1
|
Yu H, Song Y, Lou M, Shen S. Mitigation and mechanism of low dose linoleic acid on depression caused by disorder of gut microbiome. Nutr Neurosci 2025; 28:245-262. [PMID: 38963806 DOI: 10.1080/1028415x.2024.2366648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
OBJECTIVES Depression is a widely prevalent mental disorder, and nutritional interventions play an increasingly important role in its treatment. In this paper, effects of linoleic acid (LA) on depressive behavior in mice induced by gut microbiome disorders were investigated. METHODS Fifty C57BL/6J male mice were randomly separated into five groups, control group (CK), ceftriaxone sodium group (CRO), low-dose linoleic acid group (LLA, 1 g/kg), medium-dose linoleic acid group (MLA, 2 g/kg), and high-dose linoleic acid group (HLA, 5 g/kg). In the LLA, MLA, and HLA groups, mice were treated with ceftriaxone sodium (CRO) to induce depressive behaviors, followed by LA administration. Behavioral tests were used to evaluate depressive behavior. High-throughput sequencing and Hematoxylin-eosin (H&E) staining in gut microenvironment were carried out. ELISA kits were used to measure brain inflammatory factors, and 5-hydroxy-tryptamine (5-HT). Gas chromatography and western blot were used to determine fatty acids compositions and the enzymes expression involved in lipid metabolism in brain respectively. RESULTS The results showed that 10 weeks CRO treatment contribute to depressive behavior, gut microbiome disturbance, and serotonin system disturbance. LLA and MLA improved the depressive-like behavior, and significantly increased the levels of 5-HT1A, 5-HTT and 5-HT in the hippocampus. LLA was found to improve the diversity of gut microbiome and alleviate colon tissue damage. Meantime, LLA increased the content of linoleic acid, improved the expression of FADS2 and COX-2, increased IL-10 levels, and decreased IL-6 levels in the brain. DISCUSSION LA alleviated depressive behavior in mice by improving the gut microenvironment, regulate fatty acid metabolism, and modulate inflammation.
Collapse
Affiliation(s)
- Haining Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yinan Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Maoshan Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Shengrong Shen
- Department of Nutrition, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Yang X, Huang L, Zhang Y, Wang K, Liu S, Li X, Ding Y, Deng D, Zhang T, Zhao W, Ma L, Wang Y, Shu S, Chen X. Untargeted metabolomics and mendelian randomization analysis identify alpha-linolenic acid and linoleic acid as novel biomarkers of perioperative neurocognitive dysfunction. Clin Nutr 2024; 43:2198-2210. [PMID: 39163761 DOI: 10.1016/j.clnu.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
Perioperative neurocognitive dysfunction (PND) occurs in elderly individuals undergoing anesthesia and surgery. To explore the potential molecular mechanisms, we performed right-sided cervical exploratory surgery under sevoflurane anesthesia in 18-month-old male Sprague-Dawley rats. Anxiety-depression-like behaviors and learning memory abilities were assessed using the Open Field Test (OFT) and Novel Object Recognition (NOR). Additionally, the hippocampus was collected one day after surgery for inflammatory factor detection, TUNEL staining, and metabolomics analysis. Mendelian randomization (MR) analyses were subsequently conducted to validate the causal relationships by using a series of GWAS datasets related to representative differential metabolites as exposures and cognitive impairment as endpoints. The results indicated that rats exposed to anesthesia and surgery exhibited poorer cognitive performance, significant elevations in hippocampal inflammatory factors such as IL-1β and TNF-α, and extensive neuronal apoptosis. LC-MS/MS-based untargeted metabolomics identified 19 up-regulated and 32 down-regulated metabolites in the test group, with 6 differential metabolites involved in metabolic pathways enriched according to the KEGG database. ROC analysis revealed a correlation between α-linolenic acid (ALA) and linoleic acid (LA) and the development of PND. Further MR analysis confirmed that ALA was significantly associated with cognitive performance and the risk of depression, while LA was significantly associated with the risk of memory loss. Taken together, our results identified ALA and LA as potentially powerful biomarkers for PND.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yanyan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shiya Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Xiaojin Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shaofang Shu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
3
|
Dong Y, Wang L, Yang M, Zhou X, Li G, Xu K, Ma Y, Chen J, Wang Z, Zhou J, Li H, Zhu Z. Effect of icariin on depressive behaviour in rat pups. Evidences for its mechanism of action by integrating network pharmacology, metabolomics and gut microbiota composition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155422. [PMID: 38422651 DOI: 10.1016/j.phymed.2024.155422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Prenatal stress (PS) can cause cognitive disorder and a range of psychological illnesses, including anxiety and depression. Icariin (ICA) has shown promising effects in improving PS-induced depressive behaviour. However, its mechanism of action remains unclear. PURPOSE This study was performed to reveal the key targets, metabolites and gut microbiota for ICA in improving depressive behaviour in PS rat pups. METHODS A prenatal restraint stress animal model was established for Sprague-Dawley (SD) rats in late pregnancy. Male pups were randomly divided into six groups: no stress group (NS), PS group, PS + saline group (PS_S), PS + high-dose ICA group (ICAH, 80 mg/kg*day), PS + low-dose ICA group (ICAL, 40 mg/kg*day) and PS + fluoxetine group (FLU, 10 mg/kg*day). The depressive behaviour of each group of rat pups was evaluated using open field test, forced swimming test and sucrose preference test. Different metabolites were identified using untargeted