1
|
Wang L, Zhu X, Liu H, Sun B. Medicine and food homology substances: A review of bioactive ingredients, pharmacological effects and applications. Food Chem 2025; 463:141111. [PMID: 39260169 DOI: 10.1016/j.foodchem.2024.141111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
In recent years, the idea of medicine and food homology (MFH), which highlights the intimate relationship between food and medicine, has gained international recognition. Specifically, MFH substances have the ability to serve as both food and medicine. Many foods have been reported to have good nutritional and medical values, not only for satiety but also for nourishing the body and treating diseases pharmacologically. As modern scientific research has progressed, the concept of MFH has been emphasized and developed in a way that has never been seen before. Therefore, in this paper, we reviewed the development history of MFH substances, summarized some typical bioactive ingredients, and recognized pharmacological effects. In addition, we further discussed the application of MFH substances in the food field, with the goal of providing ideas and references for the research and development of MFH in the food industry as well as the progress of related industries.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Xuecheng Zhu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
2
|
Wu M, Lyu Y, Xu H, Luo H, Yin X, Zheng H. Raspberry polysaccharides attenuate hepatic inflammation and oxidative stress in diet-induced obese mice by enhancing butyrate-mediated intestinal barrier function. Int J Biol Macromol 2024; 262:130007. [PMID: 38340928 DOI: 10.1016/j.ijbiomac.2024.130007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Obesity and associated liver diseases are becoming global public health challenges. Raspberry (Rubus chingii Hu.), as a medicine food homology plant, possesses a series of health-promoting properties, but its protective effect on obesity-related liver injury and the potential mechanisms remain obscure. Herein high-fat diet (HFD)-fed mice were orally treated with raspberry polysaccharides (RCP) for 14 weeks. Treatment with RCP alleviated obesity and associated symptoms including hyperglycemia, hyperlipemia, endotoxemia, as well as hepatic inflammation and oxidant stress in HFD-induced obese mice. RCP restructured the gut microbiota and host metabolism especially by increasing the levels of Dubosiella and its metabolite butyrate. Besides, exogenous butyrate supplementation protected against intestinal barrier disruption, and thereby reduced inflow of lipopolysaccharide and mitigated inflammation and oxidative injury in the liver of obese mice. Therefore, we suggest that RCP can be utilized as a novel prebiotics to improve obesity-induced hepatic oxidative injury by enhancing butyrate-mediated intestinal barrier function.
Collapse
Affiliation(s)
- Mengjun Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuxin Lyu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hangying Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hanqi Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoli Yin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Huang Y, Hu J, Xia Q, Tang M, Wang Y, Wang G, Shao X, Yuan H, Li S, Huang P, Peng C, Guo J, Gui S. Amelioration of obesity and inflammation by polysaccharide from unripe fruits of raspberry via gut microbiota regulation. Int J Biol Macromol 2024; 261:129825. [PMID: 38309402 DOI: 10.1016/j.ijbiomac.2024.129825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Raspberry, a traditional medicine food homology species, has important benefits in patients with metabolic syndrome. However, the mechanism of raspberry polysaccharides (RP) on obesity remains unclear. In our study, we showed that RP intervention is negatively associated with body weight gain, hyperlipidemia, inflammation, and fat accumulation in obese mice. RP ameliorated HFD-induced gut microbiota dysbiosis, produced short-chain fatty acids, maintained intestinal barrier integrity, and prevented metabolic endotoxemia, manifested by decreased host lipopolysaccharide level, and increased colon expression of tight junction proteins. These effects might be related with driven by a SCFAs-producing bacterium and downregulation of TLR4/NF-κB signaling transduction. Notably, the abundance of Ruminococcaceae_UCG - 014, Lactobacillus taiwanensis, Bifidobacterium pseudolongum, and Turicibacter are markedly correlated with enhanced intestinal barrier function induced by RP treatment. Thus, we believe that RP could be as a potential health supplement or prebiotic for obesity therapy.
