1
|
Begum NF, Ramadoss R, Yadalam PK, Ramani P, Ramalingam K. Phytochemical Targeting of Nerve Growth Factor by Thymoquinone and Cuscutin: A Molecular Dynamics Simulation Study. Cureus 2024; 16:e63727. [PMID: 39099944 PMCID: PMC11296693 DOI: 10.7759/cureus.63727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Background Nerve growth factor (NGF) is a novel target of pain therapeutics for oral cancer, and it plays a main role in the nociception of chronic pain. Surgery, along with chemotherapy or radiotherapy, is the gold standard for treating patients, but the side effects are significant as well. Newer effective interventions with natural phytochemicals could improve patient compliance and enhance the quality of life among patients with oral cancer. A literature search revealed a positive correlation between NGF and oral cancer pain. Nigella sativa (N. sativa) and Cuscuta reflexa (C. reflexa) have proven anticancer effects, but their activity with NGF is unexplored. Aims and objectives We aimed to identify the potential phytochemicals in N. sativa and C. reflexa. We also checked the NGF-blocking activity of the phytochemicals. Molecular docking and molecular dynamic (MD) simulations evaluated the binding energy and stability between the NGF protein and selected phytochemical ligands. Materials and methods We obtained protein NGF structure from UniProt (ID: 4EDX, P01138, Beta-nerve growth factor), ligand (thymoquinone) structure using PubChem ID: 10281, and ligand (cuscutin) structure using PubChem ID: 66065. Maestro protein (Schrödinger Inc., Mannheim, Germany) was used for molecular docking. Desmond Simulation Package (Schrödinger Inc., Mannheim, Germany) was used to model MD for 100 nanoseconds (ns). We have assessed the interaction between the protein and ligands by root mean square deviation (RMSD) values. Results The interaction of thymoquinone and cuscutin with NGF was assessed. While interacting with thymoquinone, there was mild fluctuation from 0.6 Å to 2.5 Å up to 80 ns and ended up at 4.8 Å up to 100 ns. While interacting with cuscutin, mild fluctuation was seen from 0.8 Å to 4.8 Å till 90 ns and ended at 6.4 Å up to 100 ns. We found a stable interaction between our drug combination and the NGF receptor. Conclusion We have identified a stable interaction between thymoquinone, cuscutin, and NGF by our MD simulations. Hence, it could be used as an NGF inhibitor for pain relief and to control tumor progression. Further in vitro and in vivo evaluations of this novel drug combination with phytochemicals will help us understand their biological activities and potential clinical applications in oral cancer therapeutics.
Collapse
Affiliation(s)
- N Fazulunnisa Begum
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ramya Ramadoss
- Oral Pathology and Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pradeep Kumar Yadalam
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pratibha Ramani
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
2
|
Nagy AM, Abdelhameed MF, Elkarim ASA, Sarker TC, Abd-ElGawad AM, Elshamy AI, Hammam AM. Enhancement of Female Rat Fertility via Ethanolic Extract from Nigella sativa L. (Black Cumin) Seeds Assessed via HPLC-ESI-MS/MS and Molecular Docking. Molecules 2024; 29:735. [PMID: 38338478 PMCID: PMC10856701 DOI: 10.3390/molecules29030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The characteristic chemical composition of Nigella seeds is directly linked to their beneficial properties. This study aimed to investigate the phytochemical composition of Nigella sativa seeds using a 100% ethanolic extract using HPLC-ESI-MS/MS. Additionally, it explored the potential biological effects of the extract on female rat reproduction. Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), Estrogen (E2), and Progesterone (P4) hormone levels were also assessed, along with the morphological and histological effects of the extract on ovarian, oviductal, and uterine tissues. Molecular docking was performed to understand the extract's activity and its role in regulating female reproduction by assessing its binding affinity to hormonal receptors. Twenty metabolites, including alkaloids, saponins, terpenes, flavonoids, phenolic acids, and fatty acids, were found in the ethanolic extract of N. sativa seeds through the HPLC-ESI-MS/MS study. The N. sativa seed extract exhibited strong estrogenic and LH-like activities (p < 0.05) with weak FSH-like activity. Furthermore, it increased the serum levels of LH (p < 0.05), P4 hormones (p < 0.001), and E2 (p < 0.0001). Molecular docking results displayed a strong interaction with Erβ, LH, GnRH, and P4 receptors, respectively. Based on these findings, N. sativa seeds demonstrated hormone-like activities, suggesting their potential as a treatment for improving female fertility.
