1
|
Mianda SM, Li J, Akter S, Adiamo O, Sivakumar D, Sultanbawa Y. Impact of Drying on Phytonutritional Compounds, In Vitro Antioxidant Activity and Cytotoxicity of Spiny Saltbush ( Rhagodia spinescens). Antioxidants (Basel) 2024; 13:1382. [PMID: 39594524 PMCID: PMC11591164 DOI: 10.3390/antiox13111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The Spiny saltbush (Rhagodia spinscens) is a halophyte species with the potential to provide natural ingredients used in food and pharmaceutical industries. In food and pharmaceutical applications, drying is necessary to maintain shelf-life, which reduces phytonutrient content. In this study, changes in the nutritional composition, phenolic and carotenoid profiles of radical antioxidant scavenging activity [(2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS)], antioxidant power [ferric reducing antioxidant ability assay (FRAP)], and cytotoxicity of freeze- and oven-dried (55 °C for 24 h) spiny saltbush were determined. Sodium (4.72 g/100 g dry weight (DW), potassium (6.86 g/100 g DW), calcium (4.06 g/100 g DW), zinc (372 mg/kg DW) and protein content were higher in oven-dried samples than freeze-dried samples. Ultra-performance liquid chromatography-mass spectrometry analysis detected 18 metabolites in saltbush extracts. Partial Least-Squares Discriminant Analysis, Hierarchical Cluster Analysis, and Variable Importance in Projection discriminated between freeze-dried and oven-dried samples. Freeze-dried samples retained more individual metabolites than oven-dried samples, while oven-dried samples had higher antioxidant activity (ABTS and FRAP), lutein, trans-β carotene, and cis-β-carotene. Correlation analysis identified potential antioxidant candidates between phenolic and carotenoid compounds. Neither freeze-dried nor oven-dried spiny saltbush samples showed cytotoxicity. The study uncovered changes in phytonutritional compounds after the oven and freeze-drying spiny saltbush, a potential salt alternative and functional ingredient for the food industry.
Collapse
Affiliation(s)
- Sephora Mutombo Mianda
- Phytochemical Food Network, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa;
| | - Jiaxuan Li
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia; (J.L.); (S.A.); (O.A.); (Y.S.)
| | - Saleha Akter
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia; (J.L.); (S.A.); (O.A.); (Y.S.)
| | - Oladipupo Adiamo
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia; (J.L.); (S.A.); (O.A.); (Y.S.)
| | - Dharini Sivakumar
- Phytochemical Food Network, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa;
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia; (J.L.); (S.A.); (O.A.); (Y.S.)
| | - Yasmina Sultanbawa
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia; (J.L.); (S.A.); (O.A.); (Y.S.)
| |
Collapse
|
2
|
Sultana T, Islam S, Azad MAK, Akanda MJH, Rahman A, Rahman MS. Phytochemical Profiling and Antimicrobial Properties of Various Sweet Potato ( Ipomoea batatas L.) Leaves Assessed by RP-HPLC-DAD. Foods 2024; 13:2787. [PMID: 39272552 PMCID: PMC11395622 DOI: 10.3390/foods13172787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to investigate the leaves of six cultivars of Ipomoea batatas L. from the USA, focusing on their Total Polyphenol Content (TPC), Total Flavonoid Content (TFC), antioxidant, and antimicrobial activities. TPC and TFC ranged from 7.29 ± 0.62 to 10.49 ± 1.04 mg TAE/g Dw, and from 2.30 ± 0.04 to 4.26 ± 0.23 mg QE/g Dw, respectively, with the highest values found in the 'O'Henry' variety. RP-High-Performance Liquid Chromatography identified six phenolic and flavonoid compounds: caffeic acid, chlorogenic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, and quercetin, excluding gallic acid. The highest levels of these compounds were found in acidified methanolic extracts. Antioxidant activities, measured by ABTS and DPPH assays, showed low IC50 values ranging from 94.6 ± 2.76 to 115.17 ± 7.65 µg/mL, and from 88.83 ± 1.94 to 147.6 ± 1.22 µg/mL. Ferric Ion-Reducing Antioxidant Potential (FRAP) measurements indicated significant antioxidant levels, varying from 1.98 ± 0.14 to 2.83 ± 0.07, with the 'O'Henry' variety exhibiting the highest levels. The antimicrobial activity test included five Gram-positive bacteria, three Gram-negative bacteria, and two pathogenic fungi. S. aureus, S. mutans, L. monocytogenes, E. coli, S. dysenteriae, and C. albicans were most susceptible to the methanolic extract. This study underscores the impressive antioxidant and antimicrobial activities of sweet potato leaves, often discarded, making them a valuable source of natural antioxidants, antimicrobials, and other health-promoting compounds.
