1
|
Li J, Ling J, Yao C. Recent advances in NIR-II fluorescence based theranostic approaches for glioma. Front Chem 2022; 10:1054913. [PMID: 36438867 PMCID: PMC9682463 DOI: 10.3389/fchem.2022.1054913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 09/19/2023] Open
Abstract
Gliomas are among the most common malignant tumors in the central nervous system and lead to poor life expectancy. However, the effective treatment of gliomas remains a considerable challenge. The recent development of near infrared (NIR) II (1000-1700 nm) theranostic agents has led to powerful strategies in diagnosis, targeted delivery of drugs, and accurate therapy. Because of the high capacity of NIR-II light in deep tissue penetration, improved spatiotemporal resolution can be achieved to facilitate the in vivo detection of gliomas via fluorescence imaging, and high contrast fluorescence imaging guided surgery can be realized. In addition to the precise imaging of tumors, drug delivery nano-platforms with NIR-II agents also allow the delivery process to be monitored in real-time. In addition, the combination of targeted drug delivery, photodynamic therapy, and photothermal therapy in the NIR region significantly improves the therapeutic effect against gliomas. Thus, this mini-review summarizes the recent developments in NIR-II fluorescence-based theranostic agents for glioma treatment.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Nosocomial Infection Management, Nantong Third People’s Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chaoyi Yao
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
2
|
BRAF Modulates Lipid Use and Accumulation. Cancers (Basel) 2022; 14:cancers14092110. [PMID: 35565240 PMCID: PMC9105200 DOI: 10.3390/cancers14092110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
There is increasing evidence that oxidative metabolism and fatty acids play an important role in BRAF-driven tumorigenesis, yet the effect of BRAF mutation and expression on metabolism is poorly understood. We examined how BRAF mutation and expression modulates metabolite abundance. Using the non-transformed NIH3T3 cell line, we generated cells that stably overexpressed BRAF V600E or BRAF WT. We found that cells expressing BRAF V600E were enriched with immunomodulatory lipids. Further, we found a unique transcriptional signature that was exclusive to BRAF V600E expression. We also report that BRAF V600E mutation promoted accumulation of long chain polyunsaturated fatty acids (PUFAs) and rewired metabolic flux for non-Warburg behavior. This cancer promoting mutation further induced the formation of tunneling nanotube (TNT)-like protrusions in NIH3T3 cells that preferentially accumulated lipid droplets. In the plasma of melanoma patients harboring the BRAF V600E mutation, levels of lysophosphatidic acid, sphingomyelin, and long chain fatty acids were significantly increased in the cohort of patients that did not respond to BRAF inhibitor therapy. Our findings show BRAF V600 status plays an important role in regulating immunomodulatory lipid profiles and lipid trafficking, which may inform future therapy across cancers.
Collapse
|
3
|
Alvarez R, Mandal D, Chittiboina P. Canonical and Non-Canonical Roles of PFKFB3 in Brain Tumors. Cells 2021; 10:cells10112913. [PMID: 34831136 PMCID: PMC8616071 DOI: 10.3390/cells10112913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
PFKFB3 is a bifunctional enzyme that modulates and maintains the intracellular concentrations of fructose-2,6-bisphosphate (F2,6-P2), essentially controlling the rate of glycolysis. PFKFB3 is a known activator of glycolytic rewiring in neoplastic cells, including central nervous system (CNS) neoplastic cells. The pathologic regulation of PFKFB3 is invoked via various microenvironmental stimuli and oncogenic signals. Hypoxia is a primary inducer of PFKFB3 transcription via HIF-1alpha. In addition, translational modifications of PFKFB3 are driven by various intracellular signaling pathways that allow PFKFB3 to respond to varying stimuli. PFKFB3 synthesizes F2,6P2 through the phosphorylation of F6P with a donated PO4 group from ATP and has the highest kinase activity of all PFKFB isoenzymes. The intracellular concentration of F2,6P2 in cancers is maintained primarily by PFKFB3 allowing cancer cells to evade glycolytic suppression. PFKFB3 is a primary enzyme responsible for glycolytic tumor metabolic reprogramming. PFKFB3 protein levels are significantly higher in high-grade glioma than in non-pathologic brain tissue or lower grade gliomas, but without relative upregulation of transcript levels. High PFKFB3 expression is linked to poor survival in brain tumors. Solitary or concomitant PFKFB3 inhibition has additionally shown great potential in restoring chemosensitivity and radiosensitivity in treatment-resistant brain tumors. An improved understanding of canonical and non-canonical functions of PFKFB3 could allow for the development of effective combinatorial targeted therapies for brain tumors.
