1
|
Li Y, Wang R, Xiao T, Song L, Xiao Y, Liu Z, Wang K, Huang J, Zhu M. Unveiling key odor-active compounds and bacterial communities in Fu Brick tea from seven Chinese regions: A comprehensive sensomics analysis using GC-MS, GC-O, aroma recombination, omission, and high-throughput sequencing. Food Res Int 2024; 196:114978. [PMID: 39614465 DOI: 10.1016/j.foodres.2024.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 12/01/2024]
Abstract
Fu Brick Tea (FBT) is a unique fermented tea produced in multiple regions of China, whose aroma qualities, key odor-active compounds and bacterial communities are not well characterized. By optimizing HS-SPME methods, utilizing GC-MS, GC-O, sensory analysis, aroma recombination and omission experiments, and bacterial sequencing, we revealed the primary volatiles and bacterial communities in 41 samples from 7 major producing regions. A total of 63 volatiles and 32 odor-active compounds were quantitatively analyzed using GC-MS and GC-O, respectively. Sensory analyses discriminated the quality of the samples. Differential analysis indicated that poor aroma FBTs had either low volatile content or excessive "green" notes. Key odor-active compounds in high-quality aroma FBTs include 1-octen-3-ol, phenylethylalcohol, β-ionone, dihydroactindiolide, and 1,2,3-trimethoxybenzene. Sequencing results identified Bacillus, Pseudomonas, and Streptococcus as dominant genera. Functional prediction analyses suggest that bacteria contribute to the formation of FBT aroma. This study offers new insights into the quality characteristics of FBT.
Collapse
Affiliation(s)
- Yilong Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Ruoxian Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Tian Xiao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Lubin Song
- Tea Research Institute of Shandong Academy of Agricultral Sciences.
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Jianan Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Liang Y, Wu F, Wu D, Zhu X, Gao X, Hu X, Xu F, Ma T, Zhao H, Cao W. Fu Loose Tea Administration Ameliorates Obesity in High-Fat Diet-Fed C57BL/6J Mice: A Comparison with Fu Brick Tea and Orlistat. Foods 2024; 13:206. [PMID: 38254507 PMCID: PMC10815023 DOI: 10.3390/foods13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Fu tea is receiving increasing attention for its specific aroma, flavor, and dramatic functional benefits. Herein, we explored the effects and underlying mechanisms of Fu loose tea (FLT), Fu brick tea (FBT), and diet pills (orlistat) on a high-fat diet (HFD)-induced obesity. The results indicated that FLT and FBT administration effectively inhibited weight gain, glucose metabolic dysregulation, fat accumulation in organs, hepatic and kidney injury, and oxidative stress induced by HFD. Additionally, FLT and FBT treatments improved the lipid profiles and reduced the production of proinflammatory cytokines by regulating the expression levels of lipid metabolism- and inflammation-related genes. Furthermore, FLT and FBT ameliorated the gut microbiota dysbiosis in HFD-mice in a dose-dependent relationship by increasing the abundance of family Verrucomicrobiaceae and genus Akkermansia and Turicibacter and simultaneously reducing the abundance of family Erysipelotrichaceae and genus Bifidobacterium; in contrast, orlistat did not exert a regulatory effect on gut microbiota similar to FLT and FBT to improve HFD-induced obesity. KEGG analysis of gut microbiota annotation revealed that "metabolism" was the most enriched category. This study further provides a theoretical basis for FLT and FBT to be potential supplements to alleviate diet-induced obesity.
Collapse
Affiliation(s)
- Yan Liang
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
- Key Laboratory of Fu Tea Processing and Utilization, Ministry of Agriculture and Rural Affairs, Xianyang 712044, China; (X.Z.); (X.H.)
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| | - Daying Wu
- Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (X.G.)
| | - Xiaofang Zhu
- Key Laboratory of Fu Tea Processing and Utilization, Ministry of Agriculture and Rural Affairs, Xianyang 712044, China; (X.Z.); (X.H.)
- Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China
| | - Xin Gao
- Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (X.G.)
| | - Xin Hu
- Key Laboratory of Fu Tea Processing and Utilization, Ministry of Agriculture and Rural Affairs, Xianyang 712044, China; (X.Z.); (X.H.)
- Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China
| | - Fangrui Xu
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| | - Tianchen Ma
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| |
Collapse
|
3
|
Li H, Dai W, Zhang X, Lu J, Song F, Li H. Chemical components of Fu brick tea and its potential preventive effects on metabolic syndrome. Food Sci Nutr 2024; 12:35-47. [PMID: 38268870 PMCID: PMC10804099 DOI: 10.1002/fsn3.3771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 01/26/2024] Open
Abstract
As living standards advance, an escalating emphasis is placed on health, particularly in relation to prevalent chronic metabolic disorders. It is necessary to explore safe and effective functional foods or drugs. Fu brick tea (FBT) is a kind of dark tea fermented by fungi. The extracts are rich in compounds that can effectively relieve metabolic diseases such as hyperglycemia and hyperlipidemia, protect the liver, improve human immunity, enhance antioxidant activity, and regulate intestinal flora. This paper summarizes the biological activities and mechanisms of the extracts, polysaccharides, and small molecular compounds of FBT, which provides a certain theoretical basis for the rational, systematic, comprehensive development and utilization of the FBT resources. It is expected to develop and apply these active substances in health care products and natural medicines and provide more beneficial and diversified FBT products for human beings.
Collapse
Affiliation(s)
- Honghua Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| | - Wei Dai
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| | - Xinjun Zhang
- Key Laboratory of Forest Ecology in Tibet Plateau (Ministry of Education), Institute of Tibet Plateau EcologyTibet Agriculture & Animal Husbandry UniversityNyingchiTibetChina
| | - Jie Lu
- Key Laboratory of Forest Ecology in Tibet Plateau (Ministry of Education), Institute of Tibet Plateau EcologyTibet Agriculture & Animal Husbandry UniversityNyingchiTibetChina
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| | - Hua Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| |
Collapse
|
4
|
Wang T, Li RY, Liu KY, Chen QY, Bo NG, Wang Q, Xiao YQ, Sha G, Chen SQ, Lei X, Lu Y, Ma Y, Zhao M. Changes in sensory characteristics, chemical composition and microbial succession during fermentation of ancient plants Pu-erh tea. Food Chem X 2023; 20:101003. [PMID: 38144832 PMCID: PMC10739768 DOI: 10.1016/j.fochx.2023.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023] Open
Abstract
"Ancient tea plants" are defined as tea trees > 100 years old, or with a trunk diameter > 25 cm; their leaves are manufactured to high - quality, valuable ancient plants pu-erh tea (APPT). In this study, a fermentation of APPT were developed, and outstanding sweetness of APPT infusion was observed. During fermentation, the content of soluble sugars, theabrownins (p < 0.05), as well as 41 metabolites were increased [Variable importance in projection (VIP) > 1.0; p < 0.05 and Fold-change (FC) FC > 2]; While relative levels of 72 metabolites were decreased (VIP > 1.0, p < 0.05 and FC < 0.5. Staphylococcus, Achromobacter, Sphingomonas, Thermomyces, Rasamsonia, Blastobotrys, Aspergillus and Cladosporium were identified as dominant genera, and their relative levels were correlated with contents of characteristic components (p < 0.05). Together, changes in sensory characteristics, chemical composition and microbial succession during APPT fermentation were investigated, and advanced the formation mechanism of its unique quality.
