1
|
Hu WS, Jiang LL, Liu P, Zhang XY, Wei W, Du XH. Morphological and Phylogenetic Analyses Reveal Dictyostelids (Cellular Slime Molds) Colonizing the Ascocarp of Morchella. J Fungi (Basel) 2024; 10:678. [PMID: 39452630 PMCID: PMC11508401 DOI: 10.3390/jof10100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Morchella spp. (true morels) are precious edible mushrooms consumed around the world, with a delicious taste, rich nutritional value, and unique healthcare effects. Various fungi and bacteria have been reported to colonize the ascocarps of Morchella, damaging their fruiting bodies and leading to serious economic losses in cultivation. The species identification of these colonizing organisms is crucial for understanding their colonization mechanisms on morels. Slime molds, which have characteristics of both "fungi" and "animals", can occasionally colonize crops and edible fungi. However, there have been no reports of dictyostelid cellular slime molds (dictyostelids) colonizing plants and fungi to date. In this study, we discovered that dictyostelids colonized the surface of one wild ascoma of Morchella in the forest of Chongqing, China, with the tissues being black and rotten. Macro- and micro-morphological observations, along with molecular phylogenetic analyses, identified the specimens investigated in this study as Dictyostelium implicatum and Morchella sp. Mel-21. The results provide new knowledge of dictyostelid colonization on organisms and contribute to the diversity of species colonizing true morels. Moreover, this is also the first report of dictyostelids distributed in Chongqing, China. This study enhances our insights into the life history and potential ecological significance of dictyostelids and updates their distribution area in China. Further research will be conducted to uncover the mechanisms behind the colonization observed in this study.
Collapse
Affiliation(s)
- Wen-Shu Hu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (W.-S.H.); (L.-L.J.); (X.-Y.Z.); (W.W.)
| | - Lin-Lin Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (W.-S.H.); (L.-L.J.); (X.-Y.Z.); (W.W.)
| | - Pu Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
| | - Xiao-Yan Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (W.-S.H.); (L.-L.J.); (X.-Y.Z.); (W.W.)
| | - Wei Wei
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (W.-S.H.); (L.-L.J.); (X.-Y.Z.); (W.W.)
| | - Xi-Hui Du
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (W.-S.H.); (L.-L.J.); (X.-Y.Z.); (W.W.)
| |
Collapse
|
2
|
Wang S, Wang J, Wang T, Li T, Xu L, Cheng Y, Chang M, Meng J, Hou L. Integrated Transcriptomics-Proteomics Analysis Reveals the Response Mechanism of Morchella sextelata to Pseudodiploöspora longispora Infection. J Fungi (Basel) 2024; 10:604. [PMID: 39330364 PMCID: PMC11433447 DOI: 10.3390/jof10090604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Morels (Morchella spp.) are valuable and rare edible mushrooms with unique flavors and high nutritional value. White mold disease occurring during cultivation has seriously affected the quality and yield of morels in China. In this study, the fungus causing white mold disease in morels was isolated, purified, and identified as Pseudodiploöspora longispora by morphology and molecular biology. In addition, research has shown that P. longispora infection causes wrinkled and rupturing asci, loosened cell walls, and obvious membrane breakage accompanied by severe cytoplasmic leakage in M. sextelata. Interestingly, research has shown that infection with P. longispora can induce the production of an unknown substance in the cells of M. sextelata, which accumulates on the cell membrane, leading to membrane breakage. Furthermore, integrated transcriptomics-proteomics analysis revealed the response mechanism of M. sextelata to P. longispora infection. The results indicate that DEGs and DEPs can be significantly enriched in pathways involved in oxidoreductase activity; peroxisomes, lipid transport, and metabolism; cell wall assembly; and integral components of membranes. Further electron microscopy analysis clarified the important role of changes in the cell membrane and cell wall in the response of mycelia to biological stress. This study clarified the response mechanism of M. sextelata to P. longispora, laying a foundation for further clarifying the infection mechanism of P. longispora.
