1
|
Spahiu E, Shyti M. Assessment of natural and artificial radioactivity concentrations in infant powdered milk consumed in Albania and estimation of the annual effective dose. Appl Radiat Isot 2024; 211:111411. [PMID: 38905969 DOI: 10.1016/j.apradiso.2024.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/20/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
This study evaluates the radiological risk associated with the consumption of infant powdered milk in Albania. Infant powdered milk is the basic foodstuff for their growth and development in many countries around the world. The activity concentration of radionuclides (40K, 226Ra, 232Th and 137Cs) was measured in fourteen types by using the gamma-ray technique. The results indicated that the activity concentration of 40K, 226Ra and 232Th were detected in all selected samples, whereas 137Cs were not detected in most of them. The activity concentration of 40K, 226Ra and 232Th varies from 92.83 ± 4.32 to 400.53 ± 17.00 Bq kg-1, 0.80 ± 0.15 to 4.91 ± 0.28 Bq kg-1 and 0.19 ± 0.02 to 1.89 ± 0.14 Bq kg-1, respectively. The highest value for 137Cs was found to be 0.36 ± 0.03 Bq kg-1. The average values of Annual Effective Dose (AED) due to consumption of powdered milk were found to be 664.54 ± 31.11 μSv y-1 for infants ≤1 year and 138.53 ± 5.40 μSv y-1 for infants 1-2 years. The values of dose in this study were lower than the recommended limit of 1 mSv y-1 set by WHO/FAO and ICRP for all ages. Therefore, brands of powdered milk are safe, so, these can be normally consumed by infants in Albania.
Collapse
Affiliation(s)
- Erjon Spahiu
- Department of Physics, Faculty of Natural Sciences, University of Tirana, Blv. Zogu I, Tirana, Albania.
| | - Manjola Shyti
- Institute of Applied Nuclear Physics, University of Tirana, Str. Th. Filipeu, P. O. Box 85, Tirana, Albania
| |
Collapse
|
2
|
Souza MCO, Souza JMO, da Costa BRB, Gonzalez N, Rocha BA, Cruz JC, Guida Y, Souza VCO, Nadal M, Domingo JL, Barbosa F. Levels of organic pollutants and metals/metalloids in infant formula marketed in Brazil: Risks to early-life health. Food Res Int 2023; 174:113594. [PMID: 37986457 DOI: 10.1016/j.foodres.2023.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Infant formula intake is recommended to ensure comprehensive nutritional and caloric fulfillment when exclusive breastfeeding is not possible. However, similarly to breast milk, infant formulas may also contain pollutants capable of inducing endocrine-disrupting and neurotoxic effects. Thus, considering the sensitivity of their developing physiological systems and that infants have heightened susceptibility to environmental influences, this study was aimed at assessing the contents of essential elements, and inorganic and organic pollutants in infant formulas marketed in Brazil. Additionally, health risk assessments for selected contaminants were also performed. Measured contents of essential elements (Ca, Fe, Mg, Mn, Cu, Se, and Zn) were congruent with label information. Nevertheless, some toxic elements (Pb, Cd, As, Ni, and Al) were also detected. Notably, in the upper-bound scenario, Pb and Cd surpassed established threshold values when comparing the estimated daily intake (EDI) and tolerable daily intake (TDI - 3.57 and 0.36 μg/kg bw, respectively). Bisphenol P (BPP) and benzyl butyl phthalate (BBP) were frequently detected (84 % detection rate both) with elevated contents (BPP median = 4.28 ng/g and BBP median = 0.24 ng/g). Furthermore, a positive correlation (0.41) was observed between BPP and BBP, implying a potential co-occurrence within packaging materials. Methyl-paraben also correlated positively with BBP (0.57), showing a detection rate of 53 %. The cumulative PBDE contents ranged from 0.33 to 1.62 ng/g, with BDE-154 and BDE-47 the dominant congeners. When comparing EDI values with TDIs, all organic pollutants remained below the thresholds across all exposure scenarios. Moreover, non-carcinogenic risks were below the threshold (HQ > 1) when dividing the EDIs by the respective reference doses for chronic exposure. While the current findings may suggest that infant formula intake poses no immediate risk in terms of the evaluated chemicals, it remains imperative to conduct further research to safeguard the health of infants considering other chemicals, as well as their potential cumulative effects.