Collapse
Affiliation(s)
- Tasbida Sultana
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Shahidul Islam
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Muhammad Abul Kalam Azad
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Md Jahurul Haque Akanda
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Atikur Rahman
- Department of Physics and Astronomy, University of Arkansas at Little Rock, 2801 S University Ave., Little Rock, AR 72204, USA
| | - Md Sahidur Rahman
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| |
Collapse
|
3
|
Tshilongo L, Mianda SM, Seke F, Laurie SM, Sivakumar D. Influence of Harvesting Stages on Phytonutrients and Antioxidant Properties of Leaves of Five Purple-Fleshed Sweet Potato ( Ipomoea batatas) Genotypes. Foods 2024; 13:1640. [PMID: 38890868 PMCID: PMC11172356 DOI: 10.3390/foods13111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Sweet potatoes (Ipomoea batatas) are highly profitable, contribute to food security, and their leaves rich in phytonutrients. This study examined the optimal leaf harvesting stage by harvesting newly formed leaves (leaves 1 to 5) to achieve the highest concentration of carotenoids, phenolic compounds, antioxidant properties and mineral content. Leaves of five purple-fleshed sweet potato genotypes '2019-11-2' and '2019-1-1', 'Purple-purple', and from the USA '08-21P' and '16-283P' were harvested based on tuber life cycle [vegetative 8 weeks after planting (VS-8WAP), tuber initiation (TIS-12WAP), and tuber maturation phases (TMS-16WAP)]. At the 8WAP stage, leaves of genotype '2019-11-2' had the highest concentrations of cyanidin-caffeoyl-sophoroside-glucoside (17.64 mg/kg), cyanidin-caffeoyl-feruloyl-sophoroside-glucoside (41.51 mg/kg), peonidin-caffeoyl-hydroxybenzoyl-sophoriside-glucoside (45.25 mg/kg), and peonidin caffeoyl-feruloyl-sophoriside-glucoside (24.47 mg/kg), as well as antioxidant scavenging activity. In contrast, 'Purple-purple' harvested at TIS-12WAP showed the highest concentration of caffeoylquinic acid derivatives. Zeaxanthin, lutein, all trans-β-carotene, and cis-β-carotene are the most abundant carotenoids in genotype '08-21P' at VS-8WAP. As a result, local genotypes '2019-11-2' harvested at 8WAP and 'Purple-purple' harvested at 12WAP are potential sources of anthocyanins and caffeoylquinic acid derivatives. Conversely, USA's genotype '08-21P' at the VS-8WAP stage is an excellent source of carotenoids. The leaves of USA's '08-21P' genotype and the local '2019-11-2' genotype at TMS-16WAP exhibited the highest content of Fe and Mn, respectively. The study identified the optimal leaf stage for consumption of leaves and for use as a functional ingredient.
Collapse
Affiliation(s)
- Lavhelani Tshilongo
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (L.T.); (D.S.)
| | - Sephora Mutombo Mianda
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (L.T.); (D.S.)
| | - Faith Seke
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (L.T.); (D.S.)
| | - Sunette M. Laurie
- Agricultural Research Council—Vegetable, Industrial and Medicinal Plants, Pretoria 0001, South Africa
| | - Dharini Sivakumar
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (L.T.); (D.S.)
