1
|
Pearson JRD, Cuzzubbo S, McArthur S, Durrant LG, Adhikaree J, Tinsley CJ, Pockley AG, McArdle SEB. Immune Escape in Glioblastoma Multiforme and the Adaptation of Immunotherapies for Treatment. Front Immunol 2020; 11:582106. [PMID: 33178210 PMCID: PMC7594513 DOI: 10.3389/fimmu.2020.582106] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequently occurring primary brain tumor and has a very poor prognosis, with only around 5% of patients surviving for a period of 5 years or more after diagnosis. Despite aggressive multimodal therapy, consisting mostly of a combination of surgery, radiotherapy, and temozolomide chemotherapy, tumors nearly always recur close to the site of resection. For the past 15 years, very little progress has been made with regards to improving patient survival. Although immunotherapy represents an attractive therapy modality due to the promising pre-clinical results observed, many of these potential immunotherapeutic approaches fail during clinical trials, and to date no immunotherapeutic treatments for GBM have been approved. As for many other difficult to treat cancers, GBM combines a lack of immunogenicity with few mutations and a highly immunosuppressive tumor microenvironment (TME). Unfortunately, both tumor and immune cells have been shown to contribute towards this immunosuppressive phenotype. In addition, current therapeutics also exacerbate this immunosuppression which might explain the failure of immunotherapy-based clinical trials in the GBM setting. Understanding how these mechanisms interact with one another, as well as how one can increase the anti-tumor immune response by addressing local immunosuppression will lead to better clinical results for immune-based therapeutics. Improving therapeutic delivery across the blood brain barrier also presents a challenge for immunotherapy and future therapies will need to consider this. This review highlights the immunosuppressive mechanisms employed by GBM cancers and examines potential immunotherapeutic treatments that can overcome these significant immunosuppressive hurdles.
Collapse
Affiliation(s)
- Joshua R. D. Pearson
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stefania Cuzzubbo
- Université de Paris, PARCC, INSERM U970, Paris, France
- Laboratoire de Recherches Biochirurgicales (Fondation Carpentier), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - Simon McArthur
- Institute of Dentistry, Barts & the London School of Medicine & Dentistry, Blizard Institute, Queen Mary, University of London, London, United Kingdom
| | - Lindy G. Durrant
- Scancell Ltd, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Jason Adhikaree
- Academic Oncology, Nottingham University NHS Trusts, City Hospital Campus, Nottingham, United Kingdom
| | - Chris J. Tinsley
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - A. Graham Pockley
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephanie E. B. McArdle
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
2
|
ElJalby M, Pannullo SC, Schwartz TH, Parashar B, Wernicke AG. Optimal Timing and Sequence of Immunotherapy When Combined with Stereotactic Radiosurgery in the Treatment of Brain Metastases. World Neurosurg 2019; 127:397-404. [PMID: 31004856 DOI: 10.1016/j.wneu.2019.04.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Checkpoint immunotherapy (CIT) is an emerging and exciting treatment modality for the treatment of cancer. Much excitement has ensued in the potential of CIT to revolutionize the treatment and prognosis of brain metastases. The combination of stereotactic radiosurgery (SRS) and CIT has also been studied and showed promise compared with either treatment modality alone. However, several questions have arisen, in particular, the timing at which SRS and CIT should be administered relative to each other. We reviewed the reported data and attempted to offer a potential answer to this question.