Collapse
Affiliation(s)
- Shurong Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu, Jinzhong 030801, China
| | - Jingyi Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Tengyun Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Tonglou Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Jinzhong 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Jinzhong 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu, Jinzhong 030801, China
| | - Ludan Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Jinzhong 030801, China
| |
Collapse
|
3
|
Qiu Z, Ren S, Zhao J, Cui L, Li H, Jiang B, Zhang M, Shu L, Li T. Comparative analysis of the nutritional and biological properties between the pileus and stipe of Morchella sextelata. Front Nutr 2024; 10:1326461. [PMID: 38249598 PMCID: PMC10796790 DOI: 10.3389/fnut.2023.1326461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Morchella sextelata is a highly prized edible mushroom and is widely consumed for its distinctive taste and texture. The stipe of M. sextelata is significantly lower in priced compared to the pileus. The aim of this study was to conduct a comprehensive comparative analysis of the nutritional and biological properties between the pileus and stipe of M. sextelata. The results revealed that the stipe exhibited comparable levels of various nutrients and bioactive compounds to those found in the pileus. The stipe showed significantly higher levels of crude dietary fiber, various mineral elements, vitamins, amino acids, 5'-nucleotides, fatty acids, and specific sugars. Additionally, it also demonstrated significant abundance in bioactive compounds such as total flavonoids and ergothioneine. Overall, our study provides valuable insights into unlocking further knowledge about M. sextelata's nutritional composition while highlighting its potential health benefits associated with different parts of this highly esteemed edible mushroom.
Collapse
Affiliation(s)
- Zhiheng Qiu
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Shuhua Ren
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Jiazhi Zhao
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lingxiu Cui
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Hongpeng Li
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Bei Jiang
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Miao Zhang
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lili Shu
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Tianlai Li
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| |
Collapse
|
4
|
Badalyan SM, Gharibyan NG, Iotti M, Zambonelli A. Antimicrobial Activity of Three Italian Strains of Morchella esculenta (Ascomycota). Int J Med Mushrooms 2024; 26:43-55. [PMID: 38421695 DOI: 10.1615/intjmedmushrooms.2023051956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Three genetically identified and morphologically characterized strains (MesAQ2-C, MesAQ6-2 and MesFI2-3) of the culinary-medicinal ascomycete mushroom Morchella esculenta (L.) Pers. collected in central-north Italy have been studied for their antifungal and antibacterial activities. The obtained data showed that mycelium of M. esculenta possess variable antimicrobial activity against four test fungi (Chrysosporium keratinophilum, Microsporum gypseum, Trichophyton terrestre, Penicillium griseofulvum), as well as one Gram positive (Staphylococcus aureus) and three Gram negative (Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa) test bacteria potentially pathogenic for humans and animals. Up to 20.4% of inhibition of the average mycelial growth rate (GRavr) of test fungi in dual culture experiment was detected. The samples of cultural liquid (CL) and mycelial extract (ME) obtained by static cultivation of M. esculenta strains showed up to 13.9 and 23.0% of GRavr inhibition of test fungi, respectively. Similarly, the inhibition of the bacterial colonies by CL and ME samples was 34.1 and 32.3%, respectively in comparison with the control with streptomycin indicating almost equal secretion of both intra- and extracellular antimicrobial compounds by M. esculenta mycelium. As a producer of antimicrobial compounds among tested M. esculenta strains, MesAQ2-C was the most effective. It may be considered for further myco-pharmacological research to develop mushroom-based antimicrobial biotech products with biomedical significance.
Collapse
Affiliation(s)
- Susanna M Badalyan
- Laboratory of Fungal Biology and Biotechnology, Institute of Pharmacy, Yerevan State University, 1 A. Manoogian St., 0025 Yerevan, Armenia
| | - Narine G Gharibyan
- Laboratory of Fungal Biology and Biotechnology, Institute of Pharmacy, Yerevan State University, Yerevan, Armenia
| | - Mirco Iotti
- Department of Life, Health and Environmental Science, University of L'Aquila, L'Aquila, Italy
| | | |
Collapse
|
5
|
Zhang Y, Li X, Zhao Z, E H, Fan T, Dong H, He X, Zhao X, Tang L, Zhou C. Comprehensive investigation on non-volatile and volatile flavor compounds in the Morchella sextelata and Morchella importuna by UPLC-MS/MS and GC × GC-TOF-MS. Food Chem X 2023; 20:100961. [PMID: 38144828 PMCID: PMC10740039 DOI: 10.1016/j.fochx.2023.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Morchella sextelata and Morchella importuna are the main cultivars of morel. However, the key compounds affecting their flavors (taste and odor) are currently unknown. Here, an ultra performance tandem mass spectrometry combined with two-dimensional gas chromatography-time-of-flight mass spectrometry method was used to detect and relatively quantify the metabolites in both morel cultivars. A total of 631 non-volatile compounds and 242 volatile compounds were identified. The odor activity value was calculated to assess the contribution of key odor volatile. The results indicated that M. importuna had a sweeter flavor than M. sextelata. The former posed more prominent mushroom flavor than the latter based on the correlation analysis of the metabolites. The flavor differences of the two morel cultivars are highly relevant with the content of lipids, carbohydrates, amino acids and derivatives, alcohols and ketones. This study provides new insights into the theoretical basis for the flavor differences in both morel cultivars.
