1
|
Zaharioudakis K, Salmas CE, Andritsos ND, Leontiou AA, Moschovas D, Karydis-Messinis A, Triantafyllou E, Avgeropoulos A, Zafeiropoulos NE, Proestos C, Giannakas AE. Investigating the Synergistic Effects of Carvacrol and Citral-Edible Polysaccharide-Based Nanoemulgels on Shelf Life Extension of Chalkidiki Green Table Olives. Gels 2024; 10:722. [PMID: 39590078 PMCID: PMC11594034 DOI: 10.3390/gels10110722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Modern bioeconomy and sustainability demands lead food technology in the development of novel biobased edible food preservatives. Herein, the development and characterization of novel polysaccharide (xanthan gum and kappa-carrageenan)-based nanoemulgels (NGs) enhanced with essential oil derivatives; pure citral (CT); pure carvacrol (CV); and various CT:CV ratios (25:75, 50:50, and 75:25) are presented. The obtained NGs are applied as active edible coatings for extending the shelf life of Protected Designation of Origin (PDO) green table olives of Chalkidiki. The zeta potential demonstrated the high stability of the treatments, while light scattering measurement and scanning electron microscopy images confirmed the <100 nm droplet size. EC50 indicated high antioxidant activity for all the tested samples. The fractional inhibitory concentration (FIC) confirmed the synergistic effect of NG with a CT:CV ratio at 50:50 against Staphylococcus aureus and at CT:CV ratios 25:75 and 75:25 against E. coli O157:H7. NG coatings with CT:CV ratios at 50:50 and at 25:75 effectively controlled the weight loss at 0.5%, maintained stable pH levels, and preserved the visual quality of green olives on day 21. The synergistic effect between CT and CV was confirmed as they reduced the spoilage microorganisms of yeasts and molds by 2-log [CFU/g] compared to the control and almost 1 log [CFU/g] difference from pure CT and CV-based NGs without affecting the growth of beneficial lactic acid bacteria crucial for fermentation. NGs with CT:CV ratios at 50:50 and at 25:75 demonstrated superior effectiveness in preventing discoloration and maintaining the main sensory attributes. Overall, shelf life extension was achieved in 21 compared to only 7 of the uncoated ones. Finally, this study demonstrates the potential of polysaccharide-based NGs in mixtures of CT and CV for the shelf life extension of fermented food products.
Collapse
Affiliation(s)
- Konstantinos Zaharioudakis
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (N.D.A.); (A.A.L.)
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (E.T.); (A.A.); (N.E.Z.)
| | - Nikolaos D. Andritsos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (N.D.A.); (A.A.L.)
| | - Areti A. Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (N.D.A.); (A.A.L.)
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (E.T.); (A.A.); (N.E.Z.)
| | - Andreas Karydis-Messinis
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (E.T.); (A.A.); (N.E.Z.)
| | - Eleni Triantafyllou
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (E.T.); (A.A.); (N.E.Z.)
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (E.T.); (A.A.); (N.E.Z.)
| | - Nikolaos E. Zafeiropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (E.T.); (A.A.); (N.E.Z.)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece;
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (N.D.A.); (A.A.L.)
| |
Collapse
|
2
|
Tsukiashi M, Koyama T, Iwamoto H, Sonoki H, Miyaji K. Evaluation of the Effect of Thickeners in Enteral Formulas on the Gastric Emptying Rate of Proteins and Carbohydrates Using a Semi-Dynamic Gastric Model. Nutrients 2024; 16:2115. [PMID: 38999863 PMCID: PMC11243014 DOI: 10.3390/nu16132115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The emptying rate of specific nutrients in enteral formulas is poorly understood, despite the importance of controlling the emptying rate in tube-fed patients. Because of their viscosity, thickened formulas are widely used to avoid gastric reflux and reduce the burden on caregivers. This study examined how thickeners in enteral formulas affected the gastric emptying rates of proteins and carbohydrates. A semi-dynamic gastric model was used to prepare and digest test enteral formulas that contained either no thickeners or agar (0.2%). The amounts of protein and carbohydrates in each emptied aliquot were determined, and the emptying rate was calculated. We found that agar accelerated protein emptying, and an exploratory experiment with agar (0.5%) suggested the possibility of concentration dependence. Additionally, experiments using gellan gum (0.08%), guar gum (0.2%), or carrageenan (0.08%, 0.2%) suggested that protein emptying could vary depending on the thickener type and that carrageenan might slow it. These results could help with the appropriate selection of thickeners added to liquid foods based on the patient's metabolic profile to manage nutrition, not only for tube-fed patients but also for those with oropharyngeal dysphagia or diabetes.
