1
|
Chen Z, Liao Y, Chai S, Yang Y, Ga Q, Ge R, Wang S, Liu S. Modification of Intestinal Flora Can Improve Host Metabolism and Alleviate the Damage Caused by Chronic Hypoxia. Curr Issues Mol Biol 2024; 46:12733-12745. [PMID: 39590350 PMCID: PMC11592817 DOI: 10.3390/cimb46110756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Prolonged exposure to hypoxic conditions can lead to reduced appetite, stunted growth, systemic inflammation, and pulmonary hypertension. Previous studies have indicated a correlation between gut dysbiosis and the development of hypoxia-related hazards. We designed an experiment to investigate the effect of microbiota on mitigating hypoxic damage. Gut microbiota from high-altitude-adapted species (Ochotona curzoniae) were transplanted into Sprague Dawley (SD) rats, which were then housed in a simulated 6000 m altitude environment for 30 days. After the experiment, we conducted analyses on average daily weight gain (ADG), feed conversion ratio (FCR), mean pulmonary artery pressure (mPAP), gut flora, and fecal metabolism. The results demonstrated that the ADG in the transplantation group (2.98 ± 0.17 g) was significantly higher than in the control groups (2.68 ± 0.19 g and 2.26 ± 0.13 g) (p < 0.05). The FCR was reduced in the transplantation group (6.30 ± 0.33 g) compared to the control groups (8.20 ± 1.15 g and 8.83 ± 0.45 g) (p < 0.05). The mPAP was decreased in the transplantation group (38.1 ± 1.13 mmHg) compared to the control groups (43.4 ± 1.30 mmHg and 43.5 ± 1.22 mmHg) (p < 0.05). Multi-omics analysis revealed that Lachnospiraceae, Desulfovibrionaceae, and specific amino acid metabolic pathways play crucial roles in hypoxia and are associated with both inflammation and nutritional metabolism. This study proposes a novel approach to the treatment of hypoxic pulmonary hypertension and holds potential significance for improving high-altitude developmental potential.
Collapse
Affiliation(s)
- Zheng Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Yak Engineering Technology Research Center of Qinghai Province, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Z.C.); (Y.L.); (S.L.)
| | - Yang Liao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Yak Engineering Technology Research Center of Qinghai Province, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Z.C.); (Y.L.); (S.L.)
| | - Shatuo Chai
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Yak Engineering Technology Research Center of Qinghai Province, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Z.C.); (Y.L.); (S.L.)
| | - Yingkui Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Yak Engineering Technology Research Center of Qinghai Province, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Z.C.); (Y.L.); (S.L.)
| | - Qin Ga
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Shuxiang Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Yak Engineering Technology Research Center of Qinghai Province, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Z.C.); (Y.L.); (S.L.)
| | - Shujie Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Yak Engineering Technology Research Center of Qinghai Province, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Z.C.); (Y.L.); (S.L.)
| |
Collapse
|
2
|
Qiu W, Chen J, Hua Y, Yang Y, Lin S. Method development, multi-residue determination, and dietary exposure risk assessment of plant growth regulators in homologous materials of medicine and food. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1039. [PMID: 39384629 DOI: 10.1007/s10661-024-13204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Residues of plant growth regulators (PGRs) in homologous materials of medicine and food threaten public health. This study aimed to develop a rapid, sensitive, and high-throughput method for simultaneously determining 16 PGR residues in homologous materials of medicine and food. Furthermore, the established method was applied to actual samples to assess the potential exposure risk of multi-PGR residues. A modified high-throughput quick, easy, cheap, effective, rugged, and safe (QuEChERS) method coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and validated. The extraction solvent, type of extraction method, and subsequent purification techniques were investigated to achieve a better analysis of the target. Risk assessment was based on chronic dietary risk assessment. Ultrasonic extraction with 1% formic acid-acetonitrile was employed, and MgSO4 + NaAc was selected as the clean-up sorbent. The 16 PGRs showed a good linear relationship in the range of 1 ~ 200 μg/L (r ≥ 0.9960), with detection limits ranging from 0.3 to approximately 3 μg/kg. The recovery rate ranged from 65 to 109%, with RSD from 0.01 to 10% (n = 6). The total detection rate of 16 PGRs in the samples was 87%. The risk assessment indicated that the multi-residues of PGRs in homologous materials of medicine and food would not pose a potential risk to human health. This work provides a valuable reference for the monitoring of multiple PGRs. It has also improved our understanding of the possible exposure risk of PGR residues in homologous materials of medicine and food.
Collapse
Affiliation(s)
- Wenqian Qiu
- Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention,Fujian Provincial Key Laboratory of Zoonosis Research, 386 Chongan Road, Fujian, Fuzhou, 350012, China
| | - Jiali Chen
- School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yongyou Hua
- Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention,Fujian Provincial Key Laboratory of Zoonosis Research, 386 Chongan Road, Fujian, Fuzhou, 350012, China
| | - Yan Yang
- Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention,Fujian Provincial Key Laboratory of Zoonosis Research, 386 Chongan Road, Fujian, Fuzhou, 350012, China
| | - Shouer Lin
- Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention,Fujian Provincial Key Laboratory of Zoonosis Research, 386 Chongan Road, Fujian, Fuzhou, 350012, China.
