1
|
Wang W, Wang Y, Huang P, Zhou J, Tan G, Zeng J, Liu W. Mosla Chinensis Extract Enhances Growth Performance, Antioxidant Capacity, and Intestinal Health in Broilers by Modulating Gut Microbiota. Microorganisms 2024; 12:2647. [PMID: 39770849 PMCID: PMC11728446 DOI: 10.3390/microorganisms12122647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
This study aimed to evaluate the effects of Mosla chinensis extract (MCE) on broiler intestinal health. A total of 240 1-day-old Arbor Acres (AA) broilers (balanced for sex) were randomly allocated into four treatment groups, each with six replicates of 10 chickens. The study comprised a starter phase (days 1-21) and a grower phase (days 22-42). The control group (C) received a basal diet, while the experimental groups were supplemented with low (S1, 500 mg/kg), medium (S2, 1000 mg/kg), and high doses (S3, 2000 mg/kg) of MCE. The results showed that MCE supplementation significantly improved average daily gain in broilers (p < 0.05) and reduced the feed-to-gain ratio in broilers. Additionally, MCE enhanced the anti-inflammatory and antioxidant capacity of broilers. In the duodenum and cecum, MCE significantly upregulated the expression of tight junction proteins Claudin-1, and Occludin, with the high-dose group showing the strongest effect on intestinal barrier protection (p < 0.05). There was no significant difference in ZO-1 in dudenum (p > 0.05). Microbial analysis indicated that MCE supplementation significantly reduced the Chao and Sobs indices in both the small and large intestines (p < 0.05). At the same time, the Coverage index of the small intestine increased, with the high-dose group demonstrating the most pronounced effect. Beta diversity analysis revealed that MCE had a significant modulatory effect on the microbial composition in the large intestine (p < 0.05), with a comparatively smaller impact on the small intestine. Furthermore, MCE supplementation significantly increased the relative abundance of Ruminococcaceae and Alistipes in the large intestine, along with beneficial genera that promote short-chain fatty acid (SCFA) production, thus optimizing the gut microecological environment. Correlation analysis of SCFAs further confirmed a significant association between the enriched microbiota and the production of acetate, propionate, and butyrate (p < 0.05). In conclusion, dietary supplementation with MCE promotes healthy growth and feed intake in broilers and exhibits anti-inflammatory and antioxidant effects. By optimizing gut microbiota composition, enhancing intestinal barrier function, and promoting SCFA production, MCE effectively maintains gut microecological balance, supporting broiler intestinal health.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.W.)
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuyu Wang
- College of Veterinary, Hunan Agricultural University, Changsha 410128, China;
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.W.)
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Junjuan Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.W.)
| | - Guifeng Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.W.)
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- College of Veterinary, Hunan Agricultural University, Changsha 410128, China;
| | - Wei Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Shi Y, Peng H, Liao Y, Li J, Yin Y, Peng H, Wang L, Tan Y, Li C, Bai H, Ma C, Tan W, Li X. The Prophylactic Protection of Salmonella Typhimurium Infection by Lentilactobacillus buchneri GX0328-6 in Mice. Probiotics Antimicrob Proteins 2024; 16:2054-2072. [PMID: 37668855 PMCID: PMC11573835 DOI: 10.1007/s12602-023-10145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Salmonellosis is a disease caused by non-typhoid Salmonella, and although some lactic acid bacteria strains have been shown previously to relieve Salmonellosis symptoms, little has been studied about the preventive mechanism of Lentilactobacillus buchneri (L. buchneri) against Salmonella infection in vivo. Therefore, the L. buchneri was fed to C57BL/6 mice for 10 days to build a protective system of mice to study its prevention and possible mechanisms. The results showed that L. buchneri GX0328-6 alleviated symptoms caused by Salmonella typhimurium infection among C57BL/6 mice, including low survival rate, weight loss, increase in immune organ index and hepatosplenomegaly, and modulated serum immunoglobulin levels and intrinsic immunity. Importantly, the L. buchneri GX0328-6 enhanced the mucosal barrier of the mouse jejunum by upregulating the expression of tight junction proteins such as ZO-1, occludins, and claudins-4 and improved absorptive capacity by increasing the length of mouse jejunal villus and the ratio of villus length to crypt depth and decreasing the crypt depth. L. buchneri GX0328-6 reduced the intestinal proliferation and invasion of Salmonella typhimurium by modulating the expression of antimicrobial peptides in the intestinal tract of mice, and reduced intestinal inflammation and systemic spread in mice by downregulating the expression of IL-6 and promoting the expression of IL-10. Furthermore, L. buchneri GX0328-6 increased the relative abundance of beneficial bacteria colonies and decreased the relative abundance of harmful bacteria in the cecum microflora by modulating the microflora in the cecum contents.
