1
|
Ganjeh AM, Gomes A, Barreira MJ, Pinto CA, Casal S, Saraiva JA. Effects of pressure-based technologies on food lipids oxidation. Food Chem 2024; 461:140768. [PMID: 39181051 DOI: 10.1016/j.foodchem.2024.140768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
The aim of this paper is to provide a thorough review of recent research on the effects of high pressure processing (HPP) and hyperbaric storage (HS) on lipid oxidation amounts in different food products, as well as the mechanisms of lipid oxidation during processing and storage. Globaly, highly perishable foods showed an increase in lipid oxidation when preserved by HPP. On the other hand, HS using lower pressure levels but much longer time under pressure seems to cause a higher level of secondary lipid oxidation products and a lower level of tertiary products, with HS so decreasing oxidation progress during storage. Existing studies have mainly focused on individual oxidation indicators, highlighting the need for a comprehensive analysis of primary, secondary, and tertiary oxidation products in order to fully understand the progression of oxidation. This comprehensive approach ensures a systematic assessment of lipid oxidation, leading to a clear understanding of the oxidation process.
Collapse
Affiliation(s)
- Alireza Mousakhani Ganjeh
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; LAQV-REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Alexandrina Gomes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria João Barreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana Casal
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Chu J, Lin S, Fu B, Meng X, Qiang J, Zhang S. Effects of deep, air and vacuum frying on oyster quality and protein-mediated mechanism analysis via TMT quantitative proteomics. Food Chem 2024; 460:140654. [PMID: 39098219 DOI: 10.1016/j.foodchem.2024.140654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Fried oyster is a popular aquatic food product in East Asia, but nutrient loss during thermal processing become a significant concern. The goal of this research was to examine the impact of distinct frying techniques, including deep frying (DF), air frying (AF), and vacuum frying (VF), on the nutritional, textural and flavor characteristics of oysters. The VF method demonstrated superior retention of beneficial properties and flavor, and reduced protein and lipid oxidation compared to the DF and AF methods. Furthermore, proteomic analysis of oysters was attempted to explain the molecular mechanisms governing the influence of key differential proteins. 20 major differential proteins, including actin-2 protein, tryptophan 2,3-dioxygenase and 1-alph, involved in oyster protein oxidation were identified, annotated and analyzed to elucidate their influence mechanisms. This research provides a deeper understanding of intricate interactions between frying techniques and oyster biochemistry, which offers valuable implications for enhancing food quality in seafood industry.
Collapse
Affiliation(s)
- Junbo Chu
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Baoshang Fu
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiangning Meng
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jiaxin Qiang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Simin Zhang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
3
|
Cheng L, Li X, Li X, Wu Y, An F, Luo Z, Geng F, Huang Q, Liu Z, Tian Y. The improvement mechanism of volatile for cooked Tibetan pork assisted with ultrasound at low-temperature: Based on the differences in oxidation of lipid and protein. ULTRASONICS SONOCHEMISTRY 2024; 110:107060. [PMID: 39255593 DOI: 10.1016/j.ultsonch.2024.107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Low-temperature cooking causes flavor weakness while improving the texture and digestive properties of meat. To enhance the flavor of low-temperature cooked Tibetan pork, samples were cooked at low-temperature with or without ultrasound-assisted (UBTP, BTP) for different times (30 min, 90 min) and then analyzed using GC-MS and LC-MS. The results showed that ultrasound-assisted cooking caused a significant increase in lipid oxidation by 9.10% in the early stage of the treatment. Additionally, at the later stage of ultrasound-assisted processing, proteins were oxidized and degraded, which resulted in a remarkable rise in the protein carbonyl content by 6.84%. With prolonged effects of ultrasound and low-temperature cooking, the formation of phenylacetaldehyde in UBTP-90 sample originated from the degradation of phenylalanine through multivariate statistics and correlation analysis. Meanwhile, trans, cis-2,6-nonadienal and 1-octen-3-one originated from the degradation of linolenic acid and arachidonic acid. This study clarified the mechanism of ultrasound-assisted treatment improving the flavor of low-temperature-cooked Tibetan pork based on the perspective of lipids and proteins oxidation, providing theoretical supports for flavor enhancement in Tibetan pork-related products.
