1
|
Zhou M, Wu Z, Deng D, Wang B, Zhou X, Zhou B, Wang C, Zeng Y. Effects of taurine on the growth performance, diarrhea, oxidative stress and intestinal barrier function of weanling piglets. Front Vet Sci 2024; 11:1436282. [PMID: 39170630 PMCID: PMC11336868 DOI: 10.3389/fvets.2024.1436282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative damage resulting from weaning stress significantly impacts the growth performance and health status of piglets. Taurine, a dietary antioxidant with diverse functions, was investigated in this study for its protective role against weaning stress-induced oxidative damage and its underlying mechanism. Forty 28-day-old male castrated weaned piglets were randomly assigned to four groups. The control group received the basal diet, while the experimental groups were fed the basal diet supplemented with 0.1, 0.2%, or 0.3% taurine over a 28-day period. In vitro, H2O2 was utilized to induce oxidative damage to the jejunal mucosa of piglets via IPEC-J2 cells. The results demonstrated that taurine supplementation reduced the incidence of diarrhea in piglets compared to that in the control group (p < 0.05); the addition of 0.2 and 0.3% taurine led to increased average daily gain and improved feed conversion efficiency in weaned piglets, showing a linear dose-response correlation (p < 0.05). Taurine supplementation at 0.2 and 0.3% enhanced the activities of serum CAT and GSH-Px while decreasing the levels of serum NO, XOD, GSSG, and MDA (p < 0.05). Moreover, it significantly elevated the levels of GSS, Trx, POD, complex I, mt-nd5, and mt-nd6, enhancing superoxide anion scavenging capacity and the hydroxyl-free scavenging rate in the livers of weaned piglets while reducing NO levels in the liver (p < 0.05). Additionally, 0.2 and 0.3% taurine supplementation decreased serum IL-6 levels and elevated the concentrations of IgA, IgG, and IL-10 in weaned piglets (p < 0.05). The levels of occludin, claudin, and ZO-1 in the jejunum mucosa of weaned piglets increased with 0.2 and 0.3% taurine supplementation (p < 0.05). In IPEC-J2 cells, pretreatment with 25 mM taurine for 24 h enhanced the activities of SOD and CAT; reduced the MDA content; upregulated the mRNA expression of various genes, including ZO-1, occludin, claudin-1, Nrf2, and HO-1; and reversed the oxidative damage induced by H2O2 exposure (p < 0.05). Overall, the findings suggest that the inclusion of 2 and 3% taurine in the diet can enhance growth performance, reduce diarrhea rates, ameliorate oxidative stress and inflammation, and promote intestinal barrier function in weaned piglets.
Collapse
Affiliation(s)
- Miao Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zichen Wu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Donghua Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bin Wang
- Hunan Institute of Microbiology, Changsha, China
| | | | - Bingyu Zhou
- Hunan Institute of Microbiology, Changsha, China
| | | | - Yan Zeng
- Hunan Institute of Microbiology, Changsha, China
| |
Collapse
|
2
|
Du X, Ma X, Gao Y. The physiological function of squalene and its application prospects in animal husbandry. Front Vet Sci 2024; 10:1284500. [PMID: 38292136 PMCID: PMC10824843 DOI: 10.3389/fvets.2023.1284500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Squalene, which is a natural triterpenoid unsaturated hydrocarbon, is abundant in shark liver and plant seeds. Squalene has various physiological functions such as being anti-inflammatory and antioxidant. This paper reviews the physiological functions of squalene and its application prospects in livestock and poultry production, with a view to providing a theoretical basis for its in-depth application in animal husbandry.