Collapse
Affiliation(s)
- Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China.
| | - Yuying Liao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Yangyan Yin
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hongyan Peng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Leping Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yizhou Tan
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Changting Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Huili Bai
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Chunxia Ma
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
- Fangchenggang Administrative Examination and Approval Service Center, Fangchenggang, 538001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, 530021, China
| | - Wenbao Tan
- Qibainong Chicken Industry Development Center of Dahua Yao Autonomous County, Dahua Guangxi, 530800, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
He G, Long H, He J, Zhu C. The Immunomodulatory Effects and Applications of Probiotic Lactiplantibacillus plantarum in Vaccine Development. Probiotics Antimicrob Proteins 2024; 16:2229-2250. [PMID: 39101975 DOI: 10.1007/s12602-024-10338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is a lactic acid bacterium that exists in various niches. L. plantarum is a food-grade microorganism that is commonly considered a safe and beneficial microorganism. It is widely used in food fermentation, agricultural enhancement, and environmental protection. L. plantarum is also part of the normal flora that can regulate the intestinal microflora and promote intestinal health. Some strains of L. plantarum are powerful probiotics that induce and modulate the innate and adaptive immune responses. Due to its outstanding immunoregulatory capacities, an increasing number of studies have examined the use of probiotic L. plantarum strains as natural immune adjuvants or alternative live vaccine carriers. The present review summarizes the main immunomodulatory characteristics of L. plantarum and discusses the preliminary immunological effects of L. plantarum as a vaccine adjuvant and delivery carrier. Different methods for improving the immune capacities of recombinant vector vaccines are also discussed.
Collapse
Affiliation(s)
- Guiting He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Huanbing Long
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Jiarong He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Yin Y, Peng H, Bai H, Pei Z, Chen Z, Ma C, Zhu M, Li J, Li C, Gong Y, Wang L, Teng L, Qin Z, Zhou J, Wei T, Liao Y. Enhancing resistance to Salmonella typhimurium in yellow-feathered broilers: a study of a strain of Lactiplantibacillus plantarum as probiotic feed additives. Front Microbiol 2024; 15:1450690. [PMID: 39633802 PMCID: PMC11615061 DOI: 10.3389/fmicb.2024.1450690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Lactiplantibacillus plantarum strains are potentially rich sources of probiotics that could help avoid infections. In order to evaluate their efficacy in bolstering resistance to Salmonella typhimurium infection among chicks. In this study, L. plantarum and commercial probiotics were administered via the water supply at a dosage of 1×109 CFU per chicken from days 1 to 7 to establish a protective system for the chicks. On days 8 and 9, S. typhimurium was attacked to investigate the preventive effects and potential mechanisms of L. plantarum in comparison with commercial probiotics. Post-treatment, we took a broad range of measurements, including body weight, immune organ index changes, the viable count of S. typhimurium in the liver, spleen, and cecum, as well as pathological changes in the liver. Our findings demonstrated that both L. plantarum and the commercial probiotic could safeguard chicks from S. typhimurium infection. The data also suggested that probiotic medication could ease weight loss postinfection, lower the bacterial count in the liver, spleen, and cecum, and attenuate liver pathological damage among all treated participants. Subsequently, we did high-throughput sequencing of 16S rRNA to examine the fecal microbiota of the chicks 5 days post-infection. We discovered that both L. plantarum and the commercial probiotic could fend off the invasion of S. typhimurium by affecting the bacterial population of Anaerotruncus, Colidextribacter, and Lactobacillus. Generally speaking, the addition of L. plantarum as a feed additive protects yellow-feathered broilers from S. typhimurium illness, suggesting great potential for commercial uses in the poultry industry.
