1
|
Vedarethinam V, Jeevanandam J. Role of nanotechnology in microbiome drug development. HUMAN MICROBIOME DRUG TARGETS 2025:245-263. [DOI: 10.1016/b978-0-443-15435-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Fan H, Shen R, Yan J, Bai Y, Fu Q, Shi X, Du G, Wang D. Pyroptosis the Emerging Link Between Gut Microbiota and Multiple Sclerosis. Drug Des Devel Ther 2024; 18:6145-6164. [PMID: 39717200 PMCID: PMC11665440 DOI: 10.2147/dddt.s489454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
This review elucidates the pivotal role of pyroptosis, triggered by gut microbiota, in the development of multiple sclerosis (MS), emphasizing its significance within the gut-brain axis. Our comprehensive analysis of recent literature reveals how dysbiosis in the gut microbiota of MS patients-characterized by reduced microbial diversity and shifts in bacterial populations-profoundly impacts immune regulation and the integrity of the central nervous system (CNS). Pyroptosis, an inflammatory form of programmed cell death, significantly exacerbates MS by promoting the release of inflammatory cytokines and causing substantial damage to CNS tissues. The gut microbiota facilitates this detrimental process through metabolites such as short-chain fatty acids and neuroactive compounds, or self-structural products like lipopolysaccharides (LPS), which modulate immune responses and influence neuronal survival. This review highlights the potential of modulating gut microbiota to regulate pyroptosis, thereby suggesting that targeting this pathway could be a promising therapeutic strategy to mitigate inflammatory responses and preserve neuronal integrity in patients with MS.
Collapse
Affiliation(s)
- Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Ruile Shen
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Junqiang Yan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Yongjie Bai
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Qizhi Fu
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Xiaofei Shi
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Ganqin Du
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Dongmei Wang
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| |
Collapse
|
3
|
Lee SK, Kwon JH, Jang JW, Bae SH, Yoon SK, Jung ES, Choi JY. The Critical Role of Regulatory T Cells in Immune Tolerance and Rejection Following Liver Transplantation: Interactions With the Gut Microbiome. Transplantation 2024:00007890-990000000-00891. [PMID: 39375899 DOI: 10.1097/tp.0000000000005220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Liver transplantation (LT) is the ultimate treatment for patients with end-stage liver disease or early hepatocellular carcinoma. In the context of LT, because of the unique immunological characteristics of human liver allograft, 5%-20% of selected LT recipients can achieve operational tolerance. Nonetheless, there remains a risk of rejection in LT patients. Maintaining immune homeostasis is thus crucial for improving clinical outcomes in these patients. In mechanism, several immune cells, including dendritic cells, Kupffer cells, myeloid-derived suppressor cells, hepatic stellate cells, regulatory B cells, and CD4+ regulatory T cells (Treg), contribute to achieving tolerance following LT. In terms of Treg, it plays a role in successfully minimizing immunosuppression or achieving tolerance post-LT while also reducing the risk of rejection. Furthermore, the gut microbiome modulates systemic immune functions along the gut-liver axis. Recent studies have explored changes in the microbiome and its metabolites under various conditions, including post-LT, acute rejection, and tolerance. Certain functional microbiomes and metabolites exhibit immunomodulatory functions, such as the augmentation of Treg, influencing immune homeostasis. Therefore, understanding the mechanisms of tolerance in LT, the role of Treg in tolerance and rejection, as well as their interactions with gut microbiome, is vital for the management of LT patients.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
4
|
Okolie MC, Edo GI, Ainyanbhor IE, Jikah AN, Akpoghelie PO, Yousif E, Zainulabdeen K, Isoje EF, Igbuku UA, Orogu JO, Owheruo JO, Essaghah AEA, Umar H. Gut microbiota and immunity in health and diseases: a review. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2024. [DOI: 10.1007/s43538-024-00355-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/24/2024] [Indexed: 01/03/2025]
|
5
|
Li C, Li Y, Wang N, Ge Z, Wang J, Ding B, Bi Y, Wang Y, Wang Y, Peng Z, Yang X, Wang C, Hong Z. Comprehensive modulatory effects of whole grain consumption on immune-mediated inflammation in middle-aged and elderly community residents: A real-world randomized controlled trial. Redox Biol 2024; 76:103337. [PMID: 39260062 PMCID: PMC11414686 DOI: 10.1016/j.redox.2024.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND AND AIMS Whole grain consumption is widely recognized as a vital component of a balanced diet. Dietary fiber has been well-documented to play a crucial role in these health benefits attributed to whole grain intake. However, population-based evidence directly linking whole grain consumption to anti-inflammatory effects, especially in the context of immune-mediated inflammation, remains limited. We hypothesized that whole grain consumption promotes health by modulating immune-mediated inflammation. METHODS AND RESULTS This study was designed as a real-world, population-based randomized controlled trial. We compared the effects of whole grain versus refined grain consumption on immune-mediated inflammation through staple food substitution, while participants maintained their usual dietary practices. The results demonstrated that whole grain consumption significantly reduced circulating levels of pro-inflammatory cytokines IL-22 and IL-23 compared to refined grain consumption. These reductions were associated with optimized short-chain fatty acid profiles and changes in CD4+ T cell subset distributions. CONCLUSIONS The findings suggest that the anti-inflammatory effects of whole grain consumption in middle-aged and elderly populations are mediated by targeting specific CD4+ T cell subsets, in addition to modulating both upstream short-chain fatty acid composition and downstream expression of the pro-inflammatory cytokines IL-22 and IL-23.