Collapse
Affiliation(s)
- Marília Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Juliana Maria Oliveira Souza
- Department of Biochemistry, Biological Sciences Institute, University of Juiz de Fora, Campus Universitário, Rua José Lourenço Kelmer, s/n - São Pedro, Juiz de Fora, MG 36036-900, Brazil
| | - Bruno Ruiz Brandão da Costa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Forensic Toxicology Analysis Laboratory, Avenida dos Bandeirantes, 3900 - Monte Alegre, 14015-130, Ribeirao Preto, Sao Paulo, Brazil; University of Sao Paulo, Institute of Biosciences, Department of Botany, Laboratory of Phytochemistry, Rua do Matão, 277, 05508-090 Sao Paulo, Brazil
| | - Neus Gonzalez
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Bruno Alves Rocha
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Jonas Carneiro Cruz
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Yago Guida
- Institute of Biophysics Carlos Chagas Filho, Health Sciences Center, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Vanessa Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Martí Nadal
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
3
|
Purkiewicz A, Stasiewicz M, Nowakowski JJ, Pietrzak-Fiećko R. The Influence of the Lactation Period and the Type of Milk on the Content of Amino Acids and Minerals in Human Milk and Infant Formulas. Foods 2023; 12:3674. [PMID: 37835327 PMCID: PMC10572789 DOI: 10.3390/foods12193674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Background: This study investigated the effect of the lactation period and the type of infant formula on the content of amino acids and selected minerals in an infant's food; (2) Methods: The study material consisted of breast milk (colostrum, n = 38; transitional milk, mature milk, n = 38) and three types of infant formulas (for first and follow-on feeding). Amino acid content was determined using an automatic amino acid analyzer, while minerals were determined by the atomic absorption spectrometry (AAS) technique; (3) Results: Breast milk and infant formulas contained a full range of essential amino acids. In most cases, the content of individual amino acids and minerals decreased with increasing lactation. In infant formulas, there were higher contents of phenylalanine, glutamic acid, proline, serine, and tyrosine in follow-on milk (p < 0.05). The EAA/TAA ratio in breast milk and infant formulas was similar, but the milk differed in their qualitative composition. Infant formulas contained levels of individual minerals that were several times higher-especially Mg, Ca, Mn, and Fe.; (4) Conclusions: Colostrum is more concentrated, and the level of amino acids and minerals is higher in it; as the milk matures, it decreases. In most cases, the content of individual amino acids and minerals is higher in infant formulas than in human milk, which is established through strict Codex Alimentarius procedures to ensure the proper development of infants.
Collapse
Affiliation(s)
- Aleksandra Purkiewicz
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland;
| | - Małgorzata Stasiewicz
- Department of Animal Nutrition and Feed Management, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Jacek J. Nowakowski
- Department of Ecology and Environmental Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland;
| | - Renata Pietrzak-Fiećko
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland;
| |
Collapse
|
4
|
Trindade LRD, Baião DDS, da Silva DVT, Almeida CC, Pauli FP, Ferreira VF, Conte-Junior CA, Paschoalin VMF. Microencapsulated and Ready-to-Eat Beetroot Soup: A Stable and Attractive Formulation Enriched in Nitrate, Betalains and Minerals. Foods 2023; 12:foods12071497. [PMID: 37048318 PMCID: PMC10093833 DOI: 10.3390/foods12071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Beetroot is a tuber rich in antioxidant compounds, i.e., betanin and saponins, and is one of the main sources of dietary nitrate. The aim of the present study was to microencapsulate a ready-to-eat beetroot soup by lyophilization using different encapsulating agents, which supply the required amount of bioactive nutrients. Particle size distributions ranged from 7.94 ± 1.74 to 245.66 ± 2.31 µm for beetroot soup in starch and from 30.56 ± 1.66 to 636.34 ± 2.04 µm in maltodextrin. Microparticle yields of powdered beetroot soup in starch varied from 77.68% to 88.91%, and in maltodextrin from 75.01% to 80.25%. The NO3− and total betalain contents at a 1:2 ratio were 10.46 ± 0.22 mmol·100 g−1 fresh weight basis and 219.7 ± 4.92 mg·g−1 in starch powdered beetroot soup and 8.43 ± 0.09 mmol·100 g−1 fresh weight basis and 223.9 ± 4.21 mg·g−1 in maltodextrin powdered beetroot soup. Six distinct minerals were identified and quantified in beetroot soups, namely Na, K, Mg, Mn, Zn and P. Beetroot soup microencapsulated in starch or maltodextrin complied with microbiological quality guidelines for consumption, with good acceptance and purchase intention throughout 90 days of storage. Microencapsulated beetroot soup may, thus, comprise a novel attractive strategy to offer high contents of bioaccessible dietary nitrate and antioxidant compounds that may aid in the improvement of vascular-protective effects.