Collapse
Affiliation(s)
- Yangyan Yin
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Hao Peng
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Huili Bai
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhe Pei
- Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Zhongwei Chen
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Chunxia Ma
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Min Zhu
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jun Li
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Changting Li
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Yu Gong
- Guizhou Provincial Livestock and Poultry Genetic Resources Management Station, Guiyang, China
| | - Leping Wang
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Ling Teng
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhongsheng Qin
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Jianhui Zhou
- Guilin Animal Epidemic Disease Prevention and Control Center, Guilin, China
| | - Tianchao Wei
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuying Liao
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
5
|
Chen P, Lv H, Du M, Liu W, Che C, Zhao J, Liu H. Bacillus subtilis HW2 enhances growth performance and alleviates gut injury via attenuation of endoplasmic reticulum stress and regulation of gut microbiota in broilers under necrotic enteritis challenge. Poult Sci 2024; 103:103661. [PMID: 38547540 PMCID: PMC11000119 DOI: 10.1016/j.psj.2024.103661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
This study investigated the effects of Bacillus subtilis HW2 on the growth performance, immune response, endoplasmic reticulum (ER) stress, and intestinal health in broilers with necrotic enteritis. Three hundred 1-day-old male Cobb 500 broilers (33.88 ± 2.34 g) were randomly allocated to 5 groups including non-infected control (NC group), basal diet + necrotic enteritis challenge (NE group), basal diet + 1 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (L-Pro group), basal diet + 5 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (M-Pro group), and basal diet + 1 × 107 CFU/g B. subtilis HW2 + necrotic enteritis challenge (H-Pro group), with 6 replicates per group. All broilers except NC group were orally given with sporulated coccidian oocysts at day 14 and Clostridium perfringens from days 19 to 21. Results showed that L-Pro and M-Pro groups improved growth performance and intestinal morphology in necrotic enteritis-challenged broilers, and L-Pro, M-Pro, and H-Pro groups improved intestinal barrier function and immune response and decreased ER stress in necrotic enteritis-challenged broilers. Analysis of the gut microbiota revealed that L-Pro group increased the abundances of Alistipes, Coprobacter, Barnesiella, and Limosilactobacillus, decreased Erysipelatoclostridium abundance on day 42 in necrotic enteritis-challenged broilers. M-Pro group increased Turicibacter abundance on day 28 and the abundances of Alistipes, Barnesiella, and Limosilactobacillus on day 42 in necrotic enteritis-challenged broilers. H-Pro group decreased Romboutsia abundance on day 28 and unidentified_Clostridia abundance on day 42 in necrotic enteritis-challenged broilers. Analysis of short-chain fatty acids (SCFAs) revealed higher isobutyric acid and isovaleric acid levels in L-Pro and M-Pro groups than NE group. Correlation analysis revealed the correlations between the biochemical parameters and gut microbiota as well as SCFAs, especially Romboutsia, Barnesiella, Coprobacter, isobutyric acid, and isovaleric acid. Overall, our results indicated that B. subtilis HW2 supplementation could ameliorate necrotic enteritis infection-induced gut injury. The optimal dietary supplementation dosage of Bacillus subtilis HW2 was 5 × 106 CFU/g.
Collapse
Affiliation(s)
- Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengmeng Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Weiyong Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chuanyan Che
- College of Animal Science and Technology, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Zhu La ALT, Wen Q, Xiao Y, Hu D, Liu D, Guo Y, Hu Y. A New Bacillus velezensis Strain CML532 Improves Chicken Growth Performance and Reduces Intestinal Clostridium perfringens Colonization. Microorganisms 2024; 12:771. [PMID: 38674715 PMCID: PMC11051962 DOI: 10.3390/microorganisms12040771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Bacillus velezensis has gained increasing recognition as a probiotic for improving animal growth performance and gut health. We identified six B. velezensis strains from sixty Bacillus isolates that were isolated from the cecal samples of fifteen different chicken breeds. We characterized the probiotic properties of these six B. velezensis strains. The effect of a selected strain (B. velezensis CML532) on chicken growth performance under normal feeding and Clostridium perfringens challenge conditions was also evaluated. The results revealed that the six B. velezensis strains differed in their probiotic properties, with strain CML532 exhibiting the highest bile salt and acid tolerance and high-yield enzyme and antibacterial activities. Genomic analyses showed that genes related to amino acid and carbohydrate metabolism, as well as genes related to starch and cellulose hydrolysis, were abundant in strain CML532. Dietary supplementation with strain CML532 promoted chicken growth, improved the gut barrier and absorption function, and modulated the gut microbiota. Under the C. perfringens challenge condition, strain CML532 alleviated intestinal damage, reduced ileal colonization of C. perfringens, and also improved chicken growth performance. Collectively, this study demonstrated that the newly isolated B. velezensis strain is a promising probiotic with beneficial effects on chicken growth performance and gut health.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.L.T.Z.L.); (Q.W.); (Y.X.); (D.H.); (D.L.); (Y.G.)