Collapse
Affiliation(s)
- Cheng Li
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yaru Li
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Nan Wang
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhiwen Ge
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia Wang
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bingjie Ding
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanxia Bi
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuxia Wang
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yisi Wang
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zebin Peng
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinli Yang
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Congcong Wang
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhongxin Hong
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Narciso JO, Gulzar S, Soliva-Fortuny R, Martín-Belloso O. Emerging Chemical, Biochemical, and Non-Thermal Physical Treatments in the Production of Hypoallergenic Plant Protein Ingredients. Foods 2024; 13:2180. [PMID: 39063264 PMCID: PMC11276117 DOI: 10.3390/foods13142180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Allergies towards gluten and legumes (such as, soybean, peanut, and faba bean) are a global issue and, occasionally, can be fatal. At the same time, an increasing number of households are shifting to plant protein ingredients from these sources, which application and consumption are limited by said food allergies. Children, the elderly, and people with immune diseases are particularly at risk when consuming these plant proteins. Finding ways to reduce or eliminate the allergenicity of gluten, soybean, peanut, and faba bean is becoming crucial. While thermal and pH treatments are often not sufficient, chemical processes such as glycation, polyphenol conjugation, and polysaccharide complexation, as well as controlled biochemical approaches, such as fermentation and enzyme catalysis, are more successful. Non-thermal treatments such as microwave, high pressure, and ultrasonication can be used prior to further chemical and/or biochemical processing. This paper presents an up-to-date review of promising chemical, biochemical, and non-thermal physical treatments that can be used in the food industry to reduce or eliminate food allergenicity.
Collapse
Affiliation(s)
- Joan Oñate Narciso
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (S.G.); (R.S.-F.); (O.M.-B.)
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Saqib Gulzar
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (S.G.); (R.S.-F.); (O.M.-B.)
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Robert Soliva-Fortuny
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (S.G.); (R.S.-F.); (O.M.-B.)
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (S.G.); (R.S.-F.); (O.M.-B.)
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
7
|
Iqbal H, Rhee DK. Intranasal Immunization of Pneumococcal pep27 Mutant Attenuates Allergic and Inflammatory Diseases by Upregulating Skin and Mucosal Tregs. Vaccines (Basel) 2024; 12:737. [PMID: 39066375 PMCID: PMC11281725 DOI: 10.3390/vaccines12070737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Conventional immunization methods such as intramuscular injections lack effective mucosal protection against pathogens that enter through the mucosal surfaces. Moreover, conventional therapy often leads to adverse events and compromised immunity, followed by complicated outcomes, leading to the need to switch to other options. Thus, a need to develop safe and effective treatment with long-term beneficial outcomes to reduce the risk of relapse is mandatory. Mucosal vaccines administered across mucosal surfaces, such as the respiratory or intestinal mucosa, to prompt robust localized and systemic immune responses to prevent the public from acquiring pathogenic diseases. Mucosal immunity contains a unique immune cell milieu that selectively identify pathogens and limits the transmission and progression of mucosal diseases, such as allergic dermatitis and inflammatory bowel disease (IBD). It also offers protection from localized infection at the site of entry, enables the clearance of pathogens on mucosal surfaces, and leads to the induction of long-term immunity with the ability to shape regulatory responses. Regulatory T (Treg) cells have been a promising strategy to suppress mucosal diseases. To find advances in mucosal treatment, we investigated the therapeutic effects of intranasal pep27 mutant immunization. Nasal immunization protects mucosal surfaces, but nasal antigen presentation appears to entail the need for an adjuvant to stimulate immunogenicity. Here, a novel method is developed to induce Tregs via intranasal immunization without an adjuvant to potentially overcome allergic diseases and gut and lung inflammation using lung-gut axis communication in animal models. The implementation of the pep27 mutant for these therapies should be preceded by studies on Treg resilience through clinical translational studies on dietary changes.
