1
|
Xia W, Gao Y, Fang X, Jin L, Liu R, Wang LS, Deng Y, Gao J, Yang H, Wu W, Gao H. Simulated gastrointestinal digestion of walnut protein yields anti-inflammatory peptides. Food Chem 2024; 445:138646. [PMID: 38382250 DOI: 10.1016/j.foodchem.2024.138646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/06/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
The impact of the simulated gastrointestinal digestion process on walnut protein and the potential anti-inflammatory properties of its metabolites was studied. Structural changes induced by digestion, notably in α-Helix, β-Turn, and Random Coil configurations, were unveiled. Proteins over 10,000 Da significantly decreased by 35.6 %. Antioxidant activity in these metabolites paralleled increased amino acid content. Molecular docking identified three walnut polypeptides-IPAGTPVYLINR, FQGQLPR, and VVYVLR-with potent anti-inflammatory properties. RMSD and RMSF analysis demonstrated the stable and flexible interaction of these polypeptides with their target proteins. In lipopolysaccharide (LPS)-induced inflammation in normal human colon mucosal epithelial NCM460 cells, these peptides decreased 5-hydroxytryptamine (5-HT), tumor necrosis factor-alpha (TNF-α), and vascular endothelial growth factor (VEGF) expression, while mitigating cell apoptosis and inflammation. Our study offers valuable insights into walnut protein physiology, shedding light on its potential health benefits.
Collapse
Affiliation(s)
- Wei Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuan Gao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Long Jin
- Chacha Food Co., Ltd., Hefei 230061, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive, Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Yangyong Deng
- Hangzhou Yaoshengji Food Co., Ltd., Hangzhou 310052, China
| | - Junlong Gao
- Hangzhou Yaoshengji Food Co., Ltd., Hangzhou 310052, China
| | - Hailong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Osztie R, Czeglédi T, Ross S, Stipsicz B, Kalydi E, Béni S, Boldizsár I, Riethmüller E, Bősze SE, Alberti Á. Comprehensive Characterization of Phytochemical Composition, Membrane Permeability, and Antiproliferative Activity of Juglans nigra Polyphenols. Int J Mol Sci 2024; 25:6930. [PMID: 39000038 PMCID: PMC11241769 DOI: 10.3390/ijms25136930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of our study was the detailed polyphenol profiling of Juglans nigra and the characterization of the membrane permeability and antiproliferative properties of its main phenolics. A total of 161 compounds were tentatively identified in J. nigra bark, leaf, and pericarp extracts by ultrahigh-performance liquid chromatography-high-resolution tandem mass spectrometry (UHPLC-HR-MS/MS). Eight compounds including myricetin-3-O-rhamnoside (86), quercetin-3-O-rhamnoside (106), quercetin-3-O-xyloside (74), juglone (141), 1,2,3,4-tetrahydro-7,8-dihydroxy-4-oxonaphthalen-1-yl-6-O-galloyl-glucoside (92), ellagic acid (143), gallic acid (14), and ethyl gallate (58) were isolated from J. nigra pericarp. The in vitro antiproliferative activity of the isolated compounds was investigated against three human cancer cell lines, confirming that juglone (141) inhibits cell proliferation in all of them, and has similar activity as the clinical standards. The permeability of the isolated compounds across biological membranes was evaluated by the parallel artificial membrane permeability assay (PAMPA). Both juglone (141) and ethyl-gallate (58) showed positive results in the blood-brain-barrier-specific PAMPA-BBB study. Juglone (141) also possesses logPe values which indicates that it may be able to cross both the GI and BBB membranes via passive diffusion.
Collapse
Affiliation(s)
- Rita Osztie
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (R.O.); (T.C.); (I.B.); (E.R.)
| | - Tamás Czeglédi
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (R.O.); (T.C.); (I.B.); (E.R.)
| | - Sarah Ross
- Department Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, Eilenburger Str. 14, 04317 Leipzig, Germany;
| | - Bence Stipsicz
- Institute of Biology, Doctoral School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary;
- HUN-REN-ELTE Research Group of Peptide Chemistry, Hungarian Research Network, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary;
| | - Eszter Kalydi
- Institute of Organic Chemistry, Semmelweis University, Hőgyes Endre u. 7., 1092 Budapest, Hungary;
| | - Szabolcs Béni
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary;
| | - Imre Boldizsár
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (R.O.); (T.C.); (I.B.); (E.R.)
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Eszter Riethmüller
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (R.O.); (T.C.); (I.B.); (E.R.)
| | - Szilvia E. Bősze
- HUN-REN-ELTE Research Group of Peptide Chemistry, Hungarian Research Network, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary;
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Ágnes Alberti
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (R.O.); (T.C.); (I.B.); (E.R.)
| |
Collapse
|