1
|
Zhang R, Liu M, Lu J, Lu S, Wang Y, Guan S. Fisetin Ameliorates Hepatocyte Lipid Droplet Accumulation via Targeting the Rhythmic Protein BMAL1 to Regulate Cell Death-Inducing DNA Fragmentation Factor-α-like Effector C-Mediated Lipid Droplet Fusion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39563624 DOI: 10.1021/acs.jafc.4c06487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
High fat diet (HFD) induces the enlargement and accumulation of lipid droplets (LDs) in hepatocytes, thereby influencing the homeostasis of lipid metabolism. Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC), a surface protein of LDs, facilitates their fusion and growth, transforming small LDs into larger ones. Lipophagy, a selective form of autophagy, primarily targets small LDs for degradation. Fisetin (FIS), a natural dietary flavonoid present in various fruits and vegetables, has an unclear mechanism for reducing LD accumulation. In this study, we observed that FIS significantly ameliorated HFD-induced lipid accumulation in the hepatocytes of C57BL/6 mice. In further mechanistic studies, we revealed that FFA enhanced the expression of CIDEC, which promoted the fusion of LDs and caused them to become larger. The enlarged LDs could not be degraded by autophagy, which ultimately led to accumulation of LDs. Conversely, FIS alleviated LD accumulation by inhibiting CIDEC-mediated fusion, resulting in smaller LDs that facilitated lipophagy. Additionally, studies indicated that the dysfunction of circadian rhythms is closely related to lipid metabolism. In our study, we showed that HFD and FFA disrupted circadian rhythm in C57BL/6 mouse hepatocytes and AML12 cells, while FIS modified the rhythm disturbances and increased protein expression of the core clocks BMAL1 and CLOCK. We silenced the BMAL1 protein and revealed that si-BMAL1 upregulated CIDEC proteins. These data suggested that FIS might inhibit CIDEC-mediated LD fusion and enhance hepatocyte lipophagy by promoting the expression of rhythm protein BMAL1, thereby alleviating LD accumulation in C57BL/6 and AML12 cells caused by the HFD and FFA. The present study provided novel insights and potential targets for utilizing functional food factors to mitigate the accumulation of LD in hepatocytes.
Collapse
Affiliation(s)
- Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Meitong Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shujing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yuanmeng Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Wang Q, Xiong J, He Y, He J, Cai M, Luo Z, Zhang T, Zhou X. Effect of L-arabinose and lactulose combined with Lactobacillus plantarum on obesity induced by a high-fat diet in mice. Food Funct 2024; 15:5073-5087. [PMID: 38656276 DOI: 10.1039/d4fo00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
L-Arabinose, lactulose, and Lactobacillus plantarum (L. plantarum) have been reported to have glucolipid-lowering effects. Here, the effects of L-arabinose and lactulose combined with L. plantarum on obesity traits were investigated. According to the experimental results, the combination of L-arabinose, lactulose, and L. plantarum was more effective at reducing body weight, regulating glucolipid metabolism, and improving insulin resistance. Besides, this combination showed immunomodulatory activity by adjusting the T lymphocyte subsets and reduced the immune-related cytokine production. Moreover, it improved the gut barrier, ameliorated the disorder of gut microbiota, and upregulated the levels of SCFAs. More importantly, the AL group, LP group, and ALLP group showed different regulatory effects on the abundance of Bifidobacterium and Lactobacillus due to the presence of lactulose and L. plantarum. These findings elucidate that the combination of L-arabinose, lactulose, and L. plantarum constitutes a new synbiotic combination to control obesity by modulating glucolipid metabolism, immunomodulatory activity, inflammation, gut barrier, gut microbiota and production of SCFAs.
Collapse
Affiliation(s)
- Qiong Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jialu Xiong
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yalun He
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Juncheng He
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Miaomiao Cai
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Zexian Luo
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Tongcun Zhang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiang Zhou
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
3
|
Mi A, Hu Q, Liu Y, Zhao Y, Shen F, Lan J, Lv K, Wang B, Gao R, Yu X. Hepatoprotective efficacy and interventional mechanism of the panaxadiol saponin component in high-fat diet-induced NAFLD mice. Food Funct 2024; 15:794-808. [PMID: 38131276 DOI: 10.1039/d3fo03572g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dietary administration is a promising strategy for intervention in non-alcoholic fatty liver disease (NAFLD). Our research team has identified a biologically active component, the panaxadiol saponin component (PDS-C) isolated from total saponins of panax ginseng, which has various pharmacological and therapeutic functions. However, the efficacy and mechanism of PDS-C in NAFLD were unclear. This study aimed to elucidate the hepatoprotective effects and underlying action mechanism of PDS-C in NAFLD. Mice were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD and treated with PDS-C and metformin as the positive control for 12 weeks. PDS-C significantly alleviated liver function, hepatic steatosis and blood lipid levels, reduced oxidative stress and inflammation in NAFLD mice. In vitro, PDS-C has been shown to reduce lipotoxicity and ROS levels while enhancing the antioxidant and anti-inflammatory capabilities in HepG2 cells induced by palmitic acid. PDS-C induced AMPK phosphorylation, leading to upregulation of the Nrf2/HO1 pathway expression and downregulation of the NFκB protein level. Furthermore, our observations indicate that PDS-C supplementation improves insulin resistance and glucose homeostasis in NAFLD mice, although its efficacy is not as pronounced as metformin. In conclusion, these results demonstrate the hepatoprotective efficacy of PDS-C in NAFLD and provide potential opportunities for developing functional products containing PDS-C.
Collapse
Affiliation(s)
- Ai Mi
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Qinxue Hu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ying Liu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yanna Zhao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Fenglin Shen
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jinjian Lan
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Keren Lv
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Bolin Wang
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ruilan Gao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiaoling Yu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Wang W, Liu Y, Li Y, Luo B, Lin Z, Chen K, Liu Y. Dietary patterns and cardiometabolic health: Clinical evidence and mechanism. MedComm (Beijing) 2023; 4:e212. [PMID: 36776765 PMCID: PMC9899878 DOI: 10.1002/mco2.212] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
For centuries, the search for nutritional interventions to underpin cardiovascular treatment and prevention guidelines has contributed to the rapid development of the field of dietary patterns and cardiometabolic disease (CMD). Numerous studies have demonstrated that healthy dietary patterns with emphasis on food-based recommendations are the gold standard for extending lifespan and reducing the risks of CMD and mortality. Healthy dietary patterns include various permutations of energy restriction, macronutrients, and food intake patterns such as calorie restriction, intermittent fasting, Mediterranean diet, plant-based diets, etc. Early implementation of healthy dietary patterns in patients with CMD is encouraged, but an understanding of the mechanisms by which these patterns trigger cardiometabolic benefits remains incomplete. Hence, this review examined several dietary patterns that may improve cardiometabolic health, including restrictive dietary patterns, regional dietary patterns, and diets based on controlled macronutrients and food groups, summarizing cutting-edge evidence and potential mechanisms for CMD prevention and treatment. Particularly, considering individual differences in responses to dietary composition and nutritional changes in organ tissue diversity, we highlighted the critical role of individual gut microbiota in the crosstalk between diet and CMD and recommend a more precise and dynamic nutritional strategy for CMD by developing dietary patterns based on individual gut microbiota profiles.
Collapse
Affiliation(s)
- Wenting Wang
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Yanfei Liu
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Yiwen Li
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Binyu Luo
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Zhixiu Lin
- Faculty of MedicineThe Chinese University of Hong KongHong Kong
| | - Keji Chen
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Yue Liu
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|