metabolomics of serum and faeces, and metabolic pathways were analyzed through MetaboAnalyst. Targets for ICA acting on depression were determined after network pharmacology was applied. An integrated network of network pharmacology and metabolomics were constructed using Cytoscape software, and molecular docking were performed to verify the interactions between ICA and key targets. Finally, gut microbiota of rat pups in each group were analyzed after 16S rDNA sequencing. RESULTS PS could cause rat pups to exhibit depressive behaviour, and ICA could significantly improve this depressive behaviour. A total of 49 differential metabolites were found in serum and 23 differential metabolites were found in faeces, and 24 metabolites in serum and 6 metabolites in faeces could be reversed following ICA administration. Integrated analysis focused on five key targets (i.e. adenosyl homocysteinase; medium-chain specific acyl-CoA dehydrogenase, mitochondrial; thymidine phosphorylase; cGMP-specific 3',5'-cyclic phosphodiesterase and xanthine dehydrogenase/oxidase) and three metabolites (i.e. palmitoylcarnitine, methionine and hypoxanthine). Molecular docking indicated that ICA combined well with key targets. Gut microbiota analysis showed that g_Bacteroides, f_Bacteroidaceae and s_Lactobacillus reuteri were required for ICA to improve depressive behaviour. CONCLUSION In this study, the antidepressant mechanism of ICA was clarified with a strategy of integrating metabolomics, network pharmacology and gut microbiota. ICA has a good effect on improving metabolism and increasing the abundance of probiotics in the intestine. The present research provided new insights into the anti-depressant mechanism of ICA.
Collapse
Affiliation(s)
- Yankai Dong
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Lawen Wang
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Mingge Yang
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Xin Zhou
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Ge Li
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Kaixuan Xu
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Yao Ma
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Jinfeng Chen
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Zhifei Wang
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Jiahao Zhou
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China.
| | - Zhongliang Zhu
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Sabião TDS, Oliveira FCD, Bressan J, Pimenta AM, Hermsdorff HHM, Oliveira FLPD, Mendonça RDD, Carraro JCC. Fatty acid intake and prevalence of depression among Brazilian graduates and postgraduates (CUME Study). J Affect Disord 2024; 346:182-191. [PMID: 37949241 DOI: 10.1016/j.jad.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Dietary fatty acids are related to the development of several inflammatory-related diseases, which may include depression. So, the association between fatty acids, culinary oils and fat intake and depression in highly educated Brazilians was evaluated. METHODS Multicenter cross-sectional study using baseline data from the Cohort of Universities of Minas Gerais. The diagnosis of depression was self-reported, and the daily intake of fatty acids was assessed using a 144-item food frequency questionnaire (FFQ). RESULTS A total of 7157 participants (68.83 % women) with a median age of 33 years were included. The prevalence of depression was 12.60 % (N = 902). In the adjusted analyses, it was observed that individuals with the highest intake of omega-6 fatty acids (n-6) (OR: 1.36, 95 % CI 1.11-1.67) had a higher prevalence of depression. This increased n-6 intake was identified as a risk factor for depression only among male participants, while among overweight participants, higher n-6 intake was also positively associated with depression. Conversely, a higher ratio of polyunsaturated to monounsaturated and saturated fatty acids (PM/S) was also found to be positively associated with depression, but this association was observed only among non-overweight participants. No associations were found between the consumption of culinary oils or fats and depression. LIMITATIONS Cross-sectional design limits the assessment of causality. The use of the FFQ can make estimates more difficult. CONCLUSION Higher consumption of n-6, and higher PM/S ratios were associated with depression, and individual factors can interfere. The mental health care policies should include specific nutritional strategies.
Collapse
|
5
|
Kim OY, Song J. Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia. Life Sci 2024; 337:122356. [PMID: 38123015 DOI: 10.1016/j.lfs.2023.122356] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Metabolic syndrome (MetS), which is characterized by insulin resistance, high blood glucose, obesity, and dyslipidemia, is known to increase the risk of dementia accompanied by memory loss and depression. The direct pathways and specific mechanisms in the central nervous system (CNS) for addressing fatty acid imbalances in MetS have not yet been fully elucidated. Among polyunsaturated acids, linoleic acid (LA, n6-PUFA) and α-linolenic acid (ALA, n3-PUFA), which are two essential fatty acids that should be provided by food sources (e.g., vegetable oils and seeds), have been reported to regulate various cellular mechanisms including apoptosis, inflammatory responses, mitochondrial biogenesis, and insulin signaling. Furthermore, inadequate intake of LA and ALA is reported to be involved in neuropathology and neuropsychiatric diseases as well as imbalanced metabolic conditions. Herein, we review the roles of LA and ALA on metabolic-related dementia focusing on insulin resistance, dyslipidemia, synaptic plasticity, cognitive function, and neuropsychiatric issues. This review suggests that LA and ALA are important fatty acids for concurrent treatment of both MetS and neurological problems.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Busan, Republic of Korea; Department of Health Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoul, Republic of Korea.
| |
Collapse
|