Collapse
Affiliation(s)
- Lujie Cheng
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Yingmei Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China
| | - Fang Geng
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| | - Zhendong Liu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| | - Yuting Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
4
|
Lu Y, Zhuang Y, Jiang Y, Wang J, Dong L, Zhang Y, Wang S. Impact of lipid oxidation products on the digestibility and structural integrity of Myofibrillar proteins during thermal processing. Food Chem 2024; 463:141397. [PMID: 39332378 DOI: 10.1016/j.foodchem.2024.141397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
This study explores the effects of lipid oxidation products (LOPs), specifically CHP, t,t-DDE, and MDA, on the digestibility and structural integrity of myofibrillar proteins (MP) during processing. LOPs were first assessed by heating at 180 °C for 15 min, showing a significant reduction in digestibility in MDA-treated samples (65.40 %), followed by t,t-DDE (45.10 %) and CHP (13.07 %). MALDI-TOF MS analysis revealed decreased peptide abundance and lower average molecular weight in t,t-DDE- and MDA-treated samples. Notably, substantial decreases in α-helix content and increases in random coil structures were detected, particularly in MDA-treated samples. Assessments of surface hydrophobicity and thiol content underscored the detrimental impact of secondary LOPs on MP structure. Higher MDA concentrations led to a substantial reduction in intrinsic fluorescence intensity, along with an increase in Schiff base content. A PLS regression model demonstrated strong predictive capabilities for MP digestibility, highlighting the importance of optimizing meat processing parameters to minimize nutritional degradation.
Collapse
Affiliation(s)
- Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuan Zhuang
- China National Research Institute of Food & Fermentation Industry Co., Ltd, Beijing 100015, China
| | - Yu Jiang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Junping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lu Dong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Huang J, Yin T, Xiong S, Huang Q. Effect of refrigeration and reheating on the lipid oxidation and volatile compounds in silver carp surimi gels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39287107 DOI: 10.1002/jsfa.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/20/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND As unsaturated and saturated aldehydes, ketones are known to be responsible for off-odors in surimi products, and they are mainly derived from lipid oxidation. Because surimi-based products are rich in unsaturated fatty acids, they are prone to producing off-odors during the refrigeration and reheating processes, which are common treatments for leftovers. The present study investigated the color, lipid oxidation productions, fatty acid profiles and volatile components in surimi gels during refrigeration at 4 °C for 3 days with multiple reheating. RESULTS The results revealed that the accumulation rate of hydroperoxides was higher in the refrigeration stage, whereas the decomposition rate was higher during reheating in surimi gels. Both refrigeration and reheating treatments promoted conjugated diene values, acid values and carbonyl values. Nevertheless, reheating treatment decreased tohiobarbituric acid reactive substances and whiteness. The contents of unsaturated fatty acids, especially α-linolenic acid, arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, were reduced, whereas the contents of saturated fatty acids increased during refrigeration and multiple reheating. The unsaturated fatty acids were lost as a result of their oxidative deterioration. The volatile components profile showed that the accumulation of volatile components mainly occurred in the refrigeration stage. Multivariate data analysis was utilized to further clarify whether the off-odors in surimi gels were mainly generated in refrigeration. CONCLUSION Refrigeration and reheating both contributed to lipid oxidation and the generation of volatile compounds in surimi gels, but the off-odors were mainly generated during refrigeration. This research provides a novel understanding of the formation of food odors in processing. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjing Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Tao Yin
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Shanbai Xiong
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| |
Collapse
|
6
|
Braga LR, Oliveira MG, Pérez LM, Rangel ET, Machado F. Poly(vinyl chloride) Films Incorporated with Antioxidant ZnO-Flavonoid Nanoparticles: A Strategy for Food Preservation. Foods 2024; 13:2745. [PMID: 39272509 PMCID: PMC11395472 DOI: 10.3390/foods13172745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Antioxidant films were prepared using poly(vinyl chloride) (PVC) incorporated with 0.5% or 1.0% zinc oxide (ZnO)-flavonoid (quercetin or morin) nanoparticles (NPZnO-Q% or NPZnO-M%) via the casting method. NP incorporation within the polymer matrix influenced the structural, morphological, optical, and thermal properties of the PVC-based films, as well as their antioxidant activity as assessed using the DPPH radical scavenging method. Our results indicated that increasing ZnO-flavonoid NP concentration increased films thickness, while reducing ultraviolet light (UV) transmittance but conserving transparency. The presence of NPZnO-Q% or NPZnO-M% improved the surface uniformity and thermal stability of the active films. In terms of antioxidant activity, there was an enhancement in the DPPH radical scavenging capacity (PVC/ZnO-Q1.0% > PVC/ZnO-Q0.5% > PVC/ZnO-M0.5% > PVC/ZnO-M1.0% > PVC), suggesting that the packaging can help protect food from oxidative processes. Therefore, these antioxidant films represent an innovative strategy for using as active food packaging material, especially intended for aiding in quality preservation and extending the shelf life of fatty foods.