Collapse
Affiliation(s)
- Reinier Alvarez
- Department of Neurological Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA;
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
| | - Debjani Mandal
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA
- Correspondence:
| |
Collapse
|
4
|
An S, Camarillo JM, Huang TYT, Li D, Morris JA, Zoltek MA, Qi J, Behbahani M, Kambhampati M, Kelleher NL, Nazarian J, Thomas PM, Saratsis AM. Histone tail analysis reveals H3K36me2 and H4K16ac as epigenetic signatures of diffuse intrinsic pontine glioma. J Exp Clin Cancer Res 2020; 39:261. [PMID: 33239043 PMCID: PMC7687710 DOI: 10.1186/s13046-020-01773-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/09/2020] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Diffuse intrinsic pontine glioma (DIPG) is an aggressive pediatric brainstem tumor. Most DIPGs harbor a histone H3 mutation, which alters histone post-translational modification (PTM) states and transcription. Here, we employed quantitative proteomic analysis to elucidate the impact of the H3.3K27M mutation, as well as radiation and bromodomain inhibition (BRDi) with JQ1, on DIPG PTM profiles. METHODS We performed targeted mass spectrometry on H3.3K27M mutant and wild-type tissues (n = 12) and cell lines (n = 7). RESULTS We found 29.2 and 26.4% of total H3.3K27 peptides were H3.3K27M in mutant DIPG tumor cell lines and tissue specimens, respectively. Significant differences in modification states were observed in H3.3K27M specimens, including at H3K27, H3K36, and H4K16. In addition, H3.3K27me1 and H4K16ac were the most significantly distinct modifications in H3.3K27M mutant tumors, relative to wild-type. Further, H3.3K36me2 was the most abundant co-occurring modification on the H3.3K27M mutant peptide in DIPG tissue, while H4K16ac was the most acetylated residue. Radiation treatment caused changes in PTM abundance in vitro, including increased H3K9me3. JQ1 treatment resulted in increased mono- and di-methylation of H3.1K27, H3.3K27, H3.3K36 and H4K20 in vitro. CONCLUSION Taken together, our findings provide insight into the effects of the H3K27M mutation on histone modification states and response to treatment, and suggest that H3K36me2 and H4K16ac may represent unique tumor epigenetic signatures for targeted DIPG therapy.
Collapse
Affiliation(s)
- Shejuan An
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeannie M Camarillo
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Tina Yi-Ting Huang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daphne Li
- Department of Neurological Surgery, Loyola University, Chicago, IL, USA
| | - Juliette A Morris
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Madeline A Zoltek
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Jin Qi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mandana Behbahani
- Department of Neurological Surgery, University of Illinois Chicago, Chicago, IL, USA
| | - Madhuri Kambhampati
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Neil L Kelleher
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - Paul M Thomas
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Amanda M Saratsis
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Division of Pediatric Neurosurgery, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Box 28., Chicago, IL, 60611-2991, USA.
| |
Collapse
|
5
|
Blionas A, Giakoumettis D, Klonou A, Neromyliotis E, Karydakis P, Themistocleous MS. Paediatric gliomas: diagnosis, molecular biology and management. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:251. [PMID: 30069453 PMCID: PMC6046297 DOI: 10.21037/atm.2018.05.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 01/14/2023]
Abstract
Paediatric gliomas represent the most common brain tumour in children. Early diagnosis and treatment greatly improve survival. Histological grade is the most significant classification system affecting treatment planning and prognosis. Paediatric gliomas depend on pathways and genes responsible for mitotic activity and cell proliferation as well as angiogenesis (MAPK, VEGF, EFGR pathways). Symptoms such as focal neurologic deficit or seizures can facilitate diagnosis, but they are not always present and therefore diagnosis is occasionally delayed. Imaging has adequate diagnostic accuracy (surpassing 90%), and novel imaging techniques such as MR spectroscopy and PET increase only slightly this percentage. Low grade gliomas (LGG) can be approached conservatively but most authors suggest surgical excision. High grade gliomas (HGG) are always operated with exception of specific contradictions including butterfly or extensive dominant hemisphere gliomas. Surgical excision is universally followed by radiotherapy and chemotherapy, which slightly increase survival. Inoperable cases can be managed with or without radiosurgery depending on location and size, with adjunctive use of radiotherapy and chemotherapy. Surgical excision must be aggressive and gross total resection (GTR) should be attempted, if possible, since it can triple survival. Radiosurgery is effective on smaller tumours of <2 cm2. Surgical excision is always the treatment of choice, but glioma recurrences, and residual tumours in non-critical locations are candidates for radiosurgery especially if tumour volume is low. Management of recurrences includes surgery, radiosurgery and chemoradiotherapy and it should be individualized according to location and size. In combination with molecular targeted therapeutic schemes, glioma management will be immensely improved in the next years.