Collapse
Affiliation(s)
- Yuzhe Huang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China
| | - Jingjing Hu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Qijun Xia
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Maomao Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yuxiao Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Guichun Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Xinyuan Shao
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hao Yuan
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Shuhan Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Peng Huang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, China
| | - Chengjun Peng
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China
| | - Jian Guo
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China
| | - Shuangying Gui
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China..
| |
Collapse
|
4
|
Zhou Z, Liu F, Xu Y, Hu W. Genetic Diversity Analysis and Core Germplasm Construction of Rubus chingii Hu. PLANTS (BASEL, SWITZERLAND) 2024; 13:618. [PMID: 38475465 DOI: 10.3390/plants13050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024]
Abstract
Rubus chingii Hu is the only species that is used for both edible and medicinal purposes among the 194 species of the genus Rubus in China. It is well known for its sweet and sour fresh fruits that are rich in vitamins and for its dried immature fruits that are used to treat kidney-related ailments. This study aims to evaluate genetic diversity and population structure and build a core germplasm repository of 132 R. chingii accessions from the provinces of Jiangxi and Fujian, using Hyper-seq-derived single-nucleotide polymorphism (SNP) markers. This is the first genetic study of R. chingii based on SNP molecular markers, and a total of 1,303,850 SNPs and 433,159 insertions/deletions (InDels) were identified. Low values for observed heterozygosity, nucleotide diversity (Pi) and fixation indexes (Fis) indicated low genetic diversity within populations, and an analysis of molecular variance (AMOVA) showed that 37.4% and 62.6% of the variations were found between populations and within samples, respectively. Four main clusters were identified by means of neighbor-joining (NJ) trees, the ADMIXTURE program and principal component analysis (PCA). Based on the genetic diversity, we finally constructed 38 representative core collections, representing 50% of the total core germplasm samples and 95.3% of the genotypes. In summary, the results of our study can provide valuable information on the genetic structure of R. chingii germplasm resources, which is helpful for further explorations of potential high-quality genes and for formulating future breeding and conservation strategies.
Collapse
Affiliation(s)
- Ziwei Zhou
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China
| | - Yanqin Xu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Weiming Hu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
5
|
Qian C, Li H, Hou Z, Liang Z. Effects of different drying methods on Rubus chingii Hu fruit during processing. Heliyon 2024; 10:e24512. [PMID: 38312685 PMCID: PMC10835160 DOI: 10.1016/j.heliyon.2024.e24512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
In this study, the dried fruits of Rubus chingii Hu (Chinese name: Fu-Pen-Zi; FPZ) were processed and dried by three methods-in the shade, the sun, and the oven. The composition regarding the standard ingredient, color, and antioxidant capacities were investigated pro- and post-processing. The technique of headspace-solid-phase-microextraction-gas-chromatography-mass spectrometry (HS-SPME-GC-MS) and flavoromics were used to analyze the flavor-conferring metabolites of FPZ. The results obtained revealed that the highest use value and antioxidant capacities were detected in the FPZ fruits processed and dried in the shade. A total of 358 metabolites were detected from them mainly consisting of terpenoids, heterocyclic compounds, and esters. In differential analysis, the down-regulation of the metabolites was much greater than their up-regulation after all three drying methods. In an evaluation of the characteristic compounds and flavors produced after the three methods, there were variations mainly regarding the green and fruity odors. Therefore, considerable insights may be obtained for the development of novel agricultural methods and applications in the pharmaceutical and cosmetic industries by analyzing and comparing the variations in the chemical composition detected pre- and post-processing of the FPZ fruits. This paper provides a scientific basis for quality control in fruits and their clinical applications.
Collapse
Affiliation(s)
- Can Qian
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hongfa Li
- Hanguang Primary Processing Co., Ltd, Hangzhou, 311700, China
| | - Zhuoni Hou
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
6
|
Wang T, Yang J, Huang Z, Wang F, Liu R, Liu Y, Li X. Integrated 16s RNA sequencing and network pharmacology to explore the effects of polyphenol-rich raspberry leaf extract on weight control. Front Nutr 2024; 10:1306037. [PMID: 38260083 PMCID: PMC10800909 DOI: 10.3389/fnut.2023.1306037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Obesity is recognized as a chronic low-grade inflammation associated with intestinal flora imbalance, leading to dyslipidemia and inflammation. Modern research has found that polyphenols have anti-obesity effects. However, the mechanism of action of raspberry leaf extract (RLE) with high polyphenols in regulating obesity is still unknown. This study investigated the improvement effect of supplementing RLE on high-fat diet (HFD) induced obesity in mice. Methods RLE was used to intervene in HFD induced C57BL/6J male mice during prevention stage (1-16 weeks) and treatment stage (17-20 weeks). Their weight changes and obesity-related biochemical indicators were measured. The changes in intestinal flora were analyzed using 16S rRNA sequencing, and finally the targets and pathways of the 7 typical polyphenols (quercetin-3-O-glucuronide, ellagic acid, kaempferol-3-O-rutinoside, chlorogenic acid, brevifolin carboxylic acid, quercetin-3-O-rutinoside, and quercetin) of RLE in the regulation of obesity were predicted by network pharmacology approach. Results and discussion The results showed that RLE effectively prevented and treated weight gain in obese mice induced by HFD, alleviated adipocyte hypertrophy, reduced Interleukin-6 and Tumor Necrosis Factor Alpha levels, and improved intestinal flora, especially Muriaculaceae, Alistipes and Alloprevotella, and decreased the Firmicutes/Bacteroidota ratio. Network pharmacology analysis selected 60 common targets for 7 RLE polyphenols and obesity. Combined with protein-protein interaction network, enrichment analysis and experimental results, TNF, IL-6, AKT1, and PPAR were predicted as potential key targets for RLE polyphenols. Conclusion The potential mechanism by which polyphenol-rich RLE regulates obesity may be attributed to the specific polyphenols of RLE and their synergistic effects, therefore RLE has a great anti-obesity potential and may be used as a means to alleviate obesity and related diseases.
