1
|
Milan AM, Barnett MP, McNabb WC, Roy NC, Coutinho S, Hoad CL, Marciani L, Nivins S, Sharif H, Calder S, Du P, Gharibans AA, O'Grady G, Fraser K, Bernstein D, Rosanowski SM, Sharma P, Shrestha A, Mithen RF. The impact of heat treatment of bovine milk on gastric emptying and nutrient appearance in peripheral circulation in healthy females: a randomized controlled trial comparing pasteurized and ultra-high temperature milk. Am J Clin Nutr 2024; 119:1200-1215. [PMID: 38452857 DOI: 10.1016/j.ajcnut.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Heat treatments of dairy, including pasteurization and ultra-high temperature (UHT) processing, alter milk macromolecular structures, and ultimately affect digestion. In vitro, animal, and human studies show faster nutrient release or circulating appearance after consuming UHT milk (UHT-M) compared with pasteurized milk (PAST-M), with a faster gastric emptying (GE) rate proposed as a possible mechanism. OBJECTIVES To investigate the impact of milk heat treatment on GE as a mechanism of faster nutrient appearance in blood. We hypothesized that GE and circulating nutrient delivery following consumption would be faster for UHT-M than PAST-M. METHODS In this double-blind randomized controlled cross-over trial, healthy female (n = 20; 27.3 ± 1.4 y, mean ± SD) habitual dairy consumers, consumed 500 mL of either homogenized bovine UHT-M or PAST-M (1340 compared with 1320 kJ). Gastric content volume (GCV) emptying half-time (T50) was assessed over 3 h by magnetic resonance imaging subjective digestive symptoms, plasma amino acid, lipid and B vitamin concentrations, and gastric myoelectrical activity were measured over 5 h. RESULTS Although GCV T50 did not differ (102 ± 7 min compared with 89 ± 8 min, mean ± SEM, UHT-M and PAST-M, respectively; P = 0.051), GCV time to emptying 25% of the volume was 31% longer following UHT-M compared with PAST-M (42 ± 2 compared with 32 ± 4 min, P = 0.004). Although GCV remained larger for a longer duration following UHT-M (treatment × time interaction, P = 0.002), plasma essential amino acid AUC was greater following UHT-M than PAST-M (55,324 ± 3809 compared with 36,598 ± 5673 μmol·min·L-1, P = 0.006). Heat treatment did not impact gastric myoelectrical activity, plasma appetite hormone markers or subjective appetite scores. CONCLUSIONS Contrary to expectations, GE was slower with UHT-M, yet, as anticipated, aminoacidemia was greater. The larger GCV following UHT-M suggests that gastric volume may poorly predict circulating nutrient appearance from complex food matrices. Dairy heat treatment may be an effective tool to modify nutrient release by impacting digestion kinetics. CLINICAL TRIAL REGISTRY www.anzctr.org.au (ACTRN12620000172909).
Collapse
Affiliation(s)
- Amber Marie Milan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand; AgResearch Limited, Palmerston North, New Zealand; The High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Matthew Pg Barnett
- AgResearch Limited, Palmerston North, New Zealand; The Riddet Institute, Palmerston North, New Zealand
| | - Warren C McNabb
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand; The Riddet Institute, Palmerston North, New Zealand
| | - Nicole C Roy
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand; The Riddet Institute, Palmerston North, New Zealand; Department of Human Nutrition, The University of Otago, Otago, New Zealand
| | - Schynell Coutinho
- The Liggins Institute, The University of Auckland, Auckland, New Zealand; AgResearch Limited, Palmerston North, New Zealand
| | - Caroline L Hoad
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Luca Marciani
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom; Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, United Kingdom
| | - Samson Nivins
- The Liggins Institute, The University of Auckland, Auckland, New Zealand; Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Hayfa Sharif
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom; Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, United Kingdom; Amiri Hospital, Ministry of Health, Civil Service Commission, Kuwait City, Kuwait
| | - Stefan Calder
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Armen A Gharibans
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Greg O'Grady
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Karl Fraser
- AgResearch Limited, Palmerston North, New Zealand; The High-Value Nutrition National Science Challenge, Auckland, New Zealand; The Riddet Institute, Palmerston North, New Zealand
| | | | | | - Pankaja Sharma
- The Liggins Institute, The University of Auckland, Auckland, New Zealand; AgResearch Limited, Palmerston North, New Zealand
| | - Aahana Shrestha
- The Liggins Institute, The University of Auckland, Auckland, New Zealand; AgResearch Limited, Palmerston North, New Zealand
| | - Richard F Mithen
- The Liggins Institute, The University of Auckland, Auckland, New Zealand; The High-Value Nutrition National Science Challenge, Auckland, New Zealand; The Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|