Collapse
Affiliation(s)
- Teng Wang
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ruo-yu Li
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Kun-yi Liu
- College of Wuliangye Technology and Food Engineering & College of Modern Agriculture, Yibin Vocational and Technical College, Yibin 644003, China
| | - Qiu-yue Chen
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Nian-guo Bo
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qi Wang
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yan-qin Xiao
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Gen Sha
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Si-qin Chen
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Xin Lei
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yi Lu
- Menghai Dazhuo Tea Co., Ltd., Xishuangbanna, Yunnan 666100, China
| | - Yan Ma
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming Zhao
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| |
Collapse
|
5
|
Deng J, Li Y, Yuan Y, Yin F, Chao J, Huang J, Liu Z, Wang K, Zhu M. Secondary Metabolites from the Genus Eurotium and Their Biological Activities. Foods 2023; 12:4452. [PMID: 38137256 PMCID: PMC10742824 DOI: 10.3390/foods12244452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Eurotium is the teleomorph genus associated with the section Aspergillus. Eurotium comprises approximately 20 species, which are widely distributed in nature and human environments. Eurotium is usually the key microorganism for the fermentation of traditional food, such as Fuzhuan brick tea, Liupao tea, Meju, and Karebushi; thus, Eurotium is an important fungus in the food industry. Eurotium has been extensively studied because it contains a series of interesting, structurally diverse, and biologically important secondary metabolites, including anthraquinones, benzaldehyde derivatives, and indol diketopiperazine alkaloids. These secondary metabolites have shown multiple biological activities, including antioxidative, antimicrobial, cytotoxic, antitumor, insecticidal, antimalarial, and anti-inflammatory activities. This study presents an up-to-date review of the phytochemistry and biological activities of all Eurotium species. This review will provide recent advances on the secondary metabolites and their bioactivities in the genus Eurotium for the first time and serve as a database for future research and drug development from the genus Eurotium.
Collapse
Affiliation(s)
- Jiantianye Deng
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Yilong Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Yong Yuan
- Hunan Tea Group Co., Ltd., Changsha 410128, China; (Y.Y.); (F.Y.); (J.C.)
| | - Feiyan Yin
- Hunan Tea Group Co., Ltd., Changsha 410128, China; (Y.Y.); (F.Y.); (J.C.)
| | - Jin Chao
- Hunan Tea Group Co., Ltd., Changsha 410128, China; (Y.Y.); (F.Y.); (J.C.)
| | - Jianan Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Xiao L, Yang C, Zhang X, Wang Y, Li Z, Chen Y, Liu Z, Zhu M, Xiao Y. Effects of solid-state fermentation with Bacillus subtilis LK-1 on the volatile profile, catechins composition and antioxidant activity of dark teas. Food Chem X 2023; 19:100811. [PMID: 37780291 PMCID: PMC10534189 DOI: 10.1016/j.fochx.2023.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, the solid-state fermentation (SSF) of dark tea was carried out using Bacillus subtilis LK-1, which was isolated from Fu brick tea (FBT). The effects of SSF with B. subtilis on volatile organic compounds (VOCs), non-volatile metabolites, and antioxidant activities of dark tea was investigated. A total of 45 VOCs were identified, primarily consisting of ketones (18), hydrocarbons (8), aldehydes (7), and alcohols (6). Following fermentation, the content of key odor active substances such as linalool, β-ionone, and 3,5-octadiene-2-one significantly increased, resulting in an enhanced floral and fruity aroma of dark tea. Furthermore, new flavor substances like geranyl isovalerate and decanal were produced during SSF, enriching the aroma profile of dark tea. Non-ester catechins demonstrated a drastic increase, while ester catechins remarkably decreased after SSF. Furthermore, SSF led to a slight decrease in the total polyphenols content and antioxidant activity of dark tea. There is a close relationship between VOCs and the main non-volatile metabolites during SSF. Overall, this study highlighted the great impact of SSF with B. subtilis on the metabolites of dark tea and provided valuable insights into the role of bacteria in shaping the metabolite profile of FBT.
Collapse
Affiliation(s)
- Leike Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chenghongwang Yang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xilu Zhang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
7
|
Liu S, Li T, Yu S, Zhou X, Liu Z, Zhang X, Cai H, Hu Z. Analysis of bacterial community structure of Fuzhuan tea with different processing techniques. Open Life Sci 2023; 18:20220573. [PMID: 36820207 PMCID: PMC9938538 DOI: 10.1515/biol-2022-0573] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/07/2022] [Accepted: 01/14/2023] [Indexed: 02/11/2023] Open
Abstract
The composition and diversity of microbial communities are of considerable significance to the quality development of Camellia sinensis (Fuzhuan tea). In this study, we examined differences in the bacterial community structures of loose, lightly-pressed, hand-made, and machine-pressed Fuzhuan teas and raw dark tea. We observed notable differences in the bacterial communities of the five groups, where there were only 51 consensus sequences. ASV/OTU Venn diagram, Chao1, Ace, Simpson indices, and dilution curve analyses consistently revealed that machine-pressed tea exhibited the highest bacterial diversity. Taxonomically, Actinobacteria, Firmicutes, Proteobacteria, and Cyanobacteria were the dominant bacterial phyla in each group, whereas Corynebacterium, Methylobacterium, and Bifidobacterium were the dominant genera. Our findings revealed significant differences in the bacterial community structures of different Fuzhuan tea products derived from the same raw material, with bacterial diversity rising with increased product compaction.