Collapse
Affiliation(s)
- Tao Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
- Dezhou Industrial Technology Research Institute of North University of China, Dezhou, Shandong, China
| | - Jing Yang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
- Dezhou Industrial Technology Research Institute of North University of China, Dezhou, Shandong, China
| | - Ziang Huang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
- Dezhou Industrial Technology Research Institute of North University of China, Dezhou, Shandong, China
| | - Fei Wang
- The Hospital of North University of China, Taiyuan, Shanxi, China
| | - Ruzi Liu
- Dezhou Yongshengzhai Braised Chicken Group Co., Ltd., Dezhou, Shangdong, China
| | - Yongping Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
| | - Xiaojun Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Li Y, Qiu Y, Yang M, Yin Y, Li M, Zhang Y. Characteristics and phylogenetic analysis of the complete chloroplast genome of Rubus chingii Hu 1925 from the family Rosaceae. Mitochondrial DNA B Resour 2023; 8:1280-1284. [PMID: 38566881 PMCID: PMC10986437 DOI: 10.1080/23802359.2023.2268220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/03/2023] [Indexed: 04/04/2024] Open
Abstract
Rubus chingii Hu 1925 is an important medicinal vine shrub in the Rosaceae family, widely distributed in China and Japan. In this study, the complete chloroplast genome of R. chingii was sequenced and identified. The chloroplast genome was 155,563 bp in size with a total GC content of 37.06%. Two 25,749-bp inverted repeat (IRA and IRB) regions divided the genome as four sections, with the remainder forming a large single-copy (LSC, 85,322 bp) and a small single-copy (SSC, 18,743 bp) regions. This genome contained a total of 131 genes, of which 86 were protein-coding genes, 37 tRNA genes, and eight rRNA genes. The phylogenetic analysis showed that R. chingii, along with several other R. longisepalus, R. tsangii, R. hirsutus, R. taiwanicola, R. rubroangustifolius, and R. glandulosopunctatus, formed the monophylic group. Interestingly, the chloroplast genome structure we reported was different from the previously reported structure and provided richer phylogenetic analysis information in the Rubus genus compared to previous studies. The genome information reported in this paper will provide some useful information for further investigation on the evolution of the family Rosaceae.
Collapse
Affiliation(s)
- Yuxian Li
- Traditional Chinese Medicine Department, Jilin Agricultural Science and Technology University, Jilin, PR China
| | - Ying Qiu
- Traditional Chinese Medicine Department, Jilin Agricultural Science and Technology University, Jilin, PR China
| | - Min Yang
- Traditional Chinese Medicine Department, Jilin Agricultural Science and Technology University, Jilin, PR China
| | - Yongfei Yin
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Min Li
- Traditional Chinese Medicine Department, Jilin Agricultural Science and Technology University, Jilin, PR China
| | - Ying Zhang
- Traditional Chinese Medicine Department, Jilin Agricultural Science and Technology University, Jilin, PR China
| |
Collapse
|
8
|
Chwil M, Matraszek-Gawron R, Kostryco M. Rubi idaei fructus as a Source of Bioactive Chemical Compounds with an Important Role in Human Health and Comparison of the Antioxidant Potential of Fruits and Juice of Three Repeat-Fruiting Rubus idaeus L. Cultivars. Metabolites 2023; 13:1124. [PMID: 37999220 PMCID: PMC10673471 DOI: 10.3390/metabo13111124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Rubi idaei fructus is a source of nutritionally important bioactive chemical compounds, mainly antioxidants, which strengthen the immune system and can be used in the prophylaxis and adjuvant therapies of many oxidative stress-induced diseases. There are no literature reports presenting a comprehensive comparative analysis of the antioxidant activity and nutritionally relevant metabolites contained in the fruits of repeat-fruiting raspberry cultivars, which are commonly grown in Europe. The aim of this study was to carry out a comparative analysis of the antioxidant potential (Folin-Ciocalteu, DPPH, FRAP), the content of selected primary and secondary metabolites, and the qualitative and quantitative composition of amino acids and fatty acids in the fruits of R. idaeus cv. 