 1 in Bovine Milk in Aguascalientes, Mexico. Toxins (Basel) 2022; 14:292. [PMID: 35622539 PMCID: PMC9143994 DOI: 10.3390/toxins14050292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/09/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Contamination of food chains by toxigenic fungi and aflatoxins is a global problem that causes damage to human health, as well as to crop and livestock production. The objective is to evaluate Aspergillus flavus and total aflatoxins (AFs) occurrence in totally mixed rations (TMRs) for dairy cows and aflatoxin M1 (AFM1) in milk for human consumption. Ninety-nine dairy production units located in Aguascalientes, Mexico, were randomly selected, and samples were collected from TMRs, raw milk, and milk marketed in the city in two consecutive agricultural cycles. AFs were quantified in TMRs and milk by indirect enzyme immunoassay and HPLC; aflatoxigenic and molecular (PCR) capacity of monosporic A. flavus isolates in the feed was characterized. All feed, raw, and pasteurized milk samples showed aflatoxin contamination (26.0 ± 0.4 µg/kg, 32.0 ± 1.0, and 31.3 ± 0.7 ng/L, respectively), and a significant proportion (90.4, 11.3, and 10.3%) exceeded the locally applied maximum permissible limits for feed and milk (20.0 µg/kg and 50 ng/L). Aflatoxin contamination in both TMRs and milk indicated a seasonal influence, with a higher concentration in the autumn-winter cycle when conditions of higher humidity prevail. The results obtained suggest the existence of contamination by aflatoxigenic A. flavus and aflatoxins in the diet formulated for feeding dairy cows and, consequently, in the dairy food chain of this region of the Mexican Highland Plateau.
Collapse
Affiliation(s)
- Fernanda Álvarez-Días
- Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (F.Á.-D.); (B.T.-P.); (T.Q.-T.); (J.S.-R.); (E.J.R.-M.)
| | - Barenca Torres-Parga
- Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (F.Á.-D.); (B.T.-P.); (T.Q.-T.); (J.S.-R.); (E.J.R.-M.)
| | - Arturo Gerardo Valdivia-Flores
- Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (F.Á.-D.); (B.T.-P.); (T.Q.-T.); (J.S.-R.); (E.J.R.-M.)
| | - Teódulo Quezada-Tristán
- Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (F.Á.-D.); (B.T.-P.); (T.Q.-T.); (J.S.-R.); (E.J.R.-M.)
| | | | - Joaquín Sosa-Ramírez
- Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (F.Á.-D.); (B.T.-P.); (T.Q.-T.); (J.S.-R.); (E.J.R.-M.)
| | - Erika Janet Rangel-Muñoz
- Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (F.Á.-D.); (B.T.-P.); (T.Q.-T.); (J.S.-R.); (E.J.R.-M.)
| |
Collapse
|