Collapse
Affiliation(s)
- Lilian R Braga
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília 70904-970, DF, Brazil
| | - Maria Graciele Oliveira
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília 70904-970, DF, Brazil
| | - Leonardo M Pérez
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 570, Rosario S2002LRL, Sant Fe, Argentina
- Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314, Rosario S2002QEO, Santa Fe, Argentina
| | - Ellen T Rangel
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília 70904-970, DF, Brazil
| | - Fabricio Machado
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília 70904-970, DF, Brazil
| |
Collapse
|
7
|
Simakin AV, Baimler IV, Dikovskaya AO, Kazantseva DV, Yanykin DV, Voronov VV, Uvarov OV, Astashev ME, Sarimov RM, Ivanov VE, Bruskov VI, Kozlov VA. Laser fragmentation of amorphous and crystalline selenium of various morphologies and assessment of their antioxidant and protection properties. Front Chem 2024; 12:1459477. [PMID: 39185370 PMCID: PMC11341537 DOI: 10.3389/fchem.2024.1459477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction: The process of laser-induced breakdown of amorphous and crystalline selenium nanoparticles (Se NPs) of various shapes during nanosecond laser fragmentation of aqueous colloidal solutions of nanoparticles with different concentrations has been studied. Methods: The methods of studying the characteristics of plasma and acoustic oscillations induced by optical breakdown are applied. The methods of assessing the concentration of hydrogen peroxide and hydroxyl radicals, the amount of long-lived reactive species of protein and 8-oxoguanine are applied. Results: It has been established that in the process of laser fragmentation of selenium nanoparticles at a wavelength of 532 nm, corresponding to the maximum absorption of selenium, the highest probability of breakdown, the number of plasma flashes, their luminosity and the amplitude of acoustic signals are achieved at concentrations of the order of 109 NPs/mL. It has been shown that the use of selenium nanoparticles of various shapes and structures leads to a change in the photoacoustic signal during laser-induced breakdown. When crystalline selenium nanoparticles are irradiated, the intensity of the photoacoustic response during breakdown turns out to be greater (1.5 times for flash luminosity and 3 times for acoustics) than when amorphous particles are irradiated at the same concentration. It has been shown that selenium nanoparticles exhibit significant antioxidant properties. Selenium nanoparticles effectively prevent the formation of reactive oxygen species (ROS) during water radiolysis, eliminate radiation-induced long-lived reactive species of protein, and reduce the radiation-chemical yield of a key marker of oxidative DNA damage - 8-oxoguanine. Discussion: In general, the intensity of processes occurring during laser fragmentation of amorphous and crystalline selenium nanoparticles differs significantly. The antioxidant properties are more pronounced in amorphous selenium nanoparticles compared to crystalline selenium nanoparticles.