Collapse
Affiliation(s)
- Yanmei Zhang
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xiaobei Li
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Zhiyong Zhao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Hengchao E
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Tingting Fan
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Hui Dong
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xiangwei He
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xiaoyan Zhao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Lihua Tang
- Institute of Edible Fungi, National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Changyan Zhou
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| |
Collapse
|
6
|
Zhu X, Ma K, Sun M, Zhang J, Liu L, Niu S. Isolation and identification of pathogens of Morchella sextelata bacterial disease. Front Microbiol 2023; 14:1231353. [PMID: 38029130 PMCID: PMC10657878 DOI: 10.3389/fmicb.2023.1231353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Morel mushroom (Morchella spp.) is a rare edible and medicinal fungus distributed worldwide. It is highly desired by the majority of consumers. Bacterial diseases have been commonly observed during artificial cultivation of Morchella sextelata. Bacterial pathogens spread rapidly and cause a wide range of infections, severely affecting the yield and quality of M. sextelata. In this study, two strains of bacterial pathogens, named M-B and M-5, were isolated, cultured, and purified from the tissues of the infected M. sextelata. Koch's postulates were used to determine the pathogenicity of bacteria affecting M. sextelata, and the pathogens were identified through morphological observation, physiological and biochemical analyses, and 16S rRNA gene sequence analysis. Subsequently, the effect of temperature on the growth of pathogenic bacteria, the inhibitory effect of the bacteria on M. sextelata on plates, and the changes in mycelial morphology of M. sextelata mycelium were analyzed when M. sextelata mycelium was double-cultured with pathogenic bacteria on plates. The results revealed that M-B was Pseudomonas chlororaphis subsp. aureofaciens and M-5 was Bacillus subtilis. Strain M-B started to multiply at 10-15°C, and strain M-5 started at 15-20°C. On the plates, the pathogenic bacteria also produced significant inhibition of M. sextelata mycelium, and the observation of mycelial morphology under the scanning electron microscopy revealed that the inhibited mycelium underwent obvious drying and crumpling, and the healthy mycelium were more plump. Thus, this study clarified the pathogens, optimal growth environment, and characteristics of M. sextelata bacterial diseases, thereby providing valuable basic data for the disease prevention and control of Morchella production.
Collapse
|
7
|
Qiu Z, Wang S, Zhao J, Cui L, Wang X, Cai N, Li H, Ren S, Li T, Shu L. Synthesis and structural characteristics analysis of melanin pigments induced by blue light in Morchella sextelata. Front Microbiol 2023; 14:1276457. [PMID: 37840742 PMCID: PMC10573313 DOI: 10.3389/fmicb.2023.1276457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Morchella sextelata, a highly sought-after edible mushroom worldwide, is evaluated based on its cap color as an essential commercial property indicator. In the present study, the effects of blue light on cap pigmentation in M. sextelata, as well as the synthesis and structural characteristics of melanin pigments within the cap were examined. The results showed that an increase in the proportion of blue light within the lighting environment promoted melanin synthesis and melanization of the cap. Transmission and scanning electron microscopy revealed the localization of melanin within the mycelium and its ultrastructural characteristics. The UV-visible analysis demonstrated that melanin exhibited a maximum absorption peak at 220 nm and possessed high alkaline solubility as well as acid precipitability. The structural characteristics of melanin were analyzed using FTIR, NMR, HPLC, and elemental analysis, which confirmed the presence of eumelanin, pheomelanin, and allomelanin in both brown and black caps. Furthermore, blue light can stimulate the synthesis of both eumelanin and pheomelanin. The obtained results can serve as the foundation for comprehending the mechanism by which light regulates color formation in mushrooms.
Collapse
Affiliation(s)
- Zhiheng Qiu
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Shuang Wang
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Jiazhi Zhao
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lingxiu Cui
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Xinyi Wang
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Nuo Cai
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Hongpeng Li
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Shuhua Ren
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Tianlai Li
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lili Shu
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| |
Collapse
|