Collapse
Affiliation(s)
- Alexandros Blionas
- Department of Neurosurgery, G. Gennimatas General Hospital, Athens, Greece
| | - Dimitrios Giakoumettis
- Department of Neurosurgery, University of Athens Medical School, “Evangelismos” General Hospital, Athens, Greece
| | - Alexia Klonou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
6
|
Pal S, Kozono D, Yang X, Fendler W, Fitts W, Ni J, Alberta JA, Zhao J, Liu KX, Bian J, Truffaux N, Weiss WA, Resnick AC, Bandopadhayay P, Ligon KL, DuBois SG, Mueller S, Chowdhury D, Haas-Kogan DA. Dual HDAC and PI3K Inhibition Abrogates NFκB- and FOXM1-Mediated DNA Damage Response to Radiosensitize Pediatric High-Grade Gliomas. Cancer Res 2018; 78:4007-4021. [PMID: 29760046 DOI: 10.1158/0008-5472.can-17-3691] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/14/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022]
Abstract
Aberrant chromatin remodeling and activation of the PI3K pathway have been identified as important mediators of pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) pathogenesis. As inhibition of these pathways are promising therapeutic avenues and radiation is the only modality to prolong survival of patients with DIPG, we sought to explore radiosensitizing functions of such inhibition and to explore mechanisms of action of such agents. Here, we demonstrate that combined treatment with radiotherapy and CUDC-907, a novel first-in-class dual inhibitor of histone deacetylases (HDAC) and PI3K, evokes a potent cytotoxic response in pHGG and DIPG models. CUDC-907 modulated DNA damage response by inhibiting radiation-induced DNA repair pathways including homologous recombination and nonhomologous end joining. The radiosensitizing effects of CUDC-907 were mediated by decreased NFκB/Forkhead box M1 (FOXM1) recruitment to promoters of genes involved in the DNA damage response; exogenous expression of NFκB/FOXM1 protected from CUDC-907-induced cytotoxicity. Together, these findings reveal CUDC-907 as a novel radiosensitizer with potent antitumor activity in pHGG and DIPG and provide a preclinical rationale for the combination of CUDC-907 with radiotherapy as a novel therapeutic strategy against pHGG and DIPG. More globally, we have identified NFκB and FOXM1 and their downstream transcriptional elements as critical targets for new treatments for pHGG and DIPG.Significance: These findings describe the radiosensitizing effect of a novel agent in pediatric high-grade gliomas, addressing a critical unmet need of increasing the radiation sensitivity of these highly aggressive tumors. Cancer Res; 78(14); 4007-21. ©2018 AACR.
