1
|
Zhao X, Ren J, Wang Z, Chen X. Analyzing noncovalent interactions between notoginseng saponins and lysozyme by deposition scanning intensity fading MALDI-TOF mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5058. [PMID: 38842112 DOI: 10.1002/jms.5058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Analysis of noncovalent interactions between natural products and proteins is important for rapid screening of active ingredients and understanding their pharmacological activities. In this work, the intensity fading MALDI-TOF mass spectrometry (IF-MALDI-MS) method with improved reproducibility was implemented to investigate the binding interactions between saponins from Panax notoginseng and lysozyme. The benchmark IF-MALDI-MS experiment was established using N,N',N″-triacetylchitotriose-lysozyme as a model system. The reproducibility of ion intensities in IF-MALDI-MS was improved by scanning the whole sample deposition with a focused laser beam. The relative standard deviation (RSD) of deposition scanning IF-MALDI-MS is 5.7%. Similar decay trends of the relative intensities of notoginseng saponins against increasing amounts of lysozyme were observed for all six notoginseng saponins. The half-maximal fading concentration (FC50) was calculated to quantitatively characterize the binding affinity of each ligand based on the decay curve. According to the FC50 values obtained, the binding affinities of the six notoginseng saponins were evaluated in the following order: notoginsenoside S > notoginsenoside Fc > ginsenoside Rb1 > ginsenoside Rd > notoginsenoside Ft1 > ginsenoside Rg1. The binding order was in accordance with molecular docking studies, which showed hydrogen bonding might play a key role in stabilizing the binding interaction. Our results demonstrated that deposition scanning IF-MALDI-MS can provide valuable information on the noncovalent interactions between ligands and proteins.
Collapse
Affiliation(s)
- Xintong Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Juan Ren
- Department of Pharmaceutical Science, Zunyi Medical University at Zhuhai Campus, Zhuhai, China
| | - Ze Wang
- Department of Pharmaceutical Science, Zunyi Medical University at Zhuhai Campus, Zhuhai, China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
2
|
Wang X, Wang M, Zhou Z, Zou X, Song G, Zhang Q, Zhou H. SMOC2 promoted vascular smooth muscle cell proliferation, migration, and extracellular matrix degradation by activating BMP/TGF-β1 signaling pathway. J Clin Biochem Nutr 2023; 73:116-123. [PMID: 37700850 PMCID: PMC10493216 DOI: 10.3164/jcbn.22-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/04/2023] [Indexed: 09/14/2023] Open
Abstract
A widespread degenerative condition of the aorta, abdominal aortic aneurysm (AAA), severely endangers the health of middle-aged and elderly people. SPARC related modular calcium binding2 (SMOC2) is upregulated in the carotid arteries of rats with atherosclerotic lesions, but its function in AAA is still unknown. Therefore, the aim of this research was to evaluate the function of SMOC2 in AAA. The results showed that in the AAA tissues, SMOC2 expression was upregulated compared with healthy controls. Overexpression of SMOC2 promoted vascular smooth muscle cells (VSMCs) proliferation, migration, and extracellular matrix (ECM) degradation. In contrast, silence of SMOC2 inhibited VSMCs proliferation, migration, and ECM degradation. Overexpression of SMOC2 promoted BMP and TGF-β1 expression and silence of SMOC2 had an opposite effect. Besides, inhibition of BMP or TGF-β1 suppressed VSMCs cell proliferation, migration, and ECM degradation. Moreover, inhibition BMP or TGF-β1 reversed the promotive effects of SMOC2 overexpression on VSMCs proliferation, migration, and ECM degradation. SMOC2 may affecte the formation of AAA by upregulating BMP and TGF-β1 to regulate the proliferation, migration, and ECM degradation of VSMCs.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Meng Wang
- Department of Nephrology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Zhongxiao Zhou
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Xin Zou
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Guoxin Song
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Qingsong Zhang
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Haimeng Zhou
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| |
Collapse
|