| |
Collapse
|
3
|
Liang L, Liu X, Shao J, Shen J, Yao Y, Huang X, Cai G, Guo Y, Gong J. Identification of Potential α-Glucosidase Inhibitors from American Ginseng Processed Products by UHPLC-Q-Orbitrap/MS and Molecular Docking. FOOD BIOPHYS 2024; 19:688-700. [DOI: 10.1007/s11483-024-09860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/13/2024] [Indexed: 01/03/2025]
|
4
|
Cui Y, Wu J, Zhang D, Li D, Zhang J, Li W, Wang C, Yuan C, Liu Z. Changes in chemical components and hepatoprotective effect of red Panax notoginseng processed by aspartic acid impregnation treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6085-6099. [PMID: 38445528 DOI: 10.1002/jsfa.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Red Panax notoginseng (RPN) is one of the major processed products of P. notoginseng (PN), with more effective biological activities. However, the traditional processing method of RPN has some disadvantages, such as low conversion rate of ginsenosides and long processing time. RESULTS In this work, we developed a green, safe, and efficient approach for RPN processing by aspartic acid impregnation pretreatment. Our results showed that the optimized temperature, steaming time, and concentration of aspartic acid were 120 °C, 1 h, and 3% respectively. The original ginsenosides in PN treated by aspartic acid (Asp-PN) were completely converted to rare saponins at 120 °C within just 1 h. The concentration of the rare ginsenosides in Asp-PN was two times higher than that in untreated RPN. In addition, we examined the protective effect of RPN and Asp-PN on acetaminophen-induced liver injury in a mouse model. The results showed that Asp-PN has significantly more potent hepatoprotective action than the RPN. The hepatoprotection of Asp-PN in acetaminophen-induced hepatotoxicity may be due to its anti-oxidative stress, anti-apoptotic, and anti-inflammatory activities. CONCLUSION These results indicated that aspartic acid impregnation pretreatment may provide an effective method to shorten the steaming time, improve the conversion rate of ginsenosides, and enhance hepatoprotective activity of RPN. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Cui
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jianfa Wu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Danli Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Dan Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jing Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, China
| | - Chongzhi Wang
- Tang Center for Herbal Medicine Research and The Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Chunsu Yuan
- Tang Center for Herbal Medicine Research and The Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, China
| |
Collapse
|
5
|
Shan M, Bai Y, Fang X, Lan X, Zhang Y, Cao Y, Zhu D, Luo H. American Ginseng for the Treatment of Alzheimer's Disease: A Review. Molecules 2023; 28:5716. [PMID: 37570686 PMCID: PMC10420665 DOI: 10.3390/molecules28155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative condition that is increasingly affecting populations globally. American ginseng (AG) has anti-AD bioactivity, and ginsenosides, as the main active components of AG, have shown strong anti-AD effects in both in vitro and in vivo studies. It has been reported that ginsenosides can inhibit amyloid β-protein (Aβ) production and deposition, tau phosphorylation, apoptosis and cytotoxicity, as well as possess anti-oxidant and anti-inflammatory properties, thus suppressing the progression of AD. In this review, we aim to provide a comprehensive overview of the pathogenesis of AD, the potential anti-AD effects of ginsenosides found in AG, and the underlying molecular mechanisms associated with these effects. Additionally, we will discuss the potential use of AG in the treatment of AD, and how ginsenosides in AG may exert more potent anti-AD effects in vivo may be a direction for further research.
Collapse
Affiliation(s)
- Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunfan Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Biopharmaceutical and Health Food, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
6
|
Zhang YT, Tian W, Lu YS, Li ZM, Ren DD, Zhang Y, Sha JY, Huo XH, Li SS, Sun YS. American ginseng with different processing methods ameliorate immunosuppression induced by cyclophosphamide in mice via the MAPK signaling pathways. Front Immunol 2023; 14:1085456. [PMID: 37153583 PMCID: PMC10160487 DOI: 10.3389/fimmu.2023.1085456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
This study aimed to clarify the effects of two processed forms of American ginseng (Panax quinquefolius L.) on immunosuppression caused by cyclophosphamide (CTX) in mice. In the CTX-induced immunosuppressive model, mice were given either steamed American ginseng (American ginseng red, AGR) or raw American ginseng (American ginseng soft branch, AGS) by intragastric administration. Serum and spleen tissues were collected, and the pathological changes in mice spleens were observed by conventional HE staining. The expression levels of cytokines were detected by ELISA, and the apoptosis of splenic cells was determined by western blotting. The results showed that AGR and AGS could relieve CTX-induced immunosuppression through the enhanced immune organ index, improved cell-mediated immune response, increased serum levels of cytokines (TNF-α, IFN-γ, and IL-2) and immunoglobulins (IgG, IgA, and IgM), as well as macrophage activities including carbon clearance and phagocytic index. AGR and AGS downregulated the expression of BAX and elevated the expression of Bcl-2, p-P38, p-JNK, and p-ERK in the spleens of CTX-injected animals. Compared to AGS, AGR significantly improved the number of CD4+CD8-T lymphocytes, the spleen index, and serum levels of IgA, IgG, TNF-α, and IFN-γ. The expression of the ERK/MAPK pathway was markedly increased. These findings support the hypothesis that AGR and AGS are effective immunomodulatory agents capable of preventing immune system hypofunction. Future research may investigate the exact mechanism to rule out any unforeseen effects of AGR and AGS.
Collapse
Affiliation(s)
- Yan-Ting Zhang
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Wei Tian
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Yu-Shun Lu
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Zhi-Man Li
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Duo-Duo Ren
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Yue Zhang
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Ji-Yue Sha
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Xiao-Hui Huo
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Shan-Shan Li
- Institute of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
- *Correspondence: Shan-Shan Li, ; Yin-Shi Sun,
| | - Yin-Shi Sun
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Shan-Shan Li, ; Yin-Shi Sun,
| |
Collapse
|