Collapse
Affiliation(s)
- Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | | | - Dina V. Kazantseva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Denis V. Yanykin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Valery V. Voronov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Ruslan M. Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E. Ivanov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Vadim I. Bruskov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Valeriy A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Lopes D, Rey F, Gomes A, Duarte L, Pereira J, Pinho M, Melo T, Domingues R. Tracing the Impact of Domestic Storage Conditions on Antioxidant Activity and Lipid Profiles in the Edible Microalgae Chlorella vulgaris and Tetraselmis chui. Mar Drugs 2024; 22:254. [PMID: 38921565 PMCID: PMC11205134 DOI: 10.3390/md22060254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The microalgae Chlorella vulgaris and Tetraselmis chui are valued for their nutrient-rich content, including lipids and polyunsaturated fatty acids (PUFA). However, little is known about how storage and processing affect their lipid quality. This study aimed to assess the impact of domestic storage and cooking practices in dried biomass of C. vulgaris and T. chui. Four conditions were tested: control (newly opened package), light (storage at room temperature and daily light regimen for three weeks), frozen (storage in the freezer at -20 °C for three weeks), and heated (three cycles of 90 min at 100 °C). Lipid extracts were analyzed by GC-MS and LC-MS, and antioxidant activity through DPPH and ABTS radical scavenging assays. Tested storage conditions promoted a decrease in fatty acid content and in diacyl/lyso lipid species ratios of phospholipid (PC/LPC, PE/LPE) and betaine lipids (DGTS/MGTS). Lipid extracts from light treatment showed the lowest antioxidant activity in C. vulgaris (ABTS, IC40: 104.9; DPPH, IC20: 187.9 ± 15.0), while heat affected the antioxidant activity of T. chui (ABTS, IC40: 88.5 ± 2.8; DPPH, IC20 209.4 ± 10.9). These findings underscore the impact of managing storage and processing conditions to optimize the nutritional and functional benefits of C. vulgaris and T. chui in food and feed applications.
Collapse
Affiliation(s)
- Diana Lopes
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre & Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Felisa Rey
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre & Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandrina Gomes
- Mass Spectrometry Centre & Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Duarte
- Mass Spectrometry Centre & Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pereira
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marisa Pinho
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre & Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosário Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre & Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Liu Z, Xu M, Zhou S, Wang J, Huang Z. Enhancing the Thermal Stability of Zein Particle-Stabilized Aeratable Emulsions Through Genipin-Protein Cross-Linking and Its Possible Mechanism of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3707-3718. [PMID: 38268446 DOI: 10.1021/acs.jafc.3c07770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Protein particle-stabilized emulsions often lack thermal stability, impacting their industrial use. This study investigated the effects of genipin (GP)-zein cross-linked particles with varying GP-to-protein weight ratios (0/0.02/0.1:1) on emulsion thermal stability. Enhanced stability was observed at the GP level of 0.1. Heat treatment increased the covalent cross-linking in raw particles and emulsions. Isolated particles from heated emulsions grew in size (micrometer scale) with higher GP levels, unlike heated raw particles (nanoscale). GP-protein cross-linking reduced the droplet-droplet and particle-emulsifier interactions in the heated emulsion. Spectroscopic analysis and electrophoresis revealed that GP-zein cross-linking increased protein structural stability and inhibited nondisulfide and non-GP cross-linking reactions in heated emulsions. The GP-zein bridges between particles at the oil-water interface create strong connections in the particle layer (shell), referred to as "particle-shell locking", enhancing the thermal stability of emulsion significantly. This insight aids the future design of protein-particle-based emulsions, preserving properties like aeratability during thermal processing.