'Pokusa', 'Polana', and 'Polka'. The fruits of the analyzed cultivars have a low caloric value (171-219 kcal/100 g); low content of available carbohydrates (6-6.6%) and total carbohydrates (3.4-4.8%); and high levels of dietary fiber (4.7-5.8%), vitamin C (22.8-27 mg/100 g), anthocyanins (25.1-29.6 mg/100 g), and flavonoids (0.5-2.6 mg/100 g). The fruits were found to contain valuable unsaturated fatty acids (35-60%), especially MUFAs with dominant oleic, elaidic, palmitic, and erucic acids and PUFAs (α-linolenic, eicosapentaenoic, and linoleic acids). MUFAs from the ω-9 group accounted for 12-18%, whereas the content of PUFAs from the ω-3 and ω-6 groups was in the range of 15-23 and 6-21%, respectively. Exogenous amino acids, accounting for 56-62%, were dominated by leucine, phenylalanine, and lysine. The following order of the total polyphenolic content was established in the fresh fruit juice from the analyzed cultivars: 'Pokusa' < 'Polana' < 'Polka'. The different antioxidant capacity assays used in the study confirmed the high antioxidant potential of the fruits and fresh juice from the three R. idaeus cultivars. This indicates that raspberry fruits can serve as a source of nutrients and can be used as a valuable supplement in a healthy human diet and a raw material in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Mirosława Chwil
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | | |
Collapse
|
9
|
Hua Y, Dai B, Luo Y, Ding Y. Integrated analysis of multiple metabolome and transcriptome revealed the accumulation of flavonoids and associated molecular regulation mechanisms in Rubus chingii Hu at different developmental stages. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108085. [PMID: 37847976 DOI: 10.1016/j.plaphy.2023.108085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
The traditional Chinese herb Rubus chingii Hu (R. chingii) is widely used in clinical practice due to its beneficial effects. Flavonoids are the important class of pharmacological substances in R. chingii, however, the molecular mechanism underlying the differences in active flavonoid contents in R. chingii at different developmental stages remain poorly understood. In this experiment, we selected four developmental stages (GG, GY, YR, RR) of R. chingii as the research material. We studied the untargeted and targeted metabolic profiles of flavonoids in different periods of R. chingii, combining full-length and comparative transcriptome analyses. Functional analyses were conducted on genes implicated in flavonoid differences. GG and RR displayed relatively higher and lower contents of flavonols, flavones, flavanols, flavanones, and isoflavonoid, respectively. RNA-seq analyses showed structural genes such as RcPAL, RcC4H, Rc4CL, RcCHS, RcCHI, RcF3H, RcF3'H, and RcFLS in flavonoid biosynthesis pathway were upregulated in GG, which were essential for the accumulation flavanones, flavones, and flavonols (effective components). qRT-PCR analyses investigated that six structural genes RcCHI, RcF3H, 2 RcCHS, and 2 Rc4CL, two TFs RcMYB308 and RcMYB123 had a consistent expression pattern with which in transcriptome. Also, an interaction network showed that the RcMYB308 could positively regulate Ka3R, Qu, Qu3G, AS, Hy, Ti through RcF3H. Furthermore, Subcellular localization analysis revealed that RcMYB308 was localization to the nucleus. In tobacco, RcMYB308 was overexpressed, resulting in higher flavonoids, RcF3H, RcF3'H, RcCHI, and RcFLS. RcMYB308 upregulated RcF3H in dual-luciferase assays. These results provide new insights for further understanding the molecular mechanism regulating flavonol biosynthesis in R. chingii fruit, and also provide a potential MYB regulator for molecular breeding of R. chingii.
