1
|
Jiang Z, Huang Z, Du H, Li Y, Wang M, Chen D, Lu J, Liu G, Mei L, Li Y, Liang W, Yang B, Guo Y. Effects of high-dose glucose oxidase on broiler growth performance, antioxidant function, and intestinal microbiota in broilers. Front Microbiol 2024; 15:1439481. [PMID: 39529676 PMCID: PMC11551609 DOI: 10.3389/fmicb.2024.1439481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Glucose oxidase (GOD) has been investigated as a potential additive for enhancing intestinal health and growth performance in poultry. However, limited research exists on the effects of ultra-high doses of GOD in practical poultry production. This study aimed to investigate the impact of high dietary GOD levels on broiler growth performance, antioxidant capacity, and intestinal microbiota. A total of 400 healthy, 1-day-old, slow-growing broiler chickens were randomly assigned to four treatment groups. The control group was fed a standard basal diet, while the other groups (G1, G2, and G3) were fed the basal diet supplemented with 4 U/g, 20 U/g, and 100 U/g of VTR GOD, respectively. The results showed that a dose of 100 U/g GOD significantly improved the final body weight and average daily feed intake (ADFI) (p < 0.05). Additionally, the G3 group exhibited a marked increase in glutathione peroxidase (GSH-Px) activity (p < 0.05), reflecting enhanced antioxidant function. Gut morphology remained intact across all groups, indicating no adverse effects on intestinal barrier integrity. Microbiota analysis revealed significant increases (p < 0.05) in Firmicutes and Verrucomicrobiota abundance at the phylum level in the GOD-supplemented groups. Moreover, GOD treatments significantly increased the abundance of Faecalibacterium, Mucispirllum, and CHKCI001 at the genus level. Metabolic function predictions suggested that high-dose GOD supplementation enriched carbohydrate metabolism, particularly starch and sucrose metabolism. Correlation analysis indicated that Faecalibacterium and CHCKI001 were two bacteria strongly influenced by GOD supplementation and were associated with enhanced growth performance and improved gut health. In conclusion, high-dose GOD supplementation had no adverse effects and demonstrated significant benefits, promoting both growth performance and gut health in broilers.
Collapse
Affiliation(s)
- Zipeng Jiang
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Zhiyi Huang
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Hongfang Du
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Yangyuan Li
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Min Wang
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Dandie Chen
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Jingyi Lu
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Ge Liu
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Liang Mei
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Yuqi Li
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | | | - Bo Yang
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Yuguang Guo
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| |
Collapse
|
2
|
Xie Z, Yun Y, Yu G, Zhang X, Zhang H, Wang T, Zhang L. Bacillus subtilis alleviates excessive apoptosis of intestinal epithelial cells in intrauterine growth restriction suckling piglets via the members of Bcl-2 and caspase families. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6924-6932. [PMID: 38597265 DOI: 10.1002/jsfa.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND The intestine is a barrier resisting various stress responses. Intrauterine growth restriction (IUGR) can cause damage to the intestinal barrier via destroying the balance of intestinal epithelial cells' proliferation and apoptosis. Bacillus subtilis has been reported to regulate intestinal epithelial cells' proliferation and apoptosis. Thus, the purpose of this study was to determine if B. subtilis could regulate intestinal epithelial cells' proliferation and apoptosis in intrauterine growth restriction suckling piglets. RESULTS Compared with the normal birth weight group, the IUGR group showed greater mean optical density values of Ki-67-positive cells in the ileal crypt (P < 0.05). IUGR resulted in higher ability of proliferation and apoptosis of intestinal epithelial cells, by upregulation of the messenger RNA (mRNA) or proteins expression of leucine rich repeat containing G protein coupled receptor 5, Caspase-3, Caspase-7, β-catenin, cyclinD1, B-cell lymphoma-2 associated agonist of cell death, and BCL2 associated X (P < 