| |
Collapse
|
7
|
Gao M, Liao C, Fu J, Ning Z, Lv Z, Guo Y. Probiotic cocktails accelerate baicalin metabolism in the ileum to modulate intestinal health in broiler chickens. J Anim Sci Biotechnol 2024; 15:25. [PMID: 38369501 PMCID: PMC10874562 DOI: 10.1186/s40104-023-00974-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Baicalin and probiotic cocktails are promising feed additives with broad application prospects. While probiotic cocktails are known to enhance intestinal health, the potential synergistic impact of combining baicalin with probiotic cocktails on the gut health of broiler chickens remains largely unexplored. Therefore, this study aims to investigate the influence of the combined administration of baicalin and probiotic cocktails on the composition of ileal and cecal microbiota in broiler chickens to elucidate the underlying mechanisms responsible for the health-promoting effects. RESULTS A total of 320 1-day-old male Arbor Acres broilers were divided into 4 groups, each with 8 replicates of 10 chicks per replicate. Over a period of 42 d, the birds were fed a basal diet or the same diet supplemented with 37.5 g/t baicalin (BC), 1,000 g/t probiotic cocktails (PC), or a combination of both BC (37.5 g/t) and PC (1,000 g/t). The results demonstrated that BC + PC exhibited positive synergistic effects, enhancing intestinal morphology, immune function, and barrier function. This was evidenced by increased VH/CD ratio, sIgA levels, and upregulated expression of occludin and claudin-1 (P < 0.05). 16S rRNA analysis indicated that PC potentiated the effects of BC, particularly in the ileum, where BC + PC significantly increased the α-diversity of the ileal microbiota, altered its β-diversity, and increased the relative abundance of Flavonifractor (P < 0.05), a flavonoid-metabolizing bacterium. Furthermore, Flavonifractor positively correlated with chicken ileum crypt depth (P < 0.05). While BC + PC had a limited effect on cecal microbiota structure, the PC group had a very similar microbial composition to BC + PC, suggesting that the effect of PC at the distal end of the gut overshadowed those of BC. CONCLUSIONS We demonstrated the synergistic enhancement of gut health regulation in broiler chickens by combining baicalin and probiotic cocktails. Probiotic cocktails enhanced the effects of baicalin and accelerated its metabolism in the ileum, thereby influencing the ileal microbiota structure. This study elucidates the interaction mechanism between probiotic cocktails and plant extract additives within the host microbiota. These findings provide compelling evidence for the future development of feed additive combinations.
Collapse
Affiliation(s)
- Mingkun Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoyong Liao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Yuan H, Bai G, Lin Y, Yu X, Yang Q, Dou R, Sun H, Zhao Z, Li Z, Chen Z, Xu L. Effects of dietary Nisin on growth performance, immune function, and gut health of broilers challenged by Clostridium perfringens. J Anim Sci 2024; 102:skae017. [PMID: 38266070 PMCID: PMC11254313 DOI: 10.1093/jas/skae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024] Open
Abstract
Nisin (Ni) is a polypeptide bacteriocin produced by lactic streptococci (probiotics) that can inhibit the majority of gram-positive bacteria, and improve the growth performance of broilers, and exert antioxidative and anti-inflammatory properties. The present study investigated the potential preventive effect of Nisin on necrotic enteritis induced by Clostridium perfringens (Cp) challenge. A total of 288 Arbor Acres broiler chickens of 1-d-olds were allocated using 2 × 2 factorial arrangement into four groups with six replicates (12 chickens per replicate), including: (1) control group (Con, basal diet), (2) Cp challenge group (Cp, basal diet + 1.0 × 108 CFU/mL Cp), (3) Ni group (Ni, basal diet + 100 mg/kg Ni), and (4) Ni + Cp group (Ni + Cp, basal diet + 100 mg/kg Ni + 1.0 × 108 CFU/mL Cp). The results showed that Cp challenge decreased the average daily gain (ADG) of days 15 to 21 (P<0.05) and increased interleukin-6 (IL-6) content in the serum (P < 0.05), as well as a significant reduction in villus height (VH) and the ratio of VH to crypt depth (VCR) (P<0.05) and a significant increase in crypt depth (CD) of jejunum (P<0.05). Furthermore, the mRNA expressions of Occludin and Claudin-1 were downregulated (P<0.05), while the mRNA expressions of Caspase3, Caspase9, Bax, and Bax/Bcl-2 were upregulated (P<0.05) in the jejunum. However, the inclusion of dietary Ni supplementation significantly improved body weight (BW) on days 21 and 28, ADG of days 15 to 21 (P<0.05), decreased CD in the jejunum, and reduced tumor necrosis factor-α (TNF-α) content in the serum (P<0.05). Ni addition upregulated the mRNA levels of Claudin-1 expression and downregulated the mRNA expression levels of Caspase9 in the jejunum (P<0.05). Moreover, Cp challenge and Ni altered the cecal microbiota composition, which manifested that Cp challenge decreased the relative abundance of phylum Fusobacteriota and increased Shannon index (P<0.05) and the trend of phylum Proteobacteria (0.05
Collapse
Affiliation(s)
- Hua Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guangdong Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xilong Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qinghui Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Renkai Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hao Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhihui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Liangmei Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Chen P, Lv H, Liu W, Wang Y, Zhang K, Che C, Zhao J, Liu H. Effects of Lactobacillus plantarum HW1 on Growth Performance, Intestinal Immune Response, Barrier Function, and Cecal Microflora of Broilers with Necrotic Enteritis. Animals (Basel) 2023; 13:3810. [PMID: 38136847 PMCID: PMC10740588 DOI: 10.3390/ani13243810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The purpose of the study was to investigate the effects of Lactobacillus plantarum HW1 on growth performance, intestinal immune response, barrier function, and cecal microflora of broilers with necrotic enteritis. In total, 180 one-day-old male Cobb 500 broilers were randomly allocated into three groups comprising a non-infected control (NC) group, basal diet + necrotic enteritis challenge (NE) group, and basal diet + 4 × 106 CFU/g Lactobacillus plantarum HW1 + necrotic enteritis challenge (HW1) group. Broilers in the NE and HW1 groups were orally given sporulated coccidian oocysts at day 14 and Clostridium perfringens from days 19 to 21. The results showed that the HW1 treatment increased (p < 0.05) the average daily gain of broilers from days 15 to 28 and from days 0 to 28 compared with the NE group. Moreover, the HW1 treatment decreased (p < 0.05) the oocysts per gram of excreta, intestinal lesion scores, ileal interleukin (IL) 1β and tumor necrosis factor α levels, and serum D-lactic acid and diamine oxidase levels, while increasing (p < 0.05) the ileal IL-10 level, thymus index, and protein expressions of ileal occludin and ZO-1. Additionally, the HW1 treatment decreased (p < 0.05) the jejunal and ileal villus height, jejunal villus height/crypt depth value, and cecal harmful bacterial counts (Clostridium perfringens, Salmonella, Escherichia coli, and Staphylococcus aureus), and increased (p < 0.05) the cecal Lactobacillus count. In conclusion, dietary supplementation with 4 × 106 CFU/g Lactobacillus plantarum HW1 could relieve necrotic enteritis infection-induced intestinal injury and improve growth performance in broilers by improving intestinal barrier function and regulating intestinal microbiology.