2
|
Yu P, Pan Y, Pei Z, Guo M, Yang B, Lee YK, Liu X, Zhao J, Zhang H, Chen W. Influence of Lactose Supplementation on Regulation of Streptococcus thermophilus on Gut Microbiota. Nutrients 2023; 15:4767. [PMID: 38004159 PMCID: PMC10675825 DOI: 10.3390/nu15224767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
It has been found that Streptococcus thermophilus (S. thermophilus) influenced the gut microbiota and host metabolism with strain specificity in C57BL/6J mice in the previous study, though it remains unclear whether lactose as a dietary factor associated with dairy consumption is involved as the mediator in the interaction. In the present study, integrated analysis of 16S rRNA gene sequencing and untargeted metabolomics by liquid chromatography-mass spectrometry of fecal samples in C57BL/6J mice was applied to evaluate the effect of lactose on the regulation of gut microbiota by two S. thermophilus strains (4M6 and DYNDL13-4). The results showed that the influence of lactose supplementation on gut microbiota induced by S. thermophilus ingestion was strain-specific. Although two S. thermophilus strains ingestion introduced similar perturbations in the fecal microbiota and gut microbial metabolism, the regulation of DYNDL13-4 on the gut microbiota and metabolism was more affected by lactose than 4M6. More specifically, lactose and 4M6 supplementation mainly enriched pathways of d-glutamine and d-glutamate metabolism, alanine, aspartate, and glutamate metabolism, and tryptophan and phenylalanine metabolism in the gut, whereas 4M6 only enriched tryptophan and phenylalanine metabolism. DYNDL13-4-L (DYNDL13-4 with lactose) had significant effects on sulfur, taurine, and hypotaurine metabolism in the gut and on phenylalanine, tyrosine, tryptophan biosynthesis, and linoleic acid metabolism in serum relative to the DYNDL13-4. Our study demonstrated the strain-specific effect of lactose and S. thermophilus supplementation on gut microbiota and host metabolism. However, considering the complexity of the gut microbiota, further research is necessary to provide insights to facilitate the design of personalized fermented milk products as a dietary therapeutic strategy for improving host health.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China (Z.P.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Yuqi Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China (Z.P.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Zhiwen Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China (Z.P.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Min Guo
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China (Z.P.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China;
| | - Yuan-Kun Lee
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China;
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xiaoming Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China;
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China (Z.P.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China (Z.P.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- Wuxi Translational Medicine Research Center, Wuxi 214122, China
- Jiangsu Translational Medicine Research Institute, Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China (Z.P.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- National Engineering Research Centre for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Serum and Urine Metabolites in Healthy Men after Consumption of Acidified Milk and Yogurt. Nutrients 2022; 14:nu14224794. [PMID: 36432479 PMCID: PMC9698558 DOI: 10.3390/nu14224794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of molecular biomarkers that can be used to quantitatively link dietary intake to phenotypic traits in humans is a key theme in modern nutritional research. Although dairy products (with and without fermentation) represent a major food group, the identification of markers of their intake lags behind that of other food groups. Here, we report the results from an analysis of the metabolites in postprandial serum and urine samples from a randomized crossover study with 14 healthy men who ingested acidified milk, yogurt, and a non-dairy meal. Our study confirms the potential of lactose and its metabolites as markers of lactose-containing dairy foods and the dependence of their combined profiles on the fermentation status of the consumed products. Furthermore, indole-3-lactic acid and 3-phenyllactic acid are two products of fermentation whose postprandial behaviour strongly discriminates yogurt from milk intake. Our study also provides evidence of the ability of milk fermentation to increase the acute delivery of free amino acids to humans. Notably, 3,5-dimethyloctan-2-one also proves to be a specific marker for milk and yogurt consumption, as well as for cheese consumption (previously published data). These molecules deserve future characterisation in human interventional and observational studies.
Collapse
|