Collapse
Affiliation(s)
- Motoki Tsukiashi
- Health Care & Nutritional Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama 252-8583, Kanagawa, Japan
- Health Science Research Center, R&D Institute, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Kanagawa, Japan
| | - Takahiro Koyama
- Health Care & Nutritional Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Hiroshi Iwamoto
- Health Care & Nutritional Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Hirofumi Sonoki
- Health Care & Nutritional Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama 252-8583, Kanagawa, Japan
| | - Kazuhiro Miyaji
- Health Care & Nutritional Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama 252-8583, Kanagawa, Japan
| |
Collapse
|
3
|
Kokkuvayil Ramadas B, Rhim JW, Roy S. Recent Progress of Carrageenan-Based Composite Films in Active and Intelligent Food Packaging Applications. Polymers (Basel) 2024; 16:1001. [PMID: 38611259 PMCID: PMC11014226 DOI: 10.3390/polym16071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, as concerns about petrochemical-derived polymers increase, interest in biopolymer-based materials is increasing. Undoubtedly, biopolymers are a better alternative to solve the problem of synthetic polymer-based plastics for packaging purposes. There are various types of biopolymers in nature, and mostly polysaccharides are used in this regard. Carrageenan is a hydrophilic polysaccharide extracted from red algae and has recently attracted great interest in the development of food packaging films. Carrageenan is known for its excellent film-forming properties, high compatibility and good carrier properties. Carrageenan is readily available and low cost, making it a good candidate as a polymer matrix base material for active and intelligent food packaging films. The carrageenan-based packaging film lacks mechanical, barrier, and functional properties. Thus, the physical and functional properties of carrageenan-based films can be enhanced by blending this biopolymer with functional compounds and nanofillers. Various types of bioactive ingredients, such as nanoparticles, natural extracts, colorants, and essential oils, have been incorporated into the carrageenan-based film. Carrageenan-based functional packaging film was found to be useful for extending the shelf life of packaged foods and tracking spoilage. Recently, there has been plenty of research work published on the potential of carrageenan-based packaging film. Therefore, this review discusses recent advances in carrageenan-based films for applications in food packaging. The preparation and properties of carrageenan-based packaging films were discussed, as well as their application in real-time food packaging. The latest discussion on the potential of carrageenan as an alternative to traditionally used synthetic plastics may be helpful for further research in this field.
Collapse
Affiliation(s)
- Bharath Kokkuvayil Ramadas
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| |
Collapse
|
4
|
Mandura Jarić A, Haramustek L, Nižić Nodilo L, Vrsaljko D, Petrović P, Kuzmić S, Jozinović A, Aladić K, Jokić S, Šeremet D, Vojvodić Cebin A, Komes D. A Novel Approach to Serving Plant-Based Confectionery-The Employment of Spray Drying in the Production of Carboxymethyl Cellulose-Based Delivery Systems Enriched with Teucrium montanum L. Extract. Foods 2024; 13:372. [PMID: 38338507 PMCID: PMC10855723 DOI: 10.3390/foods13030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, spray drying was used as a technological solution for the valorization of Teucrium montanum extract into carboxymethyl cellulose-based delivery systems (CMC), individually or in combination with collagen, guar gum, gum arabic, and kappa-carrageenan. The results showed that the process yield and morphological properties were positively influenced by the introduction of CMC binary blends. The employment of CMC resulted in a high encapsulation efficiency (77-96%) for all phenylethanoid glycosides (PGs) analyzed. Due to the low wettability of the microparticles, a relatively gradual in vitro release of the PGs was achieved. Infusion of the filling with hydrophilic T. montanum extract encapsulated in microparticles with high hydrophobic surface area proved to be a practical route for significant confectionery fortification (5-9 mg PGs per dw serving), ensuring prolonged interaction between the food matrix used and the extract under simulated gastrointestinal conditions. Based on sensory evaluation, the introduction of kudzu starch into the jelly matrix has shown a texture-modifying potential.
Collapse
Affiliation(s)
- Ana Mandura Jarić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (A.M.J.); (L.H.); (D.Š.); (A.V.C.)
| | - Laura Haramustek
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (A.M.J.); (L.H.); (D.Š.); (A.V.C.)
| | - Laura Nižić Nodilo
- Institute of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva St 2, 10 000 Zagreb, Croatia
| | - Domagoj Vrsaljko
- Department of Thermodynamics, Mechanical Engineering and Energy, Faculty of Chemical Engineering and Technology, University of Zagreb, Savska St 16, 10 000 Zagreb, Croatia;
| | - Predrag Petrović
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva St 4, 11 000 Belgrade, Serbia;
| | - Sunčica Kuzmić
- Forensic Science Centre “Ivan Vučetić” Zagreb, Forensic Science Office, Ilica St 335, 10 000 Zagreb, Croatia;
| | - Antun Jozinović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača St 20, 31 000 Osijek, Croatia; (A.J.); (K.A.); (S.J.)
| | - Krunoslav Aladić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača St 20, 31 000 Osijek, Croatia; (A.J.); (K.A.); (S.J.)
| | - Stela Jokić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača St 20, 31 000 Osijek, Croatia; (A.J.); (K.A.); (S.J.)
| | - Danijela Šeremet
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (A.M.J.); (L.H.); (D.Š.); (A.V.C.)
| | - Aleksandra Vojvodić Cebin
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (A.M.J.); (L.H.); (D.Š.); (A.V.C.)
| | - Draženka Komes
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (A.M.J.); (L.H.); (D.Š.); (A.V.C.)
| |
Collapse
|