0.05), and downregulation of the mRNA or protein expression of B-cell lymphoma-2 and B-cell lymphoma-2-like 1 (P < 0.05). However, B. subtilis supplementation decreased the mRNA or proteins expression of leucine rich repeat containing G protein coupled receptor 5, SPARC related modular calcium binding 2, tumor necrosis factor receptor superfamily member 19, cyclinD1, Caspase-7, β-catenin, B-cell lymphoma-2 associated agonist of cell death, and Caspase-3 (P < 0.05), and increased the mRNA expression of B-cell lymphoma-2 (P < 0.05). CONCLUSION IUGR led to excessive apoptosis of intestinal epithelial cells, which induced compensatory proliferation. However, B. subtilis treatment prevented intestinal epithelial cells of IUGR suckling piglets from excessive apoptosis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zechen Xie
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Yang Yun
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Ge Yu
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Xin Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| |
Collapse
|
3
|
Ba X, Jin Y, Ning X, Gao Y, Li W, Li Y, Wang Y, Zhou J. Clostridium perfringens in the Intestine: Innocent Bystander or Serious Threat? Microorganisms 2024; 12:1610. [PMID: 39203452 PMCID: PMC11356505 DOI: 10.3390/microorganisms12081610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The Clostridium perfringens epidemic threatens biosecurity and causes significant economic losses. C. perfringens infections are linked to more than one hundred million cases of food poisoning annually, and 8-60% of susceptible animals are vulnerable to infection, resulting in an economic loss of more than 6 hundred million USD. The enzymes and toxins (>20 species) produced by C. perfringens play a role in intestinal colonization, immunological evasion, intestinal micro-ecosystem imbalance, and intestinal mucosal disruption, all influencing host health. In recent decades, there has been an increase in drug resistance in C. perfringens due to antibiotic misuse and bacterial evolution. At the same time, traditional control interventions have proven ineffective, highlighting the urgent need to develop and implement new strategies and approaches to improve intervention targeting. Therefore, an in-depth understanding of the spatial and temporal evolutionary characteristics, transmission routes, colonization dynamics, and pathogenic mechanisms of C. perfringens will aid in the development of optimal therapeutic strategies and vaccines for C. perfringens management. Here, we review the global epidemiology of C. perfringens, as well as the molecular features and roles of various virulence factors in C. perfringens pathogenicity. In addition, we emphasize measures to prevent and control this zoonotic disease to reduce the transmission and infection of C. perfringens.
Collapse
Affiliation(s)
- Xuli Ba
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Youshun Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Xuan Ning
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Yidan Gao
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Wei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
| | - Yunhui Li
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Yihan Wang
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| |
Collapse
|
4
|
Bai S, Zhang G, Han Y, Ma J, Bai B, Gao J, Zhang Z. Ginsenosides and Polysaccharides from Ginseng Co-Fermented with Multi-Enzyme-Coupling Probiotics Improve In Vivo Immunomodulatory Effects. Nutrients 2023; 15:nu15112434. [PMID: 37299397 DOI: 10.3390/nu15112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The active components of ginseng, such as ginsenosides and polysaccharides, have high therapeutic value in treating cancer, decreasing obesity, and enhancing immunity. However, simple primary ginseng treatment cannot maximize this medicinal potential. Therefore, in this study, Panax ginseng was co-fermented with multi-enzyme-coupling probiotics to obtain a fermentation broth with higher levels of ginsenosides, polysaccharides, and probiotics. When compared to other treatment methods for cyclophosphamide-induced immunosuppression in mice, the results reveal that the P. ginseng fermentation broth treated with multi-enzyme-coupling probiotics could significantly improve the immune function of immunosuppressive mice and restore intestinal flora stability. Overall, this processing method will provide a novel strategy for promoting the application of ginseng and the relief of immunosuppression.