Collapse
Affiliation(s)
- Hamid Iqbal
- Department of Pharmacy, CECOS University, Peshawar 25000, Pakistan;
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Zhang S, Zhong R, Tang S, Chen L, Zhang H. Metabolic regulation of the Th17/Treg balance in inflammatory bowel disease. Pharmacol Res 2024; 203:107184. [PMID: 38615874 DOI: 10.1016/j.phrs.2024.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a long-lasting and inflammatory autoimmune condition affecting the gastrointestinal tract, impacting millions of individuals globally. The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is pivotal in the pathogenesis and progression of IBD. This review summarizes the pivotal role of Th17/Treg balance in maintaining intestinal homeostasis, elucidating how its dysregulation contributes to the development and exacerbation of IBD. It comprehensively synthesizes the current understanding of how dietary factors regulate the metabolic pathways influencing Th17 and Treg cell differentiation and function. Additionally, this review presents evidence from the literature on the potential of dietary regimens to regulate the Th17/Treg balance as a strategy for the management of IBD. By exploring the intersection between diet, metabolic regulation, and Th17/Treg balance, the review reveals innovative therapeutic approaches for IBD treatment, offering a promising perspective for future research and clinical practice.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Qu X, Song Y, Li Q, Xu Q, Li Y, Zhang H, Cheng X, Mackay CR, Wang Q, Liu W. Indole-3-acetic acid ameliorates dextran sulfate sodium-induced colitis via the ERK signaling pathway. Arch Pharm Res 2024; 47:288-299. [PMID: 38489148 DOI: 10.1007/s12272-024-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Microbiota-derived catabolism of nutrients is closely related to ulcerative colitis (UC). The level of indole-3-acetic acid (IAA), a microbiota-dependent metabolite of tryptophan, was decreased significantly in the feces of UC patients. Thus supplementation with IAA could be a potential therapeutic method for ameliorating colitis. In this work, the protective effect of supplementation with IAA on dextran sulfate sodium (DSS)-induced colitis was evaluated, and the underlying mechanism was elucidated. The results indicated that the administration of IAA significantly relieved DSS-induced weight loss, reduced the disease activity index (DAI), restored colon length, alleviated intestinal injury, and improved the intestinal tight junction barrier. Furthermore, IAA inhibited intestinal inflammation by reducing the expression of proinflammatory cytokines and promoting the production of IL-10 and TGF-β1. In addition, the ERK signaling pathway is an important mediator of various physiological processes including inflammatory responses and is closely associated with the expression of IL-10. Notably, IAA treatment induced the activation of extracellular signal-regulated kinase (ERK), which is involved in the progression of colitis, while the ERK inhibitor U0126 attenuated the beneficial effects of IAA. In summary, IAA could attenuate the clinical symptoms of colitis, and the ERK signaling pathway was involved in the underlying mechanism. Supplementation with IAA could be a potential option for preventing or ameliorating UC.