Collapse
Affiliation(s)
- Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Weiyong Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Chuanyan Che
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
10
|
Ren X, Xu J, Xu Y, Wang Q, Huang K, He X. Artemether Attenuates Gut Barrier Dysfunction and Intestinal Flora Imbalance in High-Fat and High-Fructose Diet-Fed Mice. Nutrients 2023; 15:4860. [PMID: 38068719 PMCID: PMC10707945 DOI: 10.3390/nu15234860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Intestinal inflammation is a key determinant of intestinal and systemic health, and when our intestines are damaged, there is disruption of the intestinal barrier, which in turn induces a systemic inflammatory response. However, the etiology and pathogenesis of inflammatory diseases of the intestine are still not fully understood. Artemether (ART), one of the artemisinin derivatives, has been widely used to treat malaria. Nevertheless, the effect of ART on intestinal inflammation remains unclear. The present study intended to elucidate the potential mechanism of ART in diet-induced intestinal injury. A high-fat and high-fructose (HFHF) diet-induced mouse model of intestinal injury was constructed, and the mice were treated with ART to examine their role in intestinal injury. RT-qPCR, Western blotting, immunohistochemical staining, and 16S rRNA gene sequencing were used to investigate the anti-intestinal inflammation effect and mechanism of ART. The results indicated that ART intervention may significantly ameliorate the intestinal flora imbalance caused by the HFHF diet and alleviate intestinal barrier function disorders and inflammatory responses by raising the expression of tight junction proteins ZO-1 and occludin and decreasing the expression of pro-inflammatory factors TNF-α and IL-1β. Moreover, ART intervention restrained HFHF-induced activation of the TLR4/NF-κB p65 pathway in colon tissue, which may be concerned with the potential protective effect of ART on intestinal inflammation. ART might provide new insights into further explaining the mechanism of action of other metabolic diseases caused by intestinal disorders.
Collapse
Affiliation(s)
- Xinxin Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ye Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qin Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| |
Collapse
|
11
|
Song S, Shon J, Yang WR, Kang HB, Kim KH, Park JY, Lee S, Baik SY, Lee KR, Park YJ. Short-Term Effects of Weight-Loss Meal Replacement Programs with Various Macronutrient Distributions on Gut Microbiome and Metabolic Parameters: A Pilot Study. Nutrients 2023; 15:4744. [PMID: 38004139 PMCID: PMC10675061 DOI: 10.3390/nu15224744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
It has emerged the gut microbiome is crucially linked to metabolic health and obesity. Macronutrient distribution has been discussed as a key parameter in weight-loss programs, but little is known about its impact on the gut microbiome. We investigated the effects of weight-loss meal replacement programs with different macronutrient ratios on the gut microbiota and metabolic parameters in subjects with overweight and obesity. Three low-calorie meal replacement programs with different ratios of carbohydrates, proteins, and lipids were designed: a balanced diet (Group B, 60:15:30), a high-lipid-low-carbohydrate diet (Group F, 35:20:55), and a protein-enriched diet (Group P, 40:25:35). Sixty overweight or obese participants were provided with the meals twice daily for 3 weeks. In all groups, diet intervention resulted in reduced body weight and BMI. The relative abundance of Bacteroidetes and Firmicutes phyla decreased and increased, respectively, which increased the Firmicutes/Bacteroidetes (F/B) ratio in all subjects, particularly in Groups B and P. Alpha- and beta-diversity were augmented at the phylum level in Group P. In conclusion, short-term interventions with weight-loss meal replacement programs increased butyrate-producing bacteria and the F/B ratio. Moreover, the protein-enriched diet significantly increased alpha- and beta-diversity compared to the balanced diet and the high-lipid-low-carbohydrate diet.