Collapse
Affiliation(s)
- Xin Du
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Xue Ma
- College of Life Science, Baicheng Normal University, Baicheng, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yang Gao
- College of Life Science, Baicheng Normal University, Baicheng, China
| |
Collapse
|
3
|
Zhao C, Li H, Gao C, Tian H, Guo Y, Liu G, Li Y, Liu D, Sun B. Moringa oleifera leaf polysaccharide regulates fecal microbiota and colonic transcriptome in calves. Int J Biol Macromol 2023; 253:127108. [PMID: 37776927 DOI: 10.1016/j.ijbiomac.2023.127108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
This study investigated the effects of Moringa oleifera polysaccharide on growth performance indicators, serum biochemical indicators, immune organ indicators, colonic morphology, colonic microbiomics and colonic transcriptomics in newborn calves. 21 newborn calves were randomly divided into three groups of 7 calves per treatment group: control group (no Moringa oleifera polysaccharide addition); low-dose group (Moringa oleifera polysaccharide 0.5 g/kg); and high-dose group (Moringa oleifera polysaccharide 1 g/kg). This trial used gavage to feed MOP to calves. The test lasted 8 weeks. Calves were humanely electroshocked on the last day of the trial and slaughtered afterwards. Thymus, spleen, blood and colonic contents were collected for further testing. The results of this trial showed that MOP significantly increased the body weight of newborn calves and reduced the rate of calf diarrhea, thus promoting calf growth. Fecal scores showed a linear decrease with the addition of MOP. In terms of serum biochemistry, feeding MOP significantly increased serum ALB levels in a linear fashion. In terms of serum antioxidants, feeding MOP linearly increased CAT and T-AOC levels and decreased MDA concentrations, and in terms of serum immunity, feeding MOP linearly increased IgA, IgG, and IgM levels. At the same time, MOP regulated the abundance of Firmicutes and Bacteroidetes in the intestinal tract of calves, which reduced the occurrence of diarrhea. In addition, moringa polysaccharide could regulate genes related to inflammatory signaling pathways such as MAPK signaling pathway, TGF-beta signaling pathway, PI3K-Akt signaling pathway and TNF signaling pathway in calves' intestine to reduce the occurrence of intestinal inflammation. In conclusion, MOP can be used as a novel ruminant additive for the prevention of enteritis in calves.
Collapse
Affiliation(s)
- Chao Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hangfan Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chongya Gao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanchen Tian
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Sun W, Chen Z, Huang Z, Wan A, Zhou M, Gao J. Effects of dietary traditional Chinese medicine residues on growth performance, intestinal health and gut microbiota compositions in weaned piglets. Front Cell Infect Microbiol 2023; 13:1283789. [PMID: 38053526 PMCID: PMC10694240 DOI: 10.3389/fcimb.2023.1283789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Weaning stress can induce diarrhea, intestinal damage and flora disorder of piglets, leading to slow growth and even death of piglets. Traditional Chinese medicine residue contains a variety of active ingredients and nutrients, and its resource utilization has always been a headache. Therefore, we aimed to investigate the effects of traditional Chinese medicine residues (Xiasangju, composed of prunellae spica, mulberry leaves, and chrysanthemum indici flos) on growth performance, diarrhea, immune function, and intestinal health in weaned piglets. Forty-eight healthy Duroc× Landrace × Yorkshire castrated males weaned aged 21 days with similar body conditions were randomly divided into 6 groups with eight replicates of one piglet. The control group was fed a basal diet, the antibiotic control group was supplemented with 75 mg/kg chlortetracycline, and the residue treatment groups were supplemented with 0.5%, 1.0%, 2.0% and 4.0% Xiasangju residues. The results showed that dietary Xiasangju residues significantly reduced the average daily feed intake, but reduced the diarrhea score (P < 0.05). The 1.0% and 2.0% Xiasangju residues significantly increased the serum IgM content of piglets, and the 0.5%, 1.0%, 2.0% and 4.0% Xiasangju residues significantly increased the serum IgG content, while the 1.0%, 2.0% and 4.0% Xiasangju residues significantly increased the sIgA content of ileal contents (P < 0.05). Dietary Xiasangju residues significantly increased the villus height and the number of villus goblet cells in the jejunum and ileum, and significantly decreased the crypt depth (P<0.05). The relative mRNA expression of IL-10 in the ileum was significantly increased in the 1% and 2% Xiasangju residues supplemented groups (P < 0.05), while IL-1β in the ileum was downregulated (P < 0.05). Xiasangju residues improved the gut tight barrier, as evidenced by the enhanced expression of Occludin and ZO-1 in the jejunum and ileum. The diets with 1% Xiasangju residues significantly increased the relative abundance of Lactobacillus johnsonii, and 2% and 4% Xiasangju residues significantly increased the relative abundance of Weissella jogaeotgali (P < 0.05). Dietary supplementation with 0.5%, 1.0%, 2% and 4% with Xiasangju residues significantly decreased the relative abundance of Escherichia coli and Treponema porcinum (P < 0.05). In summary, dietary supplementation with Xiasangju residues improves intestinal health and gut microbiota in weaned piglets.