Collapse
Affiliation(s)
- Sharmistha Pal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaodong Yang
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Wojciech Fendler
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biostatistics and Translational Medicine, Medical University of Lodz, Poland
| | | | - Jing Ni
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - John A Alberta
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jean Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Kevin X Liu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jie Bian
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nathalene Truffaux
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, California.,Department of Neurosurgery, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Adam C Resnick
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keith L Ligon
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Sabine Mueller
- Department of Neurology, University of California, San Francisco, San Francisco, California.,Department of Neurosurgery, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Molecular Basis of Pediatric Brain Tumors. Neuromolecular Med 2017; 19:256-270. [DOI: 10.1007/s12017-017-8455-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/21/2017] [Indexed: 01/03/2023]
|
8
|
Busse TM, Roth JJ, Wilmoth D, Wainwright L, Tooke L, Biegel JA. Copy number alterations determined by single nucleotide polymorphism array testing in the clinical laboratory are indicative of gene fusions in pediatric cancer patients. Genes Chromosomes Cancer 2017; 56:730-749. [DOI: 10.1002/gcc.22477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- Tracy M. Busse
- Department of Pathology and Laboratory Medicine Children's Hospital of Los Angeles; Center for Personalized Medicine; Los Angeles California
| | - Jacquelyn J. Roth
- Department of Pathology and Laboratory Medicine; Hospital of the University of Pennsylvania; Philadelphia Pennsylvania
| | - Donna Wilmoth
- Department of Pathology and Laboratory Medicine; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Luanne Wainwright
- Department of Pathology and Laboratory Medicine; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Laura Tooke
- Department of Pathology and Laboratory Medicine; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Jaclyn A. Biegel
- Department of Pathology and Laboratory Medicine Children's Hospital of Los Angeles; Center for Personalized Medicine; Los Angeles California
- Department of Pathology; USC Keck School of Medicine; Los Angeles California
| |
Collapse
|
9
|
Insights into molecular therapy of glioma: current challenges and next generation blueprint. Acta Pharmacol Sin 2017; 38:591-613. [PMID: 28317871 DOI: 10.1038/aps.2016.167] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Glioma accounts for the majority of human brain tumors. With prevailing treatment regimens, the patients have poor survival rates. In spite of current development in mainstream glioma therapy, a cure for glioma appears to be out of reach. The infiltrative nature of glioma and acquired resistance substancially restrict the therapeutic options. Better elucidation of the complicated pathobiology of glioma and proteogenomic characterization might eventually open novel avenues for the design of more sophisticated and effective combination regimens. This could be accomplished by individually tailoring progressive neuroimaging techniques, terminating DNA synthesis with prodrug-activating genes, silencing gliomagenesis genes (gene therapy), targeting miRNA oncogenic activity (miRNA-mRNA interaction), combining Hedgehog-Gli/Akt inhibitors with stem cell therapy, employing tumor lysates as antigen sources for efficient depletion of tumor-specific cancer stem cells by cytotoxic T lymphocytes (dendritic cell vaccination), adoptive transfer of chimeric antigen receptor-modified T cells, and combining immune checkpoint inhibitors with conventional therapeutic modalities. Thus, the present review captures the latest trends associated with the molecular mechanisms involved in glial tumorigenesis as well as the limitations of surgery, radiation and chemotherapy. In this article we also critically discuss the next generation molecular therapeutic strategies and their mechanisms for the successful treatment of glioma.
Collapse
|
10
|
Garcia MA, Solomon DA, Haas-Kogan DA. Exploiting molecular biology for diagnosis and targeted management of pediatric low-grade gliomas. Future Oncol 2016; 12:1493-506. [PMID: 27072750 PMCID: PMC4915741 DOI: 10.2217/fon-2016-0039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/29/2016] [Indexed: 12/14/2022] Open
Abstract
The majority of brain tumors arising in children are low-grade gliomas. Although historically categorized together as pediatric low-grade gliomas (PLGGs), there is significant histologic and genetic diversity within this group. In general, prognosis for PLGGs is excellent, and limitation of sequelae from tumor and treatment is paramount. Advances in high-throughput genetic sequencing and gene expression profiling are fundamentally changing the way PLGGs are classified and managed. Here, we review the histologic subtypes and highlight how recent advances in elucidating the molecular pathogenesis of these tumors have refined diagnosis and prognostication. Additionally, we discuss how characterizing specific genetic alterations has paved the way for the rational use of targeted therapies that are currently in various phase clinical trials.
Collapse
Affiliation(s)
- Michael A Garcia
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - David A Solomon
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, CA, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Brigham & Women's Hospital, Boston Children's Hospital, MA, USA
| |
Collapse
|
11
|
Helfferich J, Nijmeijer R, Brouwer OF, Boon M, Fock A, Hoving EW, Meijer L, den Dunnen WFA, de Bont ESJM. Neurofibromatosis type 1 associated low grade gliomas: A comparison with sporadic low grade gliomas. Crit Rev Oncol Hematol 2016; 104:30-41. [PMID: 27263935 DOI: 10.1016/j.critrevonc.2016.05.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 03/24/2016] [Accepted: 05/12/2016] [Indexed: 11/29/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder, associated with a variable clinical phenotype including café-au-lait spots, intertriginous freckling, Lisch nodules, neurofibromas, optic pathway gliomas and distinctive bony lesions. NF1 is caused by a mutation in the NF1 gene, which codes for neurofibromin, a large protein involved in the MAPK- and the mTOR-pathway through RAS-RAF signalling. NF1 is a known tumour predisposition syndrome, associated with different tumours of the nervous system including low grade gliomas (LGGs) in the paediatric population. The focus of this review is on grade I pilocytic astrocytomas (PAs), the most commonly observed histologic subtype of low grade gliomas in NF1. Clinically, these PAs have a better prognosis and show different localisation patterns than their sporadic counterparts, which are most commonly associated with a KIAA1549:BRAF fusion. In this review, possible mechanisms of tumourigenesis in LGGs with and without NF1 will be discussed, including the contribution of different signalling pathways and tumour microenvironment. Furthermore we will discuss how increased understanding of tumourigenesis may lead to new potential targets for treatment.