- Agricultural Research Council—Vegetable, Industrial and Medicinal Plants, Pretoria 0001, South Africa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Indooroopilly, QLD 4068, Australia
| |
Collapse
|
4
|
Influence of different rootstocks on quality and volatile constituents of cantaloupe and honeydew melons (Cucumis melo. L) grown in high tunnels. Food Chem 2022; 393:133388. [DOI: 10.1016/j.foodchem.2022.133388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022]
|
5
|
Phahlane CJ, Laurie SM, Shoko T, Manhivi VE, Sivakumar D. Comparison of Caffeoylquinic Acids and Functional Properties of Domestic Sweet Potato (Ipomoea batatas (L.) Lam.) Storage Roots with Established Overseas Varieties. Foods 2022; 11:foods11091329. [PMID: 35564053 PMCID: PMC9104689 DOI: 10.3390/foods11091329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Root samples of sweet potato varieties originating from South Africa (‘Ndou’, ‘Bophelo’, ‘Monate’, and ‘Blesbok’), the USA (‘Beauregard’), and Peru (‘199062.1′) were analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/QTOF/MS) and chemometrics to characterize and compare the locally developed varieties with well-known established overseas varieties. The highest total phenol content was detected in ‘Bophelo’, followed by ‘Beauregard’ and Peruvian variety ‘199062.1’. The Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) model classified the storage roots of six sweet potato varieties into two clusters. In the OPLS-DA scatter plot, one cluster, which included Peruvian variety ‘199062.1’, was separated from the others. L-tryptophan and 3-caffeoylquinic acid (CQA) showed variable importance in projection (VIP) scores greater than 1.5. Based on the OPLS-DA-S-plot, L-tryptophan separated the other varieties from Peruvian variety ‘199062.1’. Peruvian variety ‘199062.1’ contained higher concentrations of CQA (1,3-diCQA, 1,4-diCQA, 3,5-diCQA, 4,5-diCQA, 3-CQA, and 5-CQA) and 5-hydroxy-6-methoxycoumarin 7-glucoside than other varieties. Among all sweet potato varieties analyzed, Peruvian variety ‘199062.1′ showed the highest ferric reducing antioxidant power (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging activity, and [2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate)] scavenging activity. Among the local sweet potato varieties, ‘Bophelo’ has the greatest potential for commercialization as it is the richest source of CQA.
Collapse
Affiliation(s)
- Charmaine J. Phahlane
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (C.J.P.); (T.S.); (V.E.M.)
| | - Sunette M. Laurie
- Agricultural Research Council-Vegetables, Industrial and Medicinal Plants (ARC-VIMP), Pretoria 0001, South Africa;
| | - Tinotenda Shoko
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (C.J.P.); (T.S.); (V.E.M.)
| | - Vimbainashe E. Manhivi
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (C.J.P.); (T.S.); (V.E.M.)
| | - Dharini Sivakumar
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (C.J.P.); (T.S.); (V.E.M.)
- Correspondence:
| |
Collapse
|
6
|
Wang C, Zhang J, Lv J, Li J, Gao Y, Patience BE, Niu T, Yu J, Xie J. Effect of Methyl Jasmonate Treatment on Primary and Secondary Metabolites and Antioxidant Capacity of the Substrate and Hydroponically Grown Chinese Chives. Front Nutr 2022; 9:859035. [PMID: 35449536 PMCID: PMC9016137 DOI: 10.3389/fnut.2022.859035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Hydroponic culture has become a commercial planting model for leafy vegetables, herbs, and other plants with medicinal value. Methyl jasmonate (MeJA) is involved in primary and secondary plant metabolism; moreover, it regulates plant bioactive compounds and enhances the nutritional and medicinal value of plants. We performed targeted metabolomic analysis of the primary and secondary metabolites in substrate-grown and hydroponic Chinese chive leaves sprayed with MeJA (0, 300, 500, and 800 μM). Using ultra-performance liquid chromatography (UPLC), UPLC tandem mass spectrometry, and chemometric tools, and analyzed the antioxidant activity of these plants. We identified the biomarkers of amino acids (serine, proline, lysine, and arginine) and phenolic compounds (4-coumaric acid and protocatechuic acid) using chemometric tools to distinguish between substrate-grown and hydroponic Chinese chives treated with MeJA. MeJA (500 μM) treatment significantly increased the total sugar and amino acid (essential and non-essential amino acids and sulfur-containing amino acids) contents of hydroponically grown Chinese chives. However, the changes in total sugar and amino acid contents in Chinese chive grown in substrates showed the opposite trend. The organic acid content of hydroponically grown Chinese chives treated with MeJA decreased significantly, whereas that of substrate-grown plants treated with 300 μM MeJA increased significantly. Further, MeJA treatment significantly increased the phenolic content of substrate-grown Chinese chives. Treatment with 800 μM MeJA significantly increased the carotenoid content of substrate-grown Chinese chives and the phenolic content of hydroponic Chinese chives. In addition, the 500 μM MeJA treatment significantly increased the antioxidant activity of Chinese chives in both substrate-grown and hydroponic cultures, and promoted the accumulation of nutrients and bioactive substances. This treatment also improved the flavor quality of these plants and their nutritional and medicinal value. Thus, the results suggested that MeJA-treated plants could be used as value-added horticultural products.
Collapse
Affiliation(s)
- Cheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | | | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|