Collapse
Affiliation(s)
- Shaowei Bai
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Guangyun Zhang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yaqin Han
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jianwei Ma
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bing Bai
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jingjie Gao
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zuoming Zhang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Chen H, Sun R, Wang J, Yao S, Batool SS, Yu Z, Huang S, Huang J. Bacillus amyloliquefaciens alleviates the pathological injuries in mice infected with Schistosoma japonicum by modulating intestinal microbiome. Front Cell Infect Microbiol 2023; 13:1172298. [PMID: 37265494 PMCID: PMC10230073 DOI: 10.3389/fcimb.2023.1172298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Schistosoma japonicum causes serious pathological organ damage and alteration of the intestinal microbiome in the mammalian host, threatening the health of millions of people in China. Bacillus amyloliquefaciens has been reported to be able to alleviate the damage to the gut and liver and maintain the homeostasis of the intestinal microenvironment. However, it was unclear whether B. amyloliquefaciens could alleviate the hepatic and intestinal symptoms caused by S. japonicum. In this study, the intragastric administration of B. amyloliquefaciens was performed to treat S. japonicum-infected mice during the acute phase. Histopathological analysis and 16S rRNA gene sequencing were used to evaluate the pathological damage and changes in the intestinal microbiome. The results of the study showed that B. amyloliquefaciens treatment significantly reduced the degree of granuloma and fibrosis in infected mice. Additionally, recovery of diversity in the intestinal microbiome, decrease in the relative abundance of potential pathogenic bacteria such as Escherichia-Shigella, and reshaping of the interactive network between genera in the intestine were also observed after treatment with B. amyloliquefaciens. Our findings indicated that treatment with B. amyloliquefaciens effectively alleviated the pathological injuries of the liver and intestine in mice infected with S. japonicum by modulating the intestinal microbiome, implying that this probiotic can function as an effective therapeutic agent against schistosomiasis. We hope our study will provide auxiliary strategies and methods for the early prevention of schistosomiasis japonica.
Collapse
Affiliation(s)
- Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Ruizheng Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyan Wang
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Siqi Yao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Syeda Sundas Batool
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuaiqin Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
6
|
Tang Z, Tang N, Wang X, Ren H, Zhang C, Zou L, Han L, Guo L, Liu W. Characterization of a lytic Escherichia coli phage CE1 and its potential use in therapy against avian pathogenic Escherichia coli infections. Front Microbiol 2023; 14:1091442. [PMID: 36876110 PMCID: PMC9978775 DOI: 10.3389/fmicb.2023.1091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
The high incidence of Avian pathogenic Escherichia coli (APEC) in poultry has resulted in significant economic losses. It has become necessary to find alternatives to antibiotics due to the alarming rise in antibiotic resistance. Phage therapy has shown promising results in numerous studies. In the current study, a lytic phage vB_EcoM_CE1 (short for CE1) against Escherichia coli (E. coli) was isolated from broiler feces, showing a relatively wide host range and lysing 56.9% (33/58) of high pathogenic strains of APEC. According to morphological observations and phylogenetic analysis, phage CE1 belongs to the Tequatrovirus genus, Straboviridae family, containing an icosahedral capsid (80 ~ 100 nm in diameter) and a retractable tail (120 nm in length). This phage was stable below 60°C for 1 h over the pH range of 4 to 10. Whole-genome sequencing revealed that phage CE1 contained a linear double-stranded DNA genome spanning 167,955 bp with a GC content of 35.4%. A total of 271 ORFs and 8 tRNAs were identified. There was no evidence of virulence genes, drug-resistance genes, or lysogeny genes in the genome. The in vitro test showed high bactericidal activity of phage CE1 against E. coli at a wide range of MOIs, and good air and water disinfectant properties. Phage CE1 showed perfect protection against broilers challenged with APEC strain in vivo. This study provides some basic information for further research into treating colibacillosis, or killing E. coli in breeding environments.