Collapse
Affiliation(s)
- Zelong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Meiyu Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Zhaoxian Huang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Cueto Covarrubias LA, Valdez Solana MA, Avitia Domínguez C, Téllez Valencia A, Meza Velázquez JA, Sierra Campos E. Characterization of Moringa oleifera Seed Oil for the Development of a Biopackage Applied to Maintain the Quality of Turkey Ham. Polymers (Basel) 2023; 16:132. [PMID: 38201797 PMCID: PMC10780569 DOI: 10.3390/polym16010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Moringa oleifera has a high level of active chemicals that are useful in the food industry, and they have antibacterial and food preservation properties. The characterization of M. oleifera seed oil (MOS) may vary due to agronomic and environmental factors. Therefore, it was necessary to know the composition of lipids present in our oil extracted under pressing at 180 °C and thus determine if it is suitable to produce a biopackaging. Within the characterization of the oil, it was obtained that MOS presented high-quality fatty acids (71% oleic acid) with low values of acidity (0.71 mg KOH/g) and peroxide (1.74 meq O2/kg). Furthermore, MOS was not very sensitive to lipoperoxidation by tert-butyl hydroperoxide (tBuOOH) and its phenolic components, oleic acid and tocopherols, allowed MOS to present a recovery of 70% after 30 min of treatment. Subsequently, a biopackaging was developed using a multiple emulsion containing corn starch/carboxymethylcellulose/glycerol/MOS, which presented good mechanical properties (strength and flexibility), transparency, and a barrier that prevents the transfer of UV light by 30% and UV-C by 98%, as well as a flux with the atmosphere of 5.12 × 10-8 g/ m.s. Pa that prevents moisture loss and protects the turkey ham from O2. Hence, the turkey ham suffered less weight loss and less hardness due to its preservation in the biopackaging.
Collapse
Affiliation(s)
- Lesly Adamari Cueto Covarrubias
- Facultad de Ciencias Químicas GP, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35015, Durango, Mexico
| | - Mónica Andrea Valdez Solana
- Facultad de Ciencias Químicas GP, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35015, Durango, Mexico
| | - Claudia Avitia Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango 34000, Durango, Mexico
| | - Alfredo Téllez Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango 34000, Durango, Mexico
| | - Jorge Armando Meza Velázquez
- Facultad de Ciencias Químicas GP, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35015, Durango, Mexico
| | - Erick Sierra Campos
- Facultad de Ciencias Químicas GP, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35015, Durango, Mexico
| |
Collapse
|
11
|
Ben Akacha B, Ben Hsouna A, Generalić Mekinić I, Ben Belgacem A, Ben Saad R, Mnif W, Kačániová M, Garzoli S. Salvia officinalis L. and Salvia sclarea Essential Oils: Chemical Composition, Biological Activities and Preservative Effects against Listeria monocytogenes Inoculated into Minced Beef Meat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3385. [PMID: 37836125 PMCID: PMC10574192 DOI: 10.3390/plants12193385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In this study, Salvia officinalis L. and Salvia sclarea essential oils (EOs) were investigated using gas chromatography-mass spectrometry (GC-MS) to describe their chemical composition. The obtained results show, for both EOs, a profile rich in terpene metabolites, with monoterpenes predominating sesquiterpenes but with significant qualitative and quantitative differences. The main compound found in the Salvia officinalis EO (SOEO) was camphor (19.0%), while in Salvia sclarea EO (SCEO), it was linalyl acetate (59.3%). Subsequently, the in vitro antimicrobial activity of the EOs against eight pathogenic strains was evaluated. The disc diffusion method showed a significant lysis zone against Gram-positive bacteria. The minimum inhibitory concentrations (MICs) ranged from 3.7 mg/mL to 11.2 mg/mL, indicating that each EO has specific antimicrobial activity. Both EOs also showed significant antiradical activity against DPPH radicals and total antioxidant activity. In addition, the preservative effect of SOEO (9.2%) and SCEO (9.2%), alone or in combination, was tested in ground beef, and the inhibitory effect against Listeria monocytogenes inoculated into the raw ground beef during cold storage was evaluated. Although the effect of each individual EO improved the biochemical, microbiological, and sensory parameters of the samples, their combination was more effective and showed complete inhibition of L. monocytogenes after 7 days of storage at 4 °C. The results show that both EOs could be used as safe and natural preservatives in various food and/or pharmaceutical products.
Collapse
Affiliation(s)
- Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia;
| | - Améni Ben Belgacem
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Miroslava Kačániová
- Faculty of Horticulture, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|