Collapse
Affiliation(s)
- Jelte Helfferich
- Department of Paediatrics, Beatrix Children's Hospital, Paediatric Oncology/Hematology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Ronald Nijmeijer
- Department of Pathology and Medical Biology, Pathology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Oebele F Brouwer
- Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Maartje Boon
- Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Annemarie Fock
- Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Eelco W Hoving
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lisethe Meijer
- Department of Paediatrics, Beatrix Children's Hospital, Paediatric Oncology/Hematology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, Pathology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eveline S J M de Bont
- Department of Paediatrics, Beatrix Children's Hospital, Paediatric Oncology/Hematology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
12
|
Kelley K, Knisely J, Symons M, Ruggieri R. Radioresistance of Brain Tumors. Cancers (Basel) 2016; 8:cancers8040042. [PMID: 27043632 PMCID: PMC4846851 DOI: 10.3390/cancers8040042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/10/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
Radiation therapy (RT) is frequently used as part of the standard of care treatment of the majority of brain tumors. The efficacy of RT is limited by radioresistance and by normal tissue radiation tolerance. This is highlighted in pediatric brain tumors where the use of radiation is limited by the excessive toxicity to the developing brain. For these reasons, radiosensitization of tumor cells would be beneficial. In this review, we focus on radioresistance mechanisms intrinsic to tumor cells. We also evaluate existing approaches to induce radiosensitization and explore future avenues of investigation.
Collapse
Affiliation(s)
- Kevin Kelley
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Jonathan Knisely
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Marc Symons
- The Feinstein Institute for Molecular Medicine, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Rosamaria Ruggieri
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
- The Feinstein Institute for Molecular Medicine, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| |
Collapse
|
13
|
Flaum N, Lorigan P, Whitfield GA, Hawkins RE, Pinkham MB. Integrating radiation therapy with emerging systemic therapies: Lessons from a patient with cerebral radionecrosis, spinal cord myelopathy, and radiation pneumonitis. Pract Radiat Oncol 2016; 6:110-3. [PMID: 26723549 DOI: 10.1016/j.prro.2015.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Nicola Flaum
- Medical Oncology, Christie NHS Foundation Trust, Manchester, UK.
| | - Paul Lorigan
- Medical Oncology, Christie NHS Foundation Trust, Manchester, UK; University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Gillian A Whitfield
- University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Manchester, UK; The Children's Brain Tumour Research Network, University of Manchester, UK
| | - Robert E Hawkins
- Cancer Research UK Manchester Institute, University of Manchester, the Christie NHS Foundation Trust, Manchester, UK
| | - Mark B Pinkham
- University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Manchester, UK; School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
14
|
Comparative Aspects of BRAF Mutations in Canine Cancers. Vet Sci 2015; 2:231-245. [PMID: 29061943 PMCID: PMC5644641 DOI: 10.3390/vetsci2030231] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023] Open
Abstract
Activating mutations of the BRAF gene lead to constitutive activation of the MAPK pathway. The characterization and discovery of BRAF mutations in a variety of human cancers has led to the development of specific inhibitors targeting the BRAF/MAPK pathway and dramatically changed clinical outcomes in BRAF-mutant melanoma patients. Recent discovery of BRAF mutation in canine cancers underscores the importance of MAPK pathway activation as an oncogenic molecular alteration evolutionarily conserved between species. A comparative approach using the domestic dog as a spontaneous cancer model will provide new insights into the dysregulation of BRAF/MAPK pathway in carcinogenesis and facilitate in vivo studies to evaluate therapeutic strategies targeting this pathway's molecules for cancer therapy. The BRAF mutation in canine cancers may also represent a molecular marker and therapeutic target in veterinary oncology. This review article summarizes the current knowledge on BRAF mutations in human and canine cancers and discusses the potential applications of this abnormality in veterinary oncology.