Collapse
Affiliation(s)
- Zhaohui Tang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ning Tang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xinwei Wang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huiying Ren
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Can Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ling Zou
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Longzong Guo
- Shandong Yisheng Livestock & Poultry Breeding Co., Ltd., Yantai, Shandong, China
| | - Wenhua Liu
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Bacillus amyloliquefaciens 40 regulates piglet performance, antioxidant capacity, immune status and gut microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:116-127. [PMID: 36632621 PMCID: PMC9826887 DOI: 10.1016/j.aninu.2022.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023]
Abstract
Probiotics can improve animal growth performance and intestinal health. Bacillus species, Lactobacillus species, Bifidobacterium species, yeast etc. are the common types of probiotics. However, understanding the effects of probiotics on the immune status and gut microbiota of weaning piglets and how the probiotics exert their impact are still limited. This study aimed to investigate the effects of Bacillus amyloliquefaciens 40 (BA40) on the performance, immune status and gut microbiota of piglets. A total of 12 litters of newborn piglets were randomly divided into 3 groups. Piglets in control group were orally dosed with phosphate buffered saline; BA40 group and probiotics group were orally gavaged with resuspension BA40 and a probiotics product, respectively. The results showed that BA40 treatment significantly decreased (P < 0.05) the diarrhea incidence (from d 5 to 40), diamine oxidase, D-lactate, interleukin (IL)-1β and interferon-γ concentrations compared with control group and probiotics group. Meanwhile BA40 dramatically increased the total antioxidant capacity, IL-10 and secretory immunoglobulin-A concentrations in contrast to control group. For the microbial composition, BA40 modulated the microbiota by improving the abundance of Bacteroides, Phascolarctobacterium (producing short-chain fatty acids) and Desulfovibrio and reducing the proliferation of pathogens (Streptococcus, Tyzzerella, Vellionella and paraeggerthella). Meanwhile, a metabolic function prediction explained that carbohydrate metabolism and amino acid metabolism enriched in BA40 group in contrast to control group and probiotics group. For correlation analysis, the results demonstrated that BA40-enriched Phascolarctobacterium and Desulfovibrio provide insights into strategies for elevating the health status and performance of weaned piglets. Altogether, BA40 exerted stronger ability in decreasing diarrhea incidence and improved antioxidant activity, gut barrier function and immune status of piglets than the other treatments. Our study provided the experimental and theoretical basis for the application of BA40 in pig production.
Collapse
|
8
|
Liu X, Huang X, Fu Y, Wang Y, Lu Z. The Positive Effects of Exogenous Pancreatin on Growth Performance, Nutrient Digestion and Absorption, and Intestinal Microbiota in Piglets. Front Physiol 2022; 13:906522. [PMID: 36017338 PMCID: PMC9395744 DOI: 10.3389/fphys.2022.906522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatin secretion is dramatically decreased over time after weaning, thus affecting the utilization of nutrients in piglets. Therefore, exogenous pancreatin is expected to alleviate this situation. This experiment was conducted to investigate the effects of exogenous pancreatin on the growth performance, nutrient digestion and absorption, and intestinal microbiota of piglets. One hundred eighty piglets (Duroc × Landrace × Yorkshire, 40 days) were randomly allotted to three treatments (basal diets supplemented with 0, 250, or 500 mg/kg pancreatin) with three replicate pens per treatment and 20 piglets per pen. Compared with the control diet, dietary 500 mg/kg pancreatin significantly increased (p < 0.05) the average daily gain (ADG) and the apparent digestibility of crude protein and crude fat of piglets. Regarding endogenous enzymes, pancrelipase activity in the pancreas, duodenal mucosa, and small intestinal digesta as well as trypsin activity in the jejunal digesta were increased in piglets fed a diet supplemented with 500 mg/kg pancreatin (p < 0.05). Moreover, amylopsin activity was significantly strengthened in the pancreas, duodenal mucosa, and digesta in piglets fed a diet with 500 mg/kg pancreatin (p < 0.05). The mRNA expression of nutrient transporters, including oligopeptide transporter-1 (PepT1), excitatory amino acid transporter-1 (EAAC1), cationic amino acid transporter-1 (CAT1), sodium glucose cotransporter-1 (SGLT1), glucose transporter-2 (GLUT2), and fatty acid transporter-4 (FATP4), in the jejunum significantly increased after dietary supplementation with 500 mg/kg pancreatin (p < 0.05). An increased villus height-to-crypt depth ratio of the ileum was observed in the 500 mg/kg pancreatin-treated group (p < 0.05). The composition of the colonic microbiota modulated by the addition of 500 mg/kg pancreatin was characterized by an increased relative abundance of Lactobacillus (p < 0.05), and the predicted functions revealed that 500 mg/kg pancreatin supplementation enhanced the functional abundance of genetic information processing in colonic microorganisms and environmental information processing. Our findings suggested that the addition of 500 mg/kg pancreatin improved the growth performance of piglets, improved intestinal structure, and modulated the colon microbiota, thereby increasing nutrient digestibility.