Collapse
Affiliation(s)
- Weiguang Sun
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd., Guangzhou, China
| | - Zhong Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhiyun Huang
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd., Guangzhou, China
| | - Anfeng Wan
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd., Guangzhou, China
| | - Miao Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jing Gao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
5
|
Huang B, Khan MZ, Chen Y, Liang H, Kou X, Wang X, Ren W, Wang C, Zhang Z. Yeast polysaccharide supplementation: impact on lactation, growth, immunity, and gut microbiota in Dezhou donkeys. Front Microbiol 2023; 14:1289371. [PMID: 38029159 PMCID: PMC10666639 DOI: 10.3389/fmicb.2023.1289371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The Dezhou donkey, a prominent Chinese breed, is known for its remarkable size, rapid growth, and resilience to tough feeding conditions, and disease resistance. These traits are crucial in meeting the growing demand for Ejiao and donkey meat. Yeast polysaccharide (YPS), a functional polysaccharide complex known for its immune-enhancing and growth-promoting properties in livestock and poultry, remains relatively understudied in donkeys. Objectives This study aimed to investigate the impact of YPS supplementation on lactating and growing Dezhou donkey jennies and foals. Materials and methods Twelve 45-day-old Dezhou donkey foals and their jennies, matched for body weight and age, were randomly allocated to two dietary groups: a control group receiving a basal diet and an experimental group receiving the basal diet supplemented with 10 g/pen of YPS. The experiment was conducted over a 23-day period, during which donkey foals and lactating jennies were co-housed. Results and discussion The findings revealed that YPS supplementation had no adverse effects on milk production or composition in Dezhou donkey jennies but significantly increased feed intake. Additionally, YPS was associated with increased plasma glucose and creatinine concentrations in foals, while tending to decrease alkaline phosphatase, white blood cell count, red blood cell count, and hemoglobin levels (p < 0.10). Immune indices demonstrated that YPS supplementation elevated the levels of immunoglobulin A (IgA) and immunoglobulin G (IgG) in jennies (p < 0.05) and increased complement component C4 concentrations in foals (p < 0.05). Moreover, YPS positively influenced the fecal microbiome, promoting the abundance of beneficial microorganisms such as Lactobacillus and Prevotella in donkey foals and Terriporobacter and Cellulosilyticum in jennies, all of which contribute to enhanced feed digestion. Additionally, YPS induced alterations in the plasma metabolome for both jennies and foals, with a predominant presence of lipids and lipid-like molecules. Notably, YPS increased the concentrations of specific lipid metabolites, including 13,14-Dihydro PGF2a, 2-Isopropylmalic acid, 2,3-Dinor-TXB2, Triterpenoids, Taurocholic acid, and 3b-Allotetrahydrocortisol, all of which are associated with improved animal growth. Conclusion In conclusion, this study suggests that dietary supplementation of YPS enhances feed intake, boosts immunity by increasing immunoglobulin levels, stimulates the growth-promoting gut microbiota (Lactobacillus and Prevotella), and exerts no adverse effects on the metabolism of both Dezhou donkey jennies and foals.