Collapse
|
15
|
Confirmation of Bevacizumab Activity, and Maintenance of Efficacy in Retreatment After Subsequent Relapse, in Pediatric Low-grade Glioma. J Pediatr Hematol Oncol 2015; 37:e341-6. [PMID: 26056795 DOI: 10.1097/mph.0000000000000371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Management of low-grade gliomas (LGG) can be a challenge, particularly when not resectable and refractory or recurrent following standard treatments. We undertook a retrospective analysis of 2 institutions' experiences treating children for refractory or progressive LGG with bevacizumab-based therapy (BBT). PROCEDURE Inclusion criteria were patients younger than 18 years of age who had previously failed one or more lines of therapy. Treatment was intravenous bevacizumab 10 mg/kg and intravenous irinotecan 125 to 150 mg/m2 every 2 weeks. RESULTS Sixteen children (median age of 8.6 y), 5 with neurofibromatosis type 1 and 8 with disseminated disease were treated between 2009 and 2013. Median duration of treatment was 12 months (range, 3 to 45 mo). Seven patients (44%) showed clinical improvement (3 patients within a month) and 8 patients (50%) remained clinically stable during BBT. Imaging studies showed 3 (19%) had a partial response, 11 (69%) stable disease, and 2 (12%) had progressive disease. Four patients had progressive disease after stopping BBT (median duration of 5 mo). Three of these 4 were able to be retreated with BBT and all achieved an objective response. Treatment was well tolerated with no grade 3 or 4 toxicities related to bevacizumab. Irinotecan was discontinued in 4 patients because of grade 2-3 toxicities. CONCLUSIONS We conclude that BBT is well tolerated and led to disease control in patients with refractory or recurrent cases of LGG. Retreatment with BBT led to disease control in most of these cases. Larger, prospective studies are warranted to confirm these results.
Collapse
|
16
|
Abstract
High-grade gliomas (HGGs) are extremely lethal tumors. Survival has not changed significantly in the past decades. The only known prognostic factors in pediatric HGGs (pHGGs) are extent of resection and histologic grade. Treatment has historically been based on adult trials because of the rarity of pHGGs and the lack of genomic tools to explore their unique molecular characteristics. The recent advances in molecular biological data helped divide these tumors into distinct subgroups. In this review, the authors focus on major molecular targets of alterations in pHGGs: histone H3.3, telomeres, PDGFRA, IDH, BRAF (V600E), ACVR1 and NTRK and briefly highlight the difference with the adult counterpart.
Collapse
Affiliation(s)
- Omar Chamdine
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
17
|
Rodriguez FJ, Schniederjan MJ, Nicolaides T, Tihan T, Burger PC, Perry A. High rate of concurrent BRAF-KIAA1549 gene fusion and 1p deletion in disseminated oligodendroglioma-like leptomeningeal neoplasms (DOLN). Acta Neuropathol 2015; 129:609-610. [PMID: 25720745 DOI: 10.1007/s00401-015-1400-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Fausto J Rodriguez
- Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Johns Hopkins University, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD 21231, USA
| | - Matthew J Schniederjan
- Department of Pathology and Laboratory Administration, Children's Healthcare of Atlanta, 1001 Johnson Ferry Rd NE, Atlanta, GA 30342, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Room G170, 1364 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Theo Nicolaides
- Department of Pediatrics, University of California San Francisco School of Medicine, 550 16th Street, San Francisco, CA 94143, USA
| | - Tarik Tihan
- Division of Neuropathology, Department of Pathology, University of California San Francisco School of Medicine, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Peter C Burger
- Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Johns Hopkins University, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD 21231, USA
| | - Arie Perry
- Division of Neuropathology, Department of Pathology, University of California San Francisco School of Medicine, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
18
|
Haas-Kogan DA, Raleigh DR, Dicker AP. Toward an improved understanding of the ionizing radiation induced DNA damage/response networks in human malignancies. Front Oncol 2014; 4:335. [PMID: 25538888 PMCID: PMC4255519 DOI: 10.3389/fonc.2014.00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daphne A Haas-Kogan