Collapse
Affiliation(s)
- Xinyan Qu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yingying Song
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qingjun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Xu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanru Li
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huimin Zhang
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Xuemei Cheng
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Charles R Mackay
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Quanbo Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Wei Liu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
10
|
Harjacek M. Role of regulatory T cells in pathogenesis and therapeutics of spondyloarthritis. REGULATORY T CELLS AND AUTOIMMUNE DISEASES 2024:165-196. [DOI: 10.1016/b978-0-443-13947-5.00042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Tan J, Ribeiro RV, Barker C, Daien C, De Abreu Silveira E, Holmes A, Nanan R, Simpson SJ, Macia L. Functional profiling of gut microbial and immune responses toward different types of dietary fiber: a step toward personalized dietary interventions. Gut Microbes 2023; 15:2274127. [PMID: 37942526 PMCID: PMC10730188 DOI: 10.1080/19490976.2023.2274127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Dietary fiber plays a crucial role in maintaining gut and overall health. The objective of this study was to investigate whether different types of dietary fiber elicited specific changes in gut microbiota composition and the production of short-chain fatty acids. To test this, a longitudinal crossover study design was employed, in which healthy adult women consumed three distinct dietary fiber supplements: Inulin (fructo-oligosaccharide), Vitafiber (isomalto-oligosaccharide), and Fibremax (mixture of different fiber) during a one-week intervention period, followed by a 2-week washout period. A total of 15 g of soluble fiber was consumed daily for each supplement. Samples were collected before and after each intervention to analyze the composition of the gut microbiota by 16S rRNA sequencing and fecal levels of short-chain fatty acids measured using nuclear magnetic resonance. Phenotypic changes in peripheral blood mononuclear cells were studied in subsets of participants with higher SCFA levels post-intervention using spectral flow cytometry. The results revealed substantial stability and resilience of the overall gut bacterial community toward fiber-induced changes. However, each supplement had specific effects on gut bacterial alpha and beta diversity, SCFA production, and immune changes. Inulin consistently exerted the most pronounced effect across individuals and certain taxa were identified as potential indicators of SCFA production in response to inulin supplementation. This distinguishing feature was not observed for the other fiber supplements. Further large-scale studies are required to confirm these findings. Overall, our study implies that personalized dietary fiber intervention could be tailored to promote the growth of beneficial bacteria to maximize SCFA production and associated health benefits.
Collapse
Affiliation(s)
- Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Rosilene V. Ribeiro
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Centre for Education and Research on Ageing and Alzheimer’s Institute, Concord Hospital, University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Barker
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Claire Daien
- Rheumatology, teaching hospital of Montpellier and University of Montpellier, Montpellier, France
- Inserm U1046, CNRS UMR 9214, Physiologie et Médecine Expérimentale du Cœur et des Muscles, (PhyMedExp), Montpellier, France
| | - Erick De Abreu Silveira
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Andrew Holmes
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School and Charles Perkins Centre Nepean, The University of Sydney, Sydney, Australia
| | - Stephen J. Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Sydney Cytometry, The University of Sydney and The Centenary Institute, Sydney, Australia
| |
Collapse
|
12
|
Ni D, Tan J, Robert R, Taitz J, Ge A, Potier-Villette C, Reyes JGA, Spiteri A, Wishart C, Mackay C, Piccio L, King NJC, Macia L. GPR109A expressed on medullary thymic epithelial cells affects thymic Treg development. Eur J Immunol 2023; 53:e2350521. [PMID: 37595951 DOI: 10.1002/eji.202350521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/20/2023]
Abstract
Regulatory T cells (Treg) maintain immune homeostasis due to their anti-inflammatory functions. They can be generated either centrally in the thymus or in peripheral organs. Metabolites such as short-chain fatty acids produced by intestinal microbiota can induce peripheral Treg differentiation, by activating G-protein-coupled-receptors like GPR109A. In this study, we identified a novel role for GPR109A in thymic Treg development. We found that Gpr109a-/- mice had increased Treg under basal conditions in multiple organs compared with WT mice. GPR109A was not expressed on T cells but on medullary thymic epithelial cells (mTECs), as revealed by single-cell RNA sequencing in both mice and humans and confirmed by flow cytometry in mice. mTECs isolated from Gpr109a-/- mice had higher expression of autoimmune regulator (AIRE), the key regulator of Treg development, while the subset of mTECs that did not express Gpr109a in the WT displayed increased Aire expression and also enhanced signaling related to mTEC functionality. Increased thymic Treg in Gpr109a-/- mice was associated with protection from experimental autoimmune encephalomyelitis, with ameliorated clinical signs and reduced inflammation. This work identifies a novel role for GPR109A and possibly the gut microbiota, on thymic Treg development via its regulation of mTECs.