Collapse
Affiliation(s)
- Shiquan Liu
- Department of Hunan Provincial Key Lab of Dark Tea and Jin-hua, Hunan City University, Yiyang City, Hunan Province, 413000, China
| | - Taotao Li
- Department of Hunan Provincial Key Lab of Dark Tea and Jin-hua, Hunan City University, Yiyang City, Hunan Province, 413000, China
| | - Songlin Yu
- Department of Hunan Provincial Key Lab of Dark Tea and Jin-hua, Hunan City University, Yiyang City, Hunan Province, 413000, China
| | - Xiaohong Zhou
- Department of Hunan Provincial Key Lab of Dark Tea and Jin-hua, Hunan City University, Yiyang City, Hunan Province, 413000, China
| | - Zhanjun Liu
- Department of Hunan Provincial Key Lab of Dark Tea and Jin-hua, Hunan City University, Yiyang City, Hunan Province, 413000, China
| | - Xuemao Zhang
- Yiyang Guan-Longyu Dark Tea Development Co., Ltd, Yiyang City, Hunan Province, 413000, China
| | - Hongmei Cai
- Yiyang Guan-Longyu Dark Tea Development Co., Ltd, Yiyang City, Hunan Province, 413000, China
| | - Zhiyuan Hu
- Department of Hunan Provincial Key Lab of Dark Tea and Jin-hua, Hunan City University, No. 518 Yingbin Road, Yiyang City, Hunan Province, 413000, China
| |
Collapse
|
8
|
Shao C, Deng Z, Liu J, Li Y, Zhang C, Yao S, Zuo H, Shi Y, Yuan S, Qin L, Liu Z, Shen C. Effects of Preharvest Shading on Dynamic Changes in Metabolites, Gene Expression, and Enzyme Activity of Three Tea Types during Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14544-14558. [PMID: 36321848 DOI: 10.1021/acs.jafc.2c05456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Preharvest shading significantly influences tea flavor. However, little attention has been given to the mechanism of shading on metabolites, genes, and enzymes in the processing of different tea types. Our study identified 1028 nonvolatile metabolites covering 10 subclasses using a widely targeted metabolome. The results show that shading had a greater effect on the compositions of amino acids, flavonoids, and theaflavins in tea leaves. The combined transcriptomics and enzyme activity analysis results indicate that the upregulated expression of asparagine, aspartate, and tryptophan synthesis genes and proteolytic enzymes promoted the accumulation of amino acids. The downregulated enzyme genes resulted in the reduction of nongalloylated catechins and flavonoid glycosides. Simultaneously, the accumulation of TFs in shaded tea was due to the enhanced enzymatic activities of polyphenol oxidase and peroxidase during processing. Theaflavin-3-3'-di-O-gallate was also significantly positively correlated with the antioxidant and hypoglycemic activities of shaded tea. The results contribute to a better understanding of how preharvest treatments influence summer tea quality.
Collapse
Affiliation(s)
- Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Zhiying Deng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Jie Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Yunfei Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Chenyu Zhang
- Tea Research Institution, Chinese Academy of Agricultural Sciences, Hangzhou310008, China
| | - Suhang Yao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Haoming Zuo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Yue Shi
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Shijie Yuan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Lijuan Qin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| |
Collapse
|
9
|
Characteristic fingerprints and change of volatile organic compounds of dark teas during solid-state fermentation with Eurotium cristatum by using HS-GC-IMS, HS-SPME-GC-MS, E-nose and sensory evaluation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|