- Departments of Radiation Oncology and Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, UCSF Benioff Children's Hospital, University of California San Francisco , San Francisco, CA , USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco , San Francisco, CA , USA
| | - Adam Paul Dicker
- Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University , Philadelphia, PA , USA
| |
Collapse
|
19
|
Adepoju A, Micali N, Ogawa K, Hoeppner DJ, McKay RDG. FGF2 and insulin signaling converge to regulate cyclin D expression in multipotent neural stem cells. Stem Cells 2014; 32:770-8. [PMID: 24155149 DOI: 10.1002/stem.1575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 09/25/2013] [Indexed: 12/13/2022]
Abstract
The ex vivo expansion of stem cells is making major contribution to biomedical research. The multipotent nature of neural precursors acutely isolated from the developing central nervous system has been established in a series of studies. Understanding the mechanisms regulating cell expansion in tissue culture would support their expanded use either in cell therapies or to define disease mechanisms. Basic fibroblast growth factor (FGF2) and insulin, ligands for tyrosine kinase receptors, are sufficient to sustain neural stem cells (NSCs) in culture. Interestingly, real-time imaging shows that these cells become multipotent every time they are passaged. Here, we analyze the role of FGF2 and insulin in the brief period when multipotent cells are present. FGF2 signaling results in the phosphorylation of Erk1/2, and activation of c-Fos and c-Jun that lead to elevated cyclin D mRNA levels. Insulin signals through the PI3k/Akt pathway to regulate cyclins at the post-transcriptional level. This precise Boolean regulation extends our understanding of the proliferation of multipotent NSCs and provides a basis for further analysis of proliferation control in the cell states defined by real-time mapping of the cell lineages that form the central nervous system.
Collapse
Affiliation(s)
- Adedamola Adepoju
- National Institute for Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA; University of Massachusetts School of Medicine, Amherst, Massachusetts, USA
| | | | | | | | | |
Collapse
|
20
|
Peng W, Nan Z, Liu Y, Shen H, Lin C, Lin L, Yuan B. Dendritic cells transduced with CPEB4 induced antitumor immune response. Exp Mol Pathol 2014; 97:273-8. [DOI: 10.1016/j.yexmp.2014.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/31/2014] [Accepted: 06/09/2014] [Indexed: 12/01/2022]
|
21
|
Kaul A, Toonen JA, Gianino SM, Gutmann DH. The impact of coexisting genetic mutations on murine optic glioma biology. Neuro Oncol 2014; 17:670-7. [PMID: 25246427 DOI: 10.1093/neuonc/nou287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/26/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Children with the neurofibromatosis type 1 (NF1) tumor predisposition syndrome are prone to the development of optic pathway gliomas resulting from biallelic inactivation of the NF1 gene. Recent studies have revealed the presence of other molecular alterations in a small portion of these NF1-associated brain tumors. The purpose of this study was to leverage Nf1 genetically engineered mouse strains to define the functional significance of these changes to optic glioma biology. METHODS Nf1+/- mice were intercrossed with Nf1(flox/flox) mice, which were then crossed with Nf1(flox/flox); GFAP-Cre mice, to generate Nf1(flox/mut); GFAP-Cre (FMC) mice. These mice were additionally mated with conditional KIAA1549:BRAF knock-in or Pten(flox/wt) mice to generate Nf1(flox/mut); f-BRAF; GFAP-Cre (FMBC) mice or Nf1(flox/mut); Pten(flox/wt); GFAP-Cre (FMPC) mice, respectively. The resulting optic gliomas were analyzed for changes in tumor volume, proliferation, and retinal ganglion cell loss. RESULTS While KIAA1549:BRAF conferred no additional biological properties on Nf1 optic glioma, FMPC mice had larger optic gliomas with greater proliferative indices and microglial infiltration. In addition, all 3 Nf1 murine optic glioma strains exhibited reduced retinal ganglion cell survival and numbers; however, FMPC mice had greater retinal nerve fiber layer thinning near the optic head relative to FMC and FMBC mice. CONCLUSIONS Collectively, these experiments demonstrate genetic cooperativity between Nf1 loss and Pten heterozygosity relevant to optic glioma biology and further underscore the value of employing genetically engineered mouse strains to define the contribution of discovered molecular alterations to brain tumor pathogenesis.
