Li X, Wang L, Zhou H, Xu H. Association between weight-adjusted-waist index and chronic kidney disease: a cross-sectional study.
BMC Nephrol 2023;
24:266. [PMID:
37691097 PMCID:
PMC10494374 DOI:
10.1186/s12882-023-03316-w]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
AIMS
We aimed to investigate the potential association between weight-adjusted-waist index (WWI) and chronic kidney disease (CKD).
DESIGN AND METHODS
This research examined data collected from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2020. CKD was defined as the low estimated glomerular filtration rate (eGFR) or the existence of albuminuria (urinary albumin-to-creatinine ratio (ACR) ≥ 30mg/g). Low-eGFR was described as eGFR < 60 mL/min/1.73m2. The associations between WWI with CKD, albuminuria, and low-eGFR were examined using generalized additive models and weighted multivariable logistic regression models. We also analyzed the associations of other obesity indicators with CKD, albuminuria, and low-eGFR, including body mass index (BMI), waist-to-height ratio (WHtR), waist circumference(WC), height, and weight. The receiver operating characteristic (ROC) curves were used to assess and compare their diagnostic abilities.
RESULTS
Males made up 48.26% of the total 40,421 individuals that were recruited. The prevalences of CKD, albuminuria, and low-eGFR were 16.71%, 10.97%, and 7.63%, respectively. WWI was found to be positively linked with CKD (OR = 1.42; 95% CI: 1.26, 1.60). A nonlinear connection between WWI and CKD was found using smooth curve fitting. Additionally, a higher prevalence of albuminuria is linked to a higher level of WWI (OR = 1.60; 95% CI: 1.40, 1.82). Different stratifications did not substantially influence the connection between WWI and CKD, albuminuria, and low-eGFR, according to subgroup analysis and interaction tests. We observed higher height was related to higher low-eGFR prevalence (OR = 1.05; 95% CI: 1.03, 1.06). ROC analysis revealed that WWI had the best discrimination and accuracy for predicting CKD and albuminuria compared to other obesity indicators (BMI, WHTR, WC, height and weight). In addition, height had the highest area under the curve (AUC) value for predicting low-eGFR.
CONCLUSION
WWI is the best obesity indicator to predict CKD and albuminuria compared to other obesity indicators (BMI, WHTR, WC, height, and weight). WWI and CKD and albuminuria were found to be positively correlated. Furthermore, height had the strongest ability to predict low-eGFR. Therefore, the importance of WWI and height in assessing kidney health in US adults should be emphasized.
Collapse