Collapse
Affiliation(s)
- Duan Ni
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jian Tan
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Remy Robert
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jemma Taitz
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anjie Ge
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Camille Potier-Villette
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Julen Gabirel Araneta Reyes
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Alanna Spiteri
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, The School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Claire Wishart
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, The School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Charles Mackay
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Laura Piccio
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas Jonathan Cole King
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, The School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, The University of Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Farkas C, Retamal-Fredes E, Ávila A, Fehlings MG, Vidal PM. Degenerative Cervical Myelopathy induces sex-specific dysbiosis in mice. Front Microbiol 2023; 14:1229783. [PMID: 37928672 PMCID: PMC10623434 DOI: 10.3389/fmicb.2023.1229783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Degenerative Cervical Myelopathy (DCM) is the most common cause of spinal cord impairment in elderly populations. It describes a spectrum of disorders that cause progressive spinal cord compression, neurological impairment, loss of bladder and bowel functions, and gastrointestinal dysfunction. The gut microbiota has been recognized as an environmental factor that can modulate both the function of the central nervous system and the immune response through the microbiota-gut-brain axis. Changes in gut microbiota composition or microbiota-producing factors have been linked to the progression and development of several pathologies. However, little is known about the potential role of the gut microbiota in the pathobiology of DCM. Here, DCM was induced in C57BL/6 mice by implanting an aromatic polyether material underneath the C5-6 laminae. The extent of DCM-induced changes in microbiota composition was assessed by 16S rRNA sequencing of the fecal samples. The immune cell composition was assessed using flow cytometry. To date, several bacterial members have been identified using BLAST against the largest collection of metagenome-derived genomes from the mouse gut. In both, female and males DCM caused gut dysbiosis compared to the sham group. However, dysbiosis was more pronounced in males than in females, and several bacterial members of the families Lachnospiraceae and Muribaculaceae were significantly altered in the DCM group. These changes were also associated with altered microbe-derived metabolic changes in propionate-, butyrate-, and lactate-producing bacterial members. Our results demonstrate that DCM causes dynamic changes over time in the gut microbiota, reducing the abundance of butyrate-producing bacteria, and lactate-producing bacteria to a lesser extent. Genome-scale metabolic modeling using gapseq successfully identified pyruvate-to-butanoate and pyruvate-to-propionate reactions involving genes such as Buk and ACH1, respectively. These results provide a better understanding of the sex-specific molecular effects of changes in the gut microbiota on DCM pathobiology.
Collapse
Affiliation(s)
- Carlos Farkas
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Eduardo Retamal-Fredes
- Biomedical Science Research Laboratory, Developmental Neurobiology Unit, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Biomedical Science Research Laboratory, Developmental Neurobiology Unit, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Spinal Program, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Pia M Vidal
- Biomedical Science Research Laboratory, Neuroimmunology and Regeneration of the Central Nervous System Unit, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
14
|
Tan J, Taitz J, Nanan R, Grau G, Macia L. Dysbiotic Gut Microbiota-Derived Metabolites and Their Role in Non-Communicable Diseases. Int J Mol Sci 2023; 24:15256. [PMID: 37894934 PMCID: PMC10607102 DOI: 10.3390/ijms242015256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Dysbiosis, generally defined as the disruption to gut microbiota composition or function, is observed in most diseases, including allergies, cancer, metabolic diseases, neurological disorders and diseases associated with autoimmunity. Dysbiosis is commonly associated with reduced levels of beneficial gut microbiota-derived metabolites such as short-chain fatty acids (SCFA) and indoles. Supplementation with these beneficial metabolites, or interventions to increase their microbial production, has been shown to ameliorate a variety of inflammatory diseases. Conversely, the production of gut 'dysbiotic' metabolites or by-products by the gut microbiota may contribute to disease development. This review summarizes the various 'dysbiotic' gut-derived products observed in cardiovascular diseases, cancer, inflammatory bowel disease, metabolic diseases including non-alcoholic steatohepatitis and autoimmune disorders such as multiple sclerosis. The increased production of dysbiotic gut microbial products, including trimethylamine, hydrogen sulphide, products of amino acid metabolism such as p-Cresyl sulphate and phenylacetic acid, and secondary bile acids such as deoxycholic acid, is commonly observed across multiple diseases. The simultaneous increased production of dysbiotic metabolites with the impaired production of beneficial metabolites, commonly associated with a modern lifestyle, may partially explain the high prevalence of inflammatory diseases in western countries.