Collapse
Affiliation(s)
- Aparna Kaul
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph A Toonen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Scott M Gianino
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
22
|
Vanan MI, Eisenstat DD. Management of high-grade gliomas in the pediatric patient: Past, present, and future. Neurooncol Pract 2014; 1:145-157. [PMID: 26034626 DOI: 10.1093/nop/npu022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 11/12/2022] Open
Abstract
High-grade gliomas (HGGs) constitute ∼15% of all primary brain tumors in children and adolescents. Routine histopathological diagnosis is based on tissue obtained from biopsy or, preferably, from the resected tumor itself. The majority of pediatric HGGs are clinically and biologically distinct from histologically similar adult malignant gliomas; these differences may explain the disparate responses to therapy and clinical outcomes when comparing children and adults with HGG. The recently proposed integrated genomic classification identifies 6 distinct biological subgroups of glioblastoma (GBM) throughout the age spectrum. Driver mutations in genes affecting histone H3.3 (K27M and G34R/V) coupled with mutations involving specific proteins (TP53, ATRX, DAXX, SETD2, ACVR1, FGFR1, NTRK) induce defects in chromatin remodeling and may play a central role in the genesis of many pediatric HGGs. Current clinical practice in pediatric HGGs includes surgical resection followed by radiation therapy (in children aged > 3 years) with concurrent and adjuvant chemotherapy with temozolomide. However, these multimodality treatment strategies have had a minimal impact on improving survival. Ongoing clinical trials are investigating new molecular targets, chemoradiation sensitization strategies, and immunotherapy. Future clinical trials of pediatric HGG will incorporate the distinction between GBM molecular subgroups and stratify patients using group-specific biomarkers.
Collapse
Affiliation(s)
- Magimairajan Issai Vanan
- Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, Departments of Pediatrics & Child Health and Biochemistry & Medical Genetics , University of Manitoba , Winnipeg, Manitoba , Canada (M.I.V.); Division of Hematology/Oncology and Palliative Care, Stollery Children's Hospital, Departments of Pediatrics, Medical Genetics and Oncology , University of Alberta , Edmonton, Alberta , Canada (D.D.E.)
| | - David D Eisenstat
- Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, Departments of Pediatrics & Child Health and Biochemistry & Medical Genetics , University of Manitoba , Winnipeg, Manitoba , Canada (M.I.V.); Division of Hematology/Oncology and Palliative Care, Stollery Children's Hospital, Departments of Pediatrics, Medical Genetics and Oncology , University of Alberta , Edmonton, Alberta , Canada (D.D.E.)
| |
Collapse
|
23
|
Roth JJ, Santi M, Rorke-Adams LB, Harding BN, Busse TM, Tooke LS, Biegel JA. Diagnostic application of high resolution single nucleotide polymorphism array analysis for children with brain tumors. Cancer Genet 2014; 207:111-23. [PMID: 24767714 DOI: 10.1016/j.cancergen.2014.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 12/21/2022]
Abstract
Single nucleotide polymorphism (SNP) array analysis is currently used as a first tier test for pediatric brain tumors at The Children's Hospital of Philadelphia. The results from 100 consecutive patients are summarized in the present report. Eighty-seven percent of the tumors had at least one pathogenic copy number alteration. Nineteen of 56 low grade gliomas (LGGs) demonstrated a duplication in 7q34, which resulted in a KIAA1549-BRAF fusion. Chromosome band 7q34 deletions, which resulted in a FAM131B-BRAF fusion, were identified in one pilocytic astrocytoma (PA) and one dysembryoplastic neuroepithelial tumor (DNT). One ganglioglioma (GG) demonstrated a 6q23.3q26 deletion that was predicted to result in a MYB-QKI fusion. Gains of chromosomes 5, 6, 7, 11, and 20 were seen in a subset of LGGs. Monosomy 6, deletion of 9q and 10q, and an i(17)(q10) were each detected in the medulloblastomas (MBs). Deletions and regions of loss of heterozygosity that encompassed TP53, RB1, CDKN2A/B, CHEK2, NF1, and NF2 were identified in a variety of tumors, which led to a recommendation for germline testing. A BRAF p.Thr599dup or p.V600E mutation was identified by Sanger sequencing in one and five gliomas, respectively, and a somatic TP53 mutation was identified in a fibrillary astrocytoma. No TP53 hot-spot mutations were detected in the MBs. SNP array analysis of pediatric brain tumors can be combined with pathologic examination and molecular analyses to further refine diagnoses, offer more accurate prognostic assessments, and identify patients who should be referred for cancer risk assessment.
Collapse
Affiliation(s)
- Jacquelyn J Roth
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA.
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Lucy B Rorke-Adams
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Brian N Harding
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Tracy M Busse
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Laura S Tooke
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jaclyn A Biegel
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|