Collapse
Affiliation(s)
- Yujiao Hua
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China.
| | - Bingyi Dai
- Otolaryngology Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China.
| | - Yiyuan Luo
- Zhejiang Pharmaceutical College, Ningbo, 315500, China.
| | - Yongjuan Ding
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China.
| |
Collapse
|
10
|
Wang J, Zhang X, Yu J, Du J, Wu X, Chen L, Wang R, Wu Y, Li Y. Constituents of the fruits of Rubus chingii Hu and their neuroprotective effects on human neuroblastoma SH-SY5Y cells. Food Res Int 2023; 173:113255. [PMID: 37803568 DOI: 10.1016/j.foodres.2023.113255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 10/08/2023]
Abstract
Rubi fructus (Rubus chingii Hu) is a fruit of Rubus genus and is used in medicine and food applications. In this study, eight new phenylpropanoids (1-8) and seven known compounds (9-15) were isolated from the dried fruits of Rubus chingii Hu, and their structures were characterized through high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. Electronic circular dichroism (ECD) experiments were performed, and the results were compared with ECD spectra. Compound 3 was characterized through extensive single crystal X-ray diffraction. Evaluation of the neuroprotective pharmacological activities revealed that compounds 6, 7, 9, and 14 exerted protective effects against H2O2-induced neurotoxicity by reducing the reactive oxygen species levels at concentrations of 50 and 100 μM. Moreover, the three compounds 6, 9, and 14 significantly inhibited the expression of the Casp3 gene at a concentration of 50 μM. Compounds 7 and 9 effectively repressed the expression of the MYC gene. Compounds 6 and 9 obviously upregulated the ratio of Bcl2/Bax in SH-SY5Y cells and inhibited cell apoptosis. The study results can be used as a reference for the development of R. chingii products to realize their neuroprotective functions in the future.
Collapse
Affiliation(s)
- Jingyi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xue Zhang
- Amway (Shanghai) Innovation & Science Co., Ltd. Shanghai 201203, China
| | - Jundong Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jun Du
- Amway (Shanghai) Innovation & Science Co., Ltd. Shanghai 201203, China
| | - Xiaohong Wu
- Amway (China) Botanical R&D Center Co., Ltd., Wuxi 214200, China
| | - Liang Chen
- Amway (Shanghai) Innovation & Science Co., Ltd. Shanghai 201203, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yingchun Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
11
|
Chen X, Shi X, Li X. Multi-component analyses of raspberry: Optimization of extraction procedure and network pharmacology. Heliyon 2023; 9:e21826. [PMID: 38027894 PMCID: PMC10663849 DOI: 10.1016/j.heliyon.2023.e21826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The contents of ellagic acid and kaempferol-3-O-rutinoside, the chief active components of raspberry, are considered the quality control indices of raspberry. This work employed the ant colony neural network (ACO-BPNN) to optimize their extraction processes, and the combination of network pharmacology and molecular docking technology to unveil the potential pharmacological effects of these components. Based on the single-factor test (ultrasonic time, ethanol concentration, ultrasonic temperature, and solid-liquid ratio), a factorial experiment with 4-factors and 3-levels was conducted in parallel for 3 times. The multi-factor analysis of variance results revealed high-order interactions among the factors. Then, the ACO-BPNN model was established to characterize the complex relationship of experimental data. After further verification, relative errors were all less than 8 %, implying the model's effectiveness and reliability. Moreover, with the network pharmacology, 66 key targets were screened out and mainly concentrated in PI3K-AKT, MAPK, and Ras signal pathways. Molecular docking revealed the binding sites between active components and key targets.
Collapse
Affiliation(s)
- Xuming Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaochun Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaohong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Ng CYJ, Bun HH, Zhao Y, Zhong LLD. TCM "medicine and food homology" in the management of post-COVID disorders. Front Immunol 2023; 14:1234307. [PMID: 37720220 PMCID: PMC10500073 DOI: 10.3389/fimmu.2023.1234307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Background The World Health Organization declared that COVID-19 is no longer a public health emergency of global concern on May 5, 2023. Post-COVID disorders are, however, becoming more common. Hence, there lies a growing need to develop safe and effective treatment measures to manage post-COVID disorders. Investigating the use of TCM medicinal foods in the long-term therapy of post-COVID illnesses may be beneficial given contemporary research's emphasis on the development of medicinal foods. Scope and approach The use of medicinal foods for the long-term treatment of post-COVID disorders is highlighted in this review. Following a discussion of the history of the TCM "Medicine and Food Homology" theory, the pathophysiological effects of post-COVID disorders will be briefly reviewed. An analysis of TCM medicinal foods and their functions in treating post-COVID disorders will then be provided before offering some insight into potential directions for future research and application. Key findings and discussion TCM medicinal foods can manage different aspects of post-COVID disorders. The use of medicinal foods in the long-term management of post-COVID illnesses may be a safe and efficient therapy choice because they are typically milder in nature than chronic drug use. These findings may also be applied in the long-term post-disease treatment of similar respiratory disorders.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hung Hung Bun
- The University of Hong Kong (HKU) School of Professional and Continuing Education, Hong Kong, Hong Kong SAR, China
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Linda L. D. Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Hong Kong, Hong Kong SAR, China
| |
Collapse
|