Collapse
Affiliation(s)
- Ahmed M. Nagy
- Department of Animal Reproduction & AI, Veterinary Research Institute, National Research Center, Cairo 12622, Egypt;
| | | | - Asmaa S. Abd Elkarim
- Chemistry of Tanning Materials and Leather Technology Department, National Research Center, Cairo 12622, Egypt;
| | | | - Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Center, Cairo 12622, Egypt
| | - Abdelmohsen M. Hammam
- Department of Animal Reproduction & AI, Veterinary Research Institute, National Research Center, Cairo 12622, Egypt;
| |
Collapse
|
3
|
Mohan ME, Mohan MC, Prabhakaran P, Syam Das S, Krishnakumar IM, Baby Chakrapani PS. Exploring the short-term influence of a proprietary oil extract of black cumin ( Nigella sativa) on non-restorative sleep: a randomized, double-blinded, placebo-controlled actigraphy study. Front Nutr 2024; 10:1200118. [PMID: 38288065 PMCID: PMC10822901 DOI: 10.3389/fnut.2023.1200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Background Nigella sativa (black cumin, or black seed) is popularly known as the seed of blessings in the Arab system of medicine. Though not widely recommended for sleep, a unique proprietary black cumin extract (BlaQmax®/ThymoDream™; BCO-5) has been shown to be helpful in the management of stress and sleep issues. Methods This randomized, double-blind, placebo-controlled trial aimed to investigate the efficacy of BCO-5 on the sleep quality of volunteers characterized with a self-reported non-restorative sleep disorder. Healthy male and female participants (n = 70), aged 18-65 years (BMI 22-28 Kg/m2) were randomized to either placebo or BCO-5 (n = 35/group). Both interventions were supplemented at 200 mg/day for seven days. Actigraphy and a validated restorative sleep questionnaire (RSQ-W) were used to monitor the influence of BCO-5 on sleep. Results Compared to placebo, BCO-5 significantly improved sleep quality, as evidenced by both intra-group and inter-group analyses of the actigraphy data. The relative improvements observed were sleep efficiency (7.8%, p < 0.001), total sleep time (19.1%, p < 0.001), sleep onset latency (35.4%; p < 0.001), and wake-after-sleep-onset (22.5%; p < 0.001) compared with placebo. BCO-5 also improved sleep by 75.3% compared to baseline (p < 0.001) and by 68.9% compared to placebo (p < 0.001), when monitored by RSQ-W. BCO-5 was well-tolerated with no reports of side effects or toxicity. Conclusion BCO-5 significantly improved non-restorative sleep in seven days, indicating its potential role as a natural sleep aid.
Collapse
Affiliation(s)
- M. E. Mohan
- Department of General Medicine, BGS Global Institute of Medical Sciences, Kengeri, India
| | - Mohind C. Mohan
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | | | - S. Syam Das
- R&D Centre, Akay Natural Ingredients, Cochin, Kerala, India
| | | | - P. S. Baby Chakrapani
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
- Centre of Excellence in Neurodegeneration and Brain Health, Cochin, Kerala, India
| |
Collapse
|
4
|
Hosseini H, Ghavidel F, Aliyari M, Hashemy SI, Jamialahmadi T, Sahebkar A. Effect of Nigella sativa Intake on Oxidative Stress and Inflammation in Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr Pharm Biotechnol 2024; 25:896-907. [PMID: 37859312 DOI: 10.2174/0113892010266109230928000134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Several studies have shown that the intake of N. sativa has a beneficial effect on metabolic syndrome and related disorders. In this meta-analysis, our primary objective was to assess the impact of Nigella sativa consumption on inflammation and oxidative stress biomarkers among individuals diagnosed with metabolic syndrome and its associated conditions. METHODS Our search was conducted on prominent online databases such as Web of Science, Scopus, PubMed, and EMBASE, utilizing relevant keywords until August 2023. RESULTS This meta-analysis was performed on 16 RCTs comprising 1033 participants. Our results showed that intake of Nigella sativa significantly decreased CRP (SMD: -0.60; (95% CI: from -0.96 to -0.23); P = 0.00), TNF-α (SMD: -0.53; (95% CI: from -0.74 to -0.53); P = 0.00); IL-6 (SMD: -0.54 ; (95% CI: from -1.01 to -0.07); P = 0.02), and MDA: (SMD: -1.28; (95% CI: from -2.11 to -0.46); P = 0.00) levels. In addition, SOD: (SMD: 1.35; (95% CI, from 0.77 to 1.93); P = 0.00) and TAC (SMD: 2.82; (95% CI, from 0.55 to 5.084); P = 0.01) levels significantly increased in the intervention group compared to the placebo group. CONCLUSION Our results showed that THE consumption of N. sativa could be associated with improved oxidative stress and inflammation in patients with metabolic syndrome and related disorders.
Collapse
Affiliation(s)
- Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farideh Ghavidel
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Aliyari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|