Collapse
Affiliation(s)
- Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- Faculty of Veterinary and Animal Sciences, University of Agriculture Dera Ismail Khan, Dera Ismail Khan, Pakistan
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xinrui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wei Ren
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Zhenwei Zhang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
6
|
Hou D, Li M, Li P, Chen B, Huang W, Guo H, Cao J, Zhao H. Effects of sodium butyrate on growth performance, antioxidant status, inflammatory response and resistance to hypoxic stress in juvenile largemouth bass ( Micropterus salmoides). Front Immunol 2023; 14:1265963. [PMID: 38022555 PMCID: PMC10656595 DOI: 10.3389/fimmu.2023.1265963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of this study was to investigate the effects of sodium butyrate (SB) supplementation on growth performance, antioxidant enzyme activities, inflammatory factors, and hypoxic stress in largemouth bass (Micropterus salmoides). Diets were supplemented with different doses of SB at 0 (SB0), 0.5 (SB1), 1.0 (SB2) and 2.0 (SB3) g/kg. The hypoxic stress experiment was performed after 56 days of culture. The results showed that compared with the SB0 group, the final body weight, weight gain rate and protein deposition rate of the SB3 group were significantly increased (P<0.05), while FCR was significantly decreased (P<0.05). The contents of dry matter, crude lipids, and ash in the SB2 group were significantly higher than those in the SB0 group (P<0.05). The urea level was significantly decreased (P<0.05), and the glucose content was significantly increased (P<0.05) in the SB supplement group. Compared with the SB0 group, the SB2 group had significant reductions in the levels of serum triglyceride, cholesterol, elevated-density lipoprotein cholesterol, and low-density lipoprotein (P<0.05), and significant reductions in the levels of liver alkaline phosphatase and malondialdehyde (P<0.05). The total antioxidant capacity of the SB1 group was higher than that of other groups (P<0.05). Compared with the SB0 group, the mRNA expression of TLR22, MyD88, TGF-β1, IL-1β and IL-8 in the SB2 group significantly decreased (P<0.05). The cumulative mortality rate was significantly decreased in the SB2 and SB3 groups in comparison with that in the SB0 group after three hours of hypoxic stress (P<0.05). In a 56-day feeding trial, SB enhanced largemouth bass growth by increasing antioxidant enzyme activity and inhibiting TLR22-MyD88 signaling, therefore increasing cumulative mortality from hypoxic stress in largemouth bass.
Collapse
Affiliation(s)
- Dongqiang Hou
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Min Li
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Peijia Li
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bing Chen
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wen Huang
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Junming Cao
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongxia Zhao
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
7
|
Wang S, Wu P, Fan Z, He X, Liu J, Li M, Chen F. Dandelion polysaccharide treatment protects against dextran sodium sulfate-induced colitis by suppressing NF-κB/NLRP3 inflammasome-mediated inflammation and activating Nrf2 in mouse colon. Food Sci Nutr 2023; 11:7271-7282. [PMID: 37970386 PMCID: PMC10630811 DOI: 10.1002/fsn3.3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 11/17/2023] Open
Abstract
The treatment of ulcerative colitis (UC) is still an intractable medical problem. Polysaccharides are promising candidates for the treatment of UC and have received widespread attention in recent years. The objective of this study was to explore the protective effect and underlying mechanism of dandelion polysaccharide (DP) on dextran sulfate sodium (DSS)-induced colitis in mice. Our results showed that oral administration of DP could dramatically alleviate colonic lesions, as evidenced by reduced DAI scores, shortening of colon length, and ameliorating pathologic abnormalities in colons. Additionally, the expressions of pro-inflammatory factors (TNF-α, IL-1β, and IL-6) and the infiltration of inflammation-regulation cells, marked by myeloperoxidase and F4/80, were also inhibited after DP treatment. Moreover, DP treatment also markedly suppressed the nuclear translocation of NF-κB-p65 and the activation of the NLRP3 inflammasome. Furthermore, DP also activated the Nrf2/HO-1 pathway and reduced the oxidative stress induced by DSS. Overall, these results suggest that DP could be a promising novel therapeutic approach for the treatment of UC.