Collapse
Affiliation(s)
- Seungmin Song
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jinyoung Shon
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Woo-ri Yang
- Hyundai Greenfood Greating Laboratory, Yongin-si 16827, Republic of Korea
| | - Han-Bit Kang
- Hyundai Greenfood Greating Laboratory, Yongin-si 16827, Republic of Korea
| | - Keun-Ha Kim
- Hyundai Greenfood Greating Laboratory, Yongin-si 16827, Republic of Korea
| | - Ju-Yeon Park
- Hyundai Greenfood Greating Laboratory, Yongin-si 16827, Republic of Korea
| | - Sanghoo Lee
- SCL Healthcare Inc., Yongin-si 16954, Republic of Korea
| | - Sae Yun Baik
- Hanaro Medical Foundation, Seoul 03159, Republic of Korea
| | - Kyoung-Ryul Lee
- SCL Healthcare Inc., Yongin-si 16954, Republic of Korea
- Hanaro Medical Foundation, Seoul 03159, Republic of Korea
| | - Yoon Jung Park
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
12
|
Alizadeh M, Shojadoost B, Boodhoo N, Raj S, Sharif S. Molecular and cellular characterization of immunity conferred by lactobacilli against necrotic enteritis in chickens. Front Immunol 2023; 14:1301980. [PMID: 38022592 PMCID: PMC10662302 DOI: 10.3389/fimmu.2023.1301980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Necrotic enteritis is an important enteric disease of poultry that can be controlled with in-feed antibiotics. However, with the concerns over antimicrobial resistance, there is an increased interest in the use of alternatives. Probiotics are one of the alternatives that have gained considerable attention due to their antimicrobial and immunomodulatory activities. Therefore, in the present study, we evaluated the effects of two different Lactobacillus species alone or as a cocktail on prevention of necrotic enteritis. Day-old male broiler chickens were divided into five groups and on days 1, 8, 15, and 22, birds in groups 2 and 3 received 1×108 colony forming units (CFU) of L. johnsonii and L. reuteri, respectively. Group 4 received probiotic cocktails containing both bacteria (108 CFU/bird) and the negative and positive control groups did not receive any lactobacilli. Starting on day 23 post-hatch, birds in all groups (except the negative control group) were orally challenged twice per day with 3×108 CFU of a pathogenic C. perfringens strain for 3 days. Tissue and cecal samples were collected before and after challenge to assess gene expression, lymphocyte subsets determination, and microbiome analysis. On day 26 of age, lesion scoring was performed. The results demonstrated that the group that received the lactobacilli cocktail had significantly reduced lesion scores compared to the positive control group. In addition, the expression of interleukin (IL)-12 in the jejunum and CXC motif chemokine ligand 8 (CXCL8), IL-13, and IL-17 in the ileum were downregulated in the group that received the lactobacilli cocktail when compared to the positive control. Treating chickens with the lactobacilli cocktail prior to challenge enhanced the percentage of CD3-CD8+ cells and Bu-1+IgY+ B cells in the ileum and increased the frequency of monocyte/macrophages, CD3-CD8+ cells, Bu-1+IgM+, and Bu-1+IgY+ B cells in the jejunum. Treatment with the lactobacilli cocktail reduced the relative expression of Gamma-Protobacteria and Firmicutes compared to the positive control group. In conclusion, the results presented here suggest that treatment with the lactobacilli cocktail containing L. johnsonii and L. reuteri reduced necrotic enteritis lesions in the small intestine of chickens, possibly through the modulation of immune responses.