Collapse
Affiliation(s)
- Lucileno Rodrigues da Trindade
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
| | - Diego dos Santos Baião
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Davi Vieira Teixeira da Silva
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Cristine Couto Almeida
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, Brazil
| | - Fernanda Petzold Pauli
- Institute of Chemistry (IQ), Fluminense Federal University, R. Dr. Mario Vianna, 523, Niterói 24210-141, Brazil
| | - Vitor Francisco Ferreira
- Institute of Chemistry (IQ), Fluminense Federal University, R. Dr. Mario Vianna, 523, Niterói 24210-141, Brazil
| | - Carlos Adam Conte-Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, Brazil
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
5
|
Ferreira N, Henriques B, Viana T, Carvalho L, Tavares D, Pinto J, Jacinto J, Colónia J, Pereira E. Validation of a methodology to quantify macro, micro, and potentially toxic elements in food matrices. Food Chem 2023; 404:134669. [DOI: 10.1016/j.foodchem.2022.134669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
|
6
|
de Paiva EL, Ruttens A, Waegeneers N, Laing GD, Morgano MA, Cheyns K, Arisseto-Bragotto AP. Selenium in selected samples of infant formulas and milk commercialized in Belgium and Brazil: Total content, speciation and estimated intake. Food Res Int 2023; 164:112289. [PMID: 36737897 DOI: 10.1016/j.foodres.2022.112289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Total selenium (Se) and Se species concentrations were determined in 50 infant formulas and milk samples commercialized in Brazil and Belgium. Infant formula categories were starter, follow-up, specialized and plant-based (soy and rice), while milk samples included whole, skimmed, semi-skimmed and plant-based products. Total Se content was determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), after microwave digestion. An enzymatic extraction method was applied to evaluate the Se species, mostly selenomethionine (SeMet), Se(IV) and Se(VI), through High Performance Liquid Chromatography coupled to ICP-MS (LC-ICP-MS). Starters and follow-up samples presented the highest total Se concentrations and values up to 30 µg/kg were observed in the reconstituted product. The lowest level (below the LOQ = 10 µg/kg) was verified in an anti-regurgitation specialized formula. The relative agreement between the measured total Se and the Se content declared on the label varied from 55 % to 317 %. Concentrations in infant formulas were not markedly different from concentrations in milk except for rice and oat milk samples that showed values below the LOQ. SeMet was the main species found in milks, while in infant formulas the species concentrations varied according to the product. The daily intake (DI) of Se via infant formula consumption was calculated and compared with the Adequate Intake (AI) value and the Dietary Reference Intake (DRI) established by the EFSA NDA Panel and ANVISA, respectively. Estimated maximum intakes of total Se obtained for reconstituted infant formula were 40.6 mg/day, corresponding to 400 % and 202 % of the DRI and AI, respectively.
Collapse
Affiliation(s)
- Esther Lima de Paiva
- Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, 13083-862 Campinas - SP, Brazil; Sciensano, Leuvensesteenweg 17, 3080 Tervuren, Belgium.
| | - Ann Ruttens
- Sciensano, Leuvensesteenweg 17, 3080 Tervuren, Belgium
| | | | - Gijs Du Laing
- Ghent University, Laboratory of Analytical Chemistry and Applied Ecochemistry, Coupure links 653, 9000 Ghent, Belgium
| | - Marcelo Antônio Morgano
- Institute of Food Technology (ITAL), Avenida Brasil 2880, C. P. 139, 13070-178 Campinas - SP, Brazil
| | | | | |
Collapse
|
7
|
de Almeida CC, Baião DDS, Rodrigues PDA, Saint’Pierre TD, Hauser-Davis RA, Leandro KC, Paschoalin VMF, da Costa MP, Conte-Junior CA. Toxic Metals and Metalloids in Infant Formulas Marketed in Brazil, and Child Health Risks According to the Target Hazard Quotients and Target Cancer Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11178. [PMID: 36141460 PMCID: PMC9517614 DOI: 10.3390/ijerph191811178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Children are highly vulnerable to chemical exposure. Thus, metal and metalloid in infant formulas are a concern, although studies in this regard are still relatively scarce. Thus, the presence of aluminum, arsenic, cadmium, tin, mercury, lead, and uranium was investigated in infant formulas marketed in Brazil by inductively coupled plasma mass spectrometry, and the Target Hazard Quotients (THQ) and Target Cancer Risk (TCR) were calculated in to assess the potential risk of toxicity for children who consume these products continuously. Aluminum ranging from 0.432 ± 0.049 to 1.241 ± 0.113 mg·kg-1, arsenic from 0.012 ± 0.009 to 0.034 ± 0.006 mg·kg-1, and tin from 0.007 ± 0.003 to 0.095 ± 0.024 mg·kg-1 were the major elements, while cadmium and uranium were present at the lowest concentrations. According to the THQ, arsenic contents in infant formulas showed a THQ > 1, indicating potential health risk concerns for newborns or children. Minimal carcinogenic risks were observed for the elements considered carcinogenic. Metabolic and nutritional interactions are also discussed. This study indicates the need to improve infant formula surveillance concerning contamination by potentially toxic and carcinogenic elements.
Collapse
Affiliation(s)
- Cristine Couto de Almeida
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Diego dos Santos Baião
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Paloma de Almeida Rodrigues
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Tatiana Dillenburg Saint’Pierre
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Rio de Janeiro 22541-041, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratory for Environmental Health Assessment and Promotion, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Katia Christina Leandro
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Marion Pereira da Costa
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador 40170-110, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|