Collapse
Affiliation(s)
- Shuo Wang
- School of Pharmaceutical SciencesLiaocheng UniversityLiaochengShandongChina
| | - Ping Wu
- School of Pharmaceutical SciencesLiaocheng UniversityLiaochengShandongChina
| | - Zongqiang Fan
- School of Pharmaceutical SciencesLiaocheng UniversityLiaochengShandongChina
| | - Xingrui He
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Jinqian Liu
- School of Pharmaceutical SciencesLiaocheng UniversityLiaochengShandongChina
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational MedicineShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Fang Chen
- School of Pharmaceutical SciencesLiaocheng UniversityLiaochengShandongChina
| |
Collapse
|
8
|
Shi Y, Qiu T, Wu C, Yuan W, Yao X, Jiang L, Wang N, Wang L, Han Q, Yang G, Liu X, Sun X. Filamin A facilitates NLRP3 inflammasome activation during arsenic-induced nonalcoholic steatohepatitis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107703-107715. [PMID: 37740811 DOI: 10.1007/s11356-023-29702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 08/31/2023] [Indexed: 09/25/2023]
Abstract
Prolonged exposure to arsenic can cause nonalcoholic steatohepatitis (NASH). The NOD-like receptor protein 3 (NLRP3) inflammasome plays an essential role in the process of NASH. However, the mechanism by which arsenic promotes NLRP3 expression remains unclear. Three-month NaAsO2 gavage led to the nuclear factor-κB (NF-κB) signaling pathway activation and NASH. Additionally, NaAsO2 upregulated the level of Filamin A (FLNA) and pyroptosis, thereby activating the NLRP3 inflammasome in SD rat liver. Using FLNA siRNA, NASH-associated inflammation and pyroptosis were clearly mitigated by reducing activation of the NLRP3 inflammasome. Furthermore, arsenic treatment facilitated activation of the NF-κB signaling pathway and promoted p-p65 translocation into the nucleus. Chromatin immunoprecipitation (Ch-IP) assay indicated that FLNA promoted p65 binding to the NLRP3 gene and upregulated the transcription of NLRP3, ultimately leading to pyroptosis and NASH. Our findings indicate that FLNA and pyroptosis are strongly associated with NASH induced by NaAsO2. Collectively, the findings of this study indicated that FLNA mediates NF-κB signaling pathway-induced activation of the NLRP3 inflammasome and ultimately activates pyroptosis and NASH upon NaAsO2 exposure. This information may be useful for improving therapeutic strategies against arsenic-induced NASH.
Collapse
Affiliation(s)
- Yan Shi
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
- Xi'an Center for Disease Control and Prevention, No. 599 Xiying Road, Xi'an, 710000, People's Republic of China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Chenbing Wu
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Weizhuo Yuan
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Liping Jiang
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Ningning Wang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Lu Wang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Qiuyue Han
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Guang Yang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China.
- Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China.
| |
Collapse
|
9
|
Shi X, Xu W, Che X, Cui J, Shang X, Teng X, Jia Z. Effect of arsenic stress on the intestinal structural integrity and intestinal flora abundance of Cyprinus carpio. Front Microbiol 2023; 14:1179397. [PMID: 37168116 PMCID: PMC10165157 DOI: 10.3389/fmicb.2023.1179397] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
Aquatic organisms such as fish can accumulate high concentrations of arsenic (As), which has toxic effects on fish. However, whether the intestinal flora are involved in As damage to fish intestinal tissues and the underlying process are unclear. Common carp (Cyprinus carpio) were exposed to As (2.83 mg/L) in water for 30 days, and blood, muscle, intestine, and intestine samples were collected. Intestinal pathological sections were observed, and the lipopolysaccharide (LPS) levels in serum and the levels of As accumulation and tight junction-related factors in intestinal tissues were measured. The gut microbiota was analysed by 16S rRNA sequencing. The results showed that As treatment decreased the abundance of microbiota, increased the number of harmful bacteria, and decreased the number of beneficial bacteria in the intestine. In our experiment, the top 30 harmful and beneficial bacteria with the highest relative abundance were identified. Among the top 30 harmful and beneficial bacteria, As treatment resulted in a significant (P < 0.05) increase in harmful bacteria (such as Fusobacteriota, Bacteroidota (LPS-producing bacteria), Verrucomicrobiota, Bacteroides, Aeromonas, and Stenotrophomonas) and a significant (P < 0.05) decrease in beneficial bacteria (such as Actinobacteriota, Planctomycetota, Firmicutes, Reyranella, Akkermansia, and Pseudorhodobacter), which further demonstrated that As affects the abundance of intestinal flora. In addition, As exposure increased the LPS level in serum and the abundance of Bacteroidota (LPS-producing bacteria) in the intestine. Bacteroidota exhibits the six highest relative abundance at the phylum level, which indicates that LPS produced by Bacteroidota can increase the LPS level in serum. Additionally, the protein and gene levels of the tight junction markers ZO-1 and occludin in the intestine were reduced by As treatment, which further indicated that As exposure impaired the structural integrity of the intestine. In conclusion, the results obtained in our study indicate that the intestinal flora, LPS, and tight junctions participate in the impairment of the structural integrity of the common carp intestine resulting from As exposure.