Collapse
Affiliation(s)
- Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
13
|
Yin Y, Liao Y, Li J, Pei Z, Wang L, Shi Y, Peng H, Tan Y, Li C, Bai H, Ma C, Gong Y, Wei T, Peng H. Lactobacillus plantarum GX17 benefits growth performance and improves functions of intestinal barrier/intestinal flora among yellow-feathered broilers. Front Immunol 2023; 14:1195382. [PMID: 37465686 PMCID: PMC10351386 DOI: 10.3389/fimmu.2023.1195382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
Lactobacillus plantarum has recently been found to be a natural source feed additive bacteria with great advantages in food safety and animal welfare. Discovering novel strains with commercial application potentiation could benefit the local poultry industry, and in particular support Chinese farmers. In this study, we tested a recently isolated novel strain of Lactobacillus plantarum GX17 as a feed additive on the growth performance and intestinal barrier functions of 1-day-old Chinese yellow-feather chicks. As good as other commercial probiotics, feeding with Lactobacillus plantarum GX17 showed significant improvements in humoral immune responses and enhanced the immune effect after vaccination for either the Newcastle disease vaccine or the avian influenza vaccine. This study also found that feeding with Lactobacillus plantarum GX17 improved the feed-to-weight ratio and caused a significant increase of the villus length to crypt depth ratio. Furthermore, Lactobacillus plantarum GX17 significantly up-regulated the mRNA expression of CLDN, MUC2, and TLR2, all of which are jejunum-associated barrier genes, indicating an improvement of the intestinal barrier functions by enhancing the tight junction between epithelia cells. These results are comparable to the effects of feeding the commercial complex probiotics that improve the expression levels of CLDN, ocludin, MUC2, TLR2, and TLR4. In terms of maintaining intestinal health, commercial complex probiotics increased the relative abundance of Parabacteroides and Romboutsia, while Lactobacillus plantarum GX17 increased the relative abundance of Pseudoflavonifractor. Our data suggest that Lactobacillus plantarum GX17 could enhance the intestinal absorption of nutrients and therefore improve the growth performance of Chinese yellow-feather chicks. In conclusion, compared with the commercial complex probiotics, Lactobacillus plantarum GX17 has more positive effects on the growth performance and intestinal barrier function of yellow-feather chickens, and can be used as a feed additive.
Collapse
Affiliation(s)
- Yangyan Yin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China(Guangxi)-Association of Southeast Asian Nations (ASEAN) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuying Liao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China(Guangxi)-Association of Southeast Asian Nations (ASEAN) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China(Guangxi)-Association of Southeast Asian Nations (ASEAN) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhe Pei
- Virginia Tech, Department of Engineering, Blacksburg, New York, NY, United States
| | - Leping Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China(Guangxi)-Association of Southeast Asian Nations (ASEAN) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yan Shi
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China(Guangxi)-Association of Southeast Asian Nations (ASEAN) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongyan Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China(Guangxi)-Association of Southeast Asian Nations (ASEAN) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yizhou Tan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China(Guangxi)-Association of Southeast Asian Nations (ASEAN) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Changting Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China(Guangxi)-Association of Southeast Asian Nations (ASEAN) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Huili Bai
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China(Guangxi)-Association of Southeast Asian Nations (ASEAN) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Chunxia Ma
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China(Guangxi)-Association of Southeast Asian Nations (ASEAN) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Yu Gong
- Guizhou Provincial Livestock and Poultry Genetic Resources Management Station, Guiyang, China
| | - Tianchao Wei
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China(Guangxi)-Association of Southeast Asian Nations (ASEAN) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
14
|
Huang R, Liu P, Bai Y, Huang J, Pan R, Li H, Su Y, Zhou Q, Ma R, Zong S, Zeng G. Changes in the gut microbiota of osteoporosis patients based on 16S rRNA gene sequencing: a systematic review and meta-analysis. J Zhejiang Univ Sci B 2022; 23:1002-1013. [PMID: 36518053 PMCID: PMC9758719 DOI: 10.1631/jzus.b2200344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND: Osteoporosis (OP) has become a major public health issue, threatening the bone health of middle-aged and elderly people from all around the world. Changes in the gut microbiota (GM) are correlated with the maintenance of bone mass and bone quality. However, research results in this field remain highly controversial, and no systematic review or meta-analysis of the relationship between GM and OP has been conducted. This paper addresses this shortcoming, focusing on the difference in the GM abundance between OP patients and healthy controls based on previous 16S ribosomal RNA (rRNA) gene sequencing results, in order to provide new clinical reference information for future customized prevention and treatment options of OP. METHODS: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we comprehensively searched the databases of PubMed, Web of Science, Embase, Cochrane Library, and China National Knowledge Infrastructure (CNKI). In addition, we applied the R programming language version 4.0.3 and Stata 15.1 software for data analysis. We also implemented the Newcastle-Ottawa Scale (NOS), funnel plot analysis, sensitivity analysis, Egger's test, and Begg's test to assess the risk of bias. RESULTS: This research ultimately considered 12 studies, which included the fecal GM data of 2033 people (604 with OP and 1429 healthy controls). In the included research papers, it was observed that the relative abundance of Lactobacillus and Ruminococcus increased in the OP group, while the relative abundance for Bacteroides of Bacteroidetes increased (except for Ireland). Meanwhile, Firmicutes, Blautia, Alistipes, Megamonas, and Anaerostipes showed reduced relative abundance in Chinese studies. In the linear discriminant analysis Effect Size (LEfSe) analysis, certain bacteria showed statistically significant results consistently across different studies. CONCLUSIONS: This observational meta-analysis revealed that changes in the GM were correlated with OP, and variations in some advantageous GM might involve regional differences.