Collapse
Affiliation(s)
- Mahmoud ElJalby
- Weill Medical College of Cornell University, New York, New York, USA
| | - Susan C Pannullo
- Department of Neurosurgery, Weill Medical College of Cornell University, New York, New York, USA
| | - Theodore H Schwartz
- Department of Neurosurgery, Weill Medical College of Cornell University, New York, New York, USA
| | - Bhupesh Parashar
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, New York, USA
| | - A Gabriella Wernicke
- Department of Neurosurgery, Weill Medical College of Cornell University, New York, New York, USA; Department of Radiation Oncology, Weill Medical College of Cornell University, New York, New York, USA.
| |
Collapse
|
5
|
Boland JW, McWilliams K, Ahmedzai SH, Pockley AG. Effects of opioids on immunologic parameters that are relevant to anti-tumour immune potential in patients with cancer: a systematic literature review. Br J Cancer 2014; 111:866-73. [PMID: 25025960 PMCID: PMC4150281 DOI: 10.1038/bjc.2014.384] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/02/2014] [Accepted: 06/10/2014] [Indexed: 01/18/2023] Open
Abstract
Background: The immune system has a central role in controlling cancer, and factors that influence protective antitumour immunity could therefore have a significant impact on the course of malignant disease. Opioids are essential for the management of cancer pain, and preclinical studies indicate that opioids have the potential to influence these tumour immune surveillance mechanisms. The aim of this systematic literature review is to evaluate the clinical effects of opioids on the immune system of patients with cancer. Methods: A systematic search of Ovid MEDLINE (PubMed) and Embase, Cochrane database and Web of Knowledge for clinical studies, which evaluated the effects of opioids on the immune system in patients with cancer, was performed. Results: Five human studies, which have assessed the effects of opioids on the immune system in patients with cancer, were identified. Although all of these evaluated the effect of morphine on immunologic end points in patients with cancer, none measured the clinical effects. Conclusions: Evidence from preclinical, healthy volunteer and surgical models suggests that different opioids variably influence protective anti-tumour immunity; however, actual data derived from cancer populations are inconclusive and definitive recommendations cannot be made. Appropriately designed and powered studies assessing clinical outcomes of opioid use in people with cancer are therefore required to inform oncologists and others involved in cancer care about the rational use of opioids in this patient group.
Collapse
Affiliation(s)
- J W Boland
- Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - K McWilliams
- Palliative Medicine Research Department, Beatson Oncology Centre, Glasgow G11 0YN, UK
| | - S H Ahmedzai
- Department of Oncology, The Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - A G Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
6
|
Xiao-Ai-Ping, a TCM Injection, Enhances the Antigrowth Effects of Cisplatin on Lewis Lung Cancer Cells through Promoting the Infiltration and Function of CD8(+) T Lymphocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:879512. [PMID: 23956781 PMCID: PMC3730189 DOI: 10.1155/2013/879512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/17/2013] [Accepted: 06/28/2013] [Indexed: 12/20/2022]
Abstract
Objectives. To investigate how Xiao-Ai-Ping injection, a traditional Chinese medicine and an ancillary drug in tumor treatment, enhances the antitumor effects of cisplatin on Lewis lung cancer (LLC) cells. Methods. LLC-bearing mice were daily intraperitoneally injected with various doses of cisplatin, Xiao-Ai-Ping, or cisplatin plus Xiao-Ai-Ping, respectively. Body weight and tumor volumes were measured every three days. Results. Combination of Xiao-Ai-Ping and cisplatin yielded significantly better antigrowth and proapoptotic effects on LLC xenografts than sole drug treatment did. In addition, we found that Xiao-Ai-Ping triggered the infiltration of CD8+ T cells, a group of cytotoxic T cells, to LLC xenografts. Furthermore, the mRNA levels of interferon-γ (ifn-γ), perforin-1 (prf-1), and granzyme B (gzmb) in CD8+ T cells were significantly increased after combination treatment of Xiao-Ai-Ping and cisplatin. In vitro studies showed that Xiao-Ai-Ping markedly upregulated the mRNA levels of ifn-γ, prf-1, and gzmb in CD8+ T cells in a concentration-dependent manner, suggesting that Xiao-Ai-Ping augments the function of CD8+ T cells. Conclusions. Xiao-Ai-Ping promotes the infiltration and function of CD8+ T cells and thus enhances the antigrowth effects of cisplatin on LLC xenografts, which provides new evidence for the combination of Xiao-Ai-Ping and cisplatin in clinic in China.
Collapse
|