Collapse
Affiliation(s)
- Xiaodan Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xinghua Che
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Xiaohua Teng,
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- *Correspondence: Zhiying Jia,
| |
Collapse
|
10
|
Pang X, Miao Z, Dong Y, Cheng H, Xin X, Wu Y, Han M, Su Y, Yuan J, Shao Y, Yan L, Li J. Dietary methionine restriction alleviates oxidative stress and inflammatory responses in lipopolysaccharide-challenged broilers at early age. Front Pharmacol 2023; 14:1120718. [PMID: 36874014 PMCID: PMC9975741 DOI: 10.3389/fphar.2023.1120718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
In this study, we investigated the effect of dietary methionine restriction (MR) on the antioxidant function and inflammatory responses in lipopolysaccharide (LPS)-challenged broilers reared at high stocking density. A total of 504 one-day-old male Arbor Acre broiler chickens were randomly divided into four treatments: 1) CON group, broilers fed a basal diet; 2) LPS group, LPS-challenged broilers fed a basal diet; 3) MR1 group, LPS-challenged broilers fed a methionine-restricted diet (0.3% methionine); and 4) MR2 group, LPS-challenged broilers fed a methionine-restricted diet (0.4% methionine). LPS-challenged broilers were intraperitoneally injected with 1 mg/kg body weight (BW) of LPS at 17, 19, and 21 days of age, whereas the CON group was injected with sterile saline. The results showed that: LPS significantly increased the liver histopathological score (p < 0.05); LPS significantly decreased the serum total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity at 3 h after injection (p < 0.05); the LPS group had a higher content of Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF)-α, but a lower content of IL-10 than the CON group in serum (p < 0.05). Compared with the LPS group, the MR1 diet increased catalase (CAT), SOD, and T-AOC, and the MR2 diet increased SOD and T-AOC at 3 h after injection in serum (p < 0.05). Only MR2 group displayed a significantly decreased liver histopathological score (p < 0.05) at 3 h, while MR1 and MR2 groups did so at 8 h. Both MR diets significantly decreased serum LPS, CORT, IL-1β, IL-6, and TNF-α contents, but increased IL-10 content (p < 0.05). Moreover, the MR1 group displayed significantly increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2), CAT, and GSH-Px at 3 h; the MR2 group had a higher expression of Kelch-like ECH-associated protein 1 (Keap1), SOD, and GSH-Px at 8 h (p < 0.05). In summary, MR can improve antioxidant capacity, immunological stress, and liver health in LPS-challenged broilers. The MR1 and MR2 groups experienced similar effects on relieving stress; however, MR1 alleviated oxidative stress more rapidly. It is suggested that precise regulation of methionine levels in poultry with stress may improve the immunity of broilers, reduce feed production costs, and increase production efficiency in the poultry industry.
Collapse
Affiliation(s)
- Xiyuan Pang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Zhiqiang Miao
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Yuanyang Dong
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Huiyu Cheng
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Xiangqi Xin
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Yuan Wu
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Miaomiao Han
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Yuan Su
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Jianmin Yuan
- College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Yan
- New Hope Liuhe Co.,Ltd., Beijing, China
| | - Jianhui Li
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| |
Collapse
|