Collapse
Affiliation(s)
- Rui Huang
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Pan Liu
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Yiguang Bai
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics, Nanchong Central Hospital, the Second Clinical Institute of North Sichuan Medical College, Nanchong 637000, China
| | - Jieqiong Huang
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Rui Pan
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Huihua Li
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Yeping Su
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Quan Zhou
- Department of Wound Repair, the First People's Hospital of Nanning, Nanning 530022, China
| | - Ruixin Ma
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shaohui Zong
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Gaofeng Zeng
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China. ,
| |
Collapse
|
15
|
Zhang Y, Wang Z, Dong Y, Cao J, Chen Y. Effects of Different Monochromatic Light Combinations on Cecal Microbiota Composition and Cecal Tonsil T Lymphocyte Proliferation. Front Immunol 2022; 13:849780. [PMID: 35903105 PMCID: PMC9314779 DOI: 10.3389/fimmu.2022.849780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Emerging data demonstrated that the gut microbiota plays an important role in protecting the integrity of the epithelial barrier, forming a mucosal immune system, and maintaining intestinal homeostasis through its metabolites. However, the intestinal microbiota community can be affected by environmental factors, such as litter, photoperiod, or temperature. Thus, we investigated the effect of different monochromatic light combinations on cecal microbiota composition as well as explored the molecular mechanism by how the external light color information mediate cecal tonsil T lymphocyte proliferation. In this study, a total of 160 chicks were exposed to monochromatic light [red (R), green (G), blue (B), or white (W) light] or green and blue monochromatic light combination (G→B) from P0 to P42. The 16S rRNA microbial sequencing results showed that the richness and diversity of the cecum microbiota and the abundance of Faecalibacterium and Butyricicoccus were significantly increased in the G→B. With consistency in the upregulation of antioxidant enzyme ability and downregulation of pro-inflammation levels in the cecum, we observed an increase in the number of goblet cells, secretory IgA+ cells, tight junction protein (occludin, ZO-1, and claudin-1) and MUC-2 expression in the cecum of the G→B. The metabolomics analysis revealed that the relative abundance of metabolites related to butyrate was significantly increased in G→B. In an in vitro experiment, we found that butyrate could effectively induce T lymphocyte proliferation and cyclin D1 protein expression. However, these butyrate responses were abrogated by HDAC3 agonists, STAT3 antagonists, or mTOR antagonists but were mimicked by GPR43 agonists or HDAC3 antagonists. Thus, we suggested that G→B can indirectly affect the composition of cecal microbiota as well as increase the relative abundance of Faecalibacterium and Butyricicoccus and butyrate production by reducing the level of oxidative stress in the cecum. Exogenous butyrate could promote the T lymphocyte proliferation of cecal tonsil by activating the GPR43/HDAC3/p-STAT3/mTOR pathways.
Collapse
|
16
|
Zamojska D, Nowak A, Nowak I, Macierzyńska-Piotrowska E. Probiotics and Postbiotics as Substitutes of Antibiotics in Farm Animals: A Review. Animals (Basel) 2021; 11:ani11123431. [PMID: 34944208 PMCID: PMC8697875 DOI: 10.3390/ani11123431] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Breeders are searching for methods to protect farming animals against diseases caused by pathogenic bacteria. The easiest way to fight bacteria is to use antibiotics. Unfortunately, their abuse results in the presence of bacteria resistant to the most commonly used antibiotics in the environment. The restrictions on the use of antibiotics have forced the search for natural and safe ways to protect animals. It has been shown that the use of probiotics based on lactic acid bacteria may have a positive effect on the growth and use of feed by broilers, on the stabilization of the intestinal microbiota of chickens and pigs, and in the prevention of mastitis in dairy cows. The use of probiotics (live, nonpathogenic microorganisms) and postbiotics (inanimate bacteria, cell components or post-fermentation by-products) reduces the occurrence of pathogens in large-scale farms. Abstract Since 2006, the use of growth-promoting antibiotics has been banned throughout the European Union. To meet the expectations of livestock farmers, various studies have been carried out with the use of lactic acid bacteria. Scientists are trying to obtain the antimicrobial effect against the most common pathogens in large-scale farms. Supplementing the diet of broilers with probiotics (live, nonpathogenic microorganisms) stabilized the intestinal microbiota, which improved the results of body weight gain (BWG) and feed intake (FI). The positive effect of probiotics based on lactic acid bacteria has been shown to prevent the occurrence of diarrhea during piglet weaning. The antagonistic activity of postbiotics (inanimate bacteria, cell components, or post-fermentation by-products) from post-culture media after lactobacilli cultures has been proven on Staphylococcus aureus—the pathogen most often responsible for causing mastitis among dairy cows. The article aims to present the latest research examining the antagonistic effect of lactic acid bacteria on the most common pathogens in broilers, piglets, pigs, and cow farms.
Collapse
Affiliation(s)
- Daria Zamojska
- Polwet-Centrowet Sp. z o.o., M. Konopnickiej 21, 98-100 Lask, Poland;
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, 90-232 Lodz, Poland;
| | | |
Collapse
|