Collapse
Affiliation(s)
- Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Jemma Taitz
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- Sydney Medical School and Charles Perkins Centre Nepean, The University of Sydney, Sydney, NSW 2006, Australia
| | - Georges Grau
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Cytometry, The Centenary Institute and The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Velankanni P, Go SH, Jin JB, Park JS, Park S, Lee SB, Kwon HK, Pan CH, Cha KH, Lee CG. Chlorella vulgaris Modulates Gut Microbiota and Induces Regulatory T Cells to Alleviate Colitis in Mice. Nutrients 2023; 15:3293. [PMID: 37571230 PMCID: PMC10421373 DOI: 10.3390/nu15153293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Chlorella vulgaris (C. vulgaris) is unicellular green algae consumed worldwide as a functional food. The immune stimulatory function of C. vulgaris is known; however, no study has elucidated its immune regulatory potential and associated microbiome modulation. In the current study, we aimed to validate the immune regulatory role of C. vulgaris mediated through two mechanisms. Initially, we assessed its ability to promote the expansion of the regulatory T cell (Treg) population. Subsequently, we investigated its impact on gut microbiota composition and associated metabolites. The supplementation of C. vulgaris altered the gut microbiota composition, accompanied by increased short-chain fatty acid (SCFAs) production in mice at homeostasis. We later used C. vulgaris in the treatment of a DSS-induced colitis model. C. vulgaris intervention alleviated the pathological symptom of colitis in mice, with a corresponding increase in Treg levels. As C. vulgaris is a safe and widely used food supplement, it can be a feasible strategy to instigate cross-talk between the host immune system and the intestinal flora for the effective management of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Priyanka Velankanni
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Seok-Ho Go
- Department of Preventive Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jong Beom Jin
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
| | - Jin-Soo Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
| | - Sunhee Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Su-Bin Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-B.L.); (H.-K.K.)
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-B.L.); (H.-K.K.)
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul 02792, Republic of Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul 02792, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26493, Republic of Korea
| | - Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul 02792, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
16
|
Fiyouzi T, Pelaez-Prestel HF, Reyes-Manzanas R, Lafuente EM, Reche PA. Enhancing Regulatory T Cells to Treat Inflammatory and Autoimmune Diseases. Int J Mol Sci 2023; 24:ijms24097797. [PMID: 37175505 PMCID: PMC10177847 DOI: 10.3390/ijms24097797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Regulatory T cells (Tregs) control immune responses and are essential to maintain immune homeostasis and self-tolerance. Hence, it is no coincidence that autoimmune and chronic inflammatory disorders are associated with defects in Tregs. These diseases have currently no cure and are treated with palliative drugs such as immunosuppressant and immunomodulatory agents. Thereby, there is a great interest in developing medical interventions against these diseases based on enhancing Treg cell function and numbers. Here, we give an overview of Treg cell ontogeny and function, paying particular attention to mucosal Tregs. We review some notable approaches to enhance immunomodulation by Tregs with therapeutic purposes including adoptive Treg cell transfer therapy and discuss relevant clinical trials for inflammatory bowel disease. We next introduce ways to expand mucosal Tregs in vivo using microbiota and dietary products that have been the focus of clinical trials in various autoimmune and chronic-inflammatory diseases.