Collapse
Affiliation(s)
- Xin Liu
- National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xiangyun Huang
- National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yang Fu
- National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yizhen Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Zeqing Lu
- National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- *Correspondence: Zeqing Lu,
| |
Collapse
|
9
|
Jiang Z, Su W, Wen C, Li W, Zhang Y, Gong T, Du S, Wang X, Lu Z, Jin M, Wang Y. Effect of Porcine Clostridium perfringens on Intestinal Barrier, Immunity, and Quantitative Analysis of Intestinal Bacterial Communities in Mice. Front Vet Sci 2022; 9:881878. [PMID: 35769317 PMCID: PMC9234579 DOI: 10.3389/fvets.2022.881878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens (C. perfringens) is one of the main pathogens which can cause a range of histotoxic and enteric diseases in humans or animals (pigs, or broilers). The Centers for Disease Control and Prevention (CDC) estimates these bacteria cause nearly 1 million illnesses in the United States every year. For animal husbandry, necrotizing enteritis caused by C. perfringens can cost the global livestock industry between $2 billion and $6 billion per year. C. perfringens-infected animals can be isolated for its identification and pathology. A suitable animal model is one of the essential conditions for studying the disease pathogenesis. In previous studies, mice have been used as subjects for a variety of Clostridium perfringens toxicity tests. Thus, this study was designed to build a mouse model infected porcine C. perfringens which was isolated from the C.perfringens-infected pigs. A total of 32 6-week-old male C57BL/6 mice were randomly divided into four groups. Control group was orally administrated with PBS (200 μL) on day 0. Low group, Medium group, and High group were gavaged with 200 ul of PBS resuspension containing 8.0 × 107 CFU, 4.0 × 108 CFU, and 2.0 × 109 CFU, respectively. We examined growth performance, immune status, intestinal barrier integrity, apoptosis-related genes expression, and copies of C. perfringens in mice. The results showed that the growth performance declined and intestinal structure was seriously damaged in High group. Meanwhile, pro-inflammatory factors (IL-1β, TNF-α, and IL-6) were significantly increased (P < 0.05) in High group compared to other groups. The tight junctions and pro-apoptosis related genes' expression significantly decreased (P < 0.05) in High group, and high dose caused a disruption of intestinal villi integrity and tissue injury in the jejunum of mice. In addition, the enumerations of C. perfringens, Escherichia coli, and Lactobacillus explained why the gut of High group mice was seriously damaged, because the C. perfringens and Escherichia coli significantly enriched (P < 0.05), and Lactobacillus dramatically decreased (P < 0.05). Overall, our results provide an experimental and theoretical basis for understanding the pathogenesis and exploring the effects of porcine C. perfringens on mice.
Collapse
Affiliation(s)
- Zipeng Jiang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Weifa Su
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Chaoyue Wen
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Wentao Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Tao Gong
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Shuai Du
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Xinxia Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Zeqing Lu
| | - Mingliang Jin
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
- Yizhen Wang
| |
Collapse
|