Collapse
Affiliation(s)
- Tara Fiyouzi
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Hector F Pelaez-Prestel
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Raquel Reyes-Manzanas
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Esther M Lafuente
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Pedro A Reche
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| |
Collapse
|
17
|
Soriano-Baguet L, Brenner D. Metabolism and epigenetics at the heart of T cell function. Trends Immunol 2023; 44:231-244. [PMID: 36774330 DOI: 10.1016/j.it.2023.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/11/2023]
Abstract
T cell subsets adapt and rewire their metabolism according to their functions and surrounding microenvironment. Whereas naive T cells rely on mitochondrial metabolic pathways characterized by low nutrient requirements, effector T cells induce kinetically faster pathways to generate the biomass and energy needed for proliferation and cytokine production. Recent findings support the concept that alterations in metabolism also affect the epigenetics of T cells. In this review we discuss the connections between T cell metabolism and epigenetic changes such as histone post-translational modifications (PTMs) and DNA methylation, as well as the 'extra-metabolic' roles of metabolic enzymes and molecules. These findings collectively point to a new group of potential therapeutic targets for the treatment of T cell-dependent autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
18
|
Novel Strategy for Alzheimer’s Disease Treatment through Oral Vaccine Therapy with Amyloid Beta. Biologics 2023. [DOI: 10.3390/biologics3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer’s disease (AD) is a neuropathology characterized by progressive cognitive impairment and dementia. The disease is attributed to senile plaques, which are aggregates of amyloid beta (Aβ) outside nerve cells; neurofibrillary tangles, which are filamentous accumulations of phosphorylated tau in nerve cells; and loss of neurons in the brain tissue. Immunization of an AD mouse model with Aβ-eliminated pre-existing senile plaque amyloids and prevented new accumulation. Furthermore, its effect showed that cognitive function can be improved by passive immunity without side effects, such as lymphocyte infiltration in AD model mice treated with vaccine therapy, indicating the possibility of vaccine therapy for AD. Further, considering the possibility of side effects due to direct administration of Aβ, the practical use of the safe oral vaccine, which expressed Aβ in plants, is expected. Indeed, administration of this oral vaccine to Alzheimer’s model mice reduced Aβ accumulation in the brain. Moreover, almost no expression of inflammatory IgG was observed. Therefore, vaccination prior to Aβ accumulation or at an early stage of accumulation may prevent Aβ from causing AD.
Collapse
|
19
|
Oparaugo NC, Ouyang K, Nguyen NPN, Nelson AM, Agak GW. Human Regulatory T Cells: Understanding the Role of Tregs in Select Autoimmune Skin Diseases and Post-Transplant Nonmelanoma Skin Cancers. Int J Mol Sci 2023; 24:1527. [PMID: 36675037 PMCID: PMC9864298 DOI: 10.3390/ijms24021527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Regulatory T cells (Tregs) play an important role in maintaining immune tolerance and homeostasis by modulating how the immune system is activated. Several studies have documented the critical role of Tregs in suppressing the functions of effector T cells and antigen-presenting cells. Under certain conditions, Tregs can lose their suppressive capability, leading to a compromised immune system. For example, mutations in the Treg transcription factor, Forkhead box P3 (FOXP3), can drive the development of autoimmune diseases in multiple organs within the body. Furthermore, mutations leading to a reduction in the numbers of Tregs or a change in their function facilitate autoimmunity, whereas an overabundance can inhibit anti-tumor and anti-pathogen immunity. This review discusses the characteristics of Tregs and their mechanism of action in select autoimmune skin diseases, transplantation, and skin cancer. We also examine the potential of Tregs-based cellular therapies in autoimmunity.
Collapse
Affiliation(s)
- Nicole Chizara Oparaugo
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kelsey Ouyang
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | | | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Darrigues J, Almeida V, Conti E, Ribot JC. The multisensory regulation of unconventional T cell homeostasis. Semin Immunol 2022; 61-64:101657. [PMID: 36370671 DOI: 10.1016/j.smim.2022.101657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
Unconventional T cells typically group γδ T cells, invariant Natural Killer T cells (NKT) and Mucosal Associated Invariant T (MAIT) cells. With their pre-activated status and biased tropism for non-lymphoid organs, they provide a rapid (innate-like) and efficient first line of defense against pathogens at strategical barrier sites, while they can also trigger chronic inflammation, and unexpectedly contribute to steady state physiology. Thus, a tight control of their homeostasis is critical to maintain tissue integrity. In this review, we discuss the recent advances of our understanding of the factors, from neuroimmune to inflammatory regulators, shaping the size and functional properties of unconventional T cell subsets in non-lymphoid organs. We present a general overview of the mechanisms common to these populations, while also acknowledging specific aspects of their diversity. We mainly focus on their maintenance at steady state and upon inflammation, highlighting some key unresolved issues and raising upcoming technical, fundamental and translational challenges.
Collapse
Affiliation(s)
- Julie Darrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Vicente Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Eller Conti
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
21
|
Lederer AK, Huber R. The Relation of Diet and Health: You Are What You Eat. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7774. [PMID: 35805428 PMCID: PMC9266141 DOI: 10.3390/ijerph19137774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022]
Abstract
The intake of food is more than just a necessary process for ensuring the functionality of the human body [...].
Collapse
Affiliation(s)
- Ann-Kathrin Lederer
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Department of General, Visceral and Transplantation Surgery, University Medical Center, 55131 Mainz, Germany
| | - Roman Huber
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|