1
|
Andonegui-Elguera MA, Cáceres-Gutiérrez RE, Oliva-Rico D, Díaz-Chávez J, Herrera LA. LncRNAs-associated to genomic instability: A barrier to cancer therapy effectiveness. Front Genet 2022; 13:984329. [DOI: 10.3389/fgene.2022.984329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Although a large part of the genome is transcribed, only 1.9% has a protein-coding potential; most of the transcripts are non-coding RNAs such as snRNAs, tRNAs, and rRNAs that participate in mRNA processing and translation. In addition, there are small RNAs with a regulatory role, such as siRNAs, miRNAs, and piRNAs. Finally, the long non-coding RNAs (lncRNAs) are transcripts of more than 200 bp that can positively and negatively regulate gene expression (both in cis and trans), serve as a scaffold for protein recruitment, and control nuclear architecture, among other functions. An essential process regulated by lncRNAs is genome stability. LncRNAs regulate genes associated with DNA repair and chromosome segregation; they are also directly involved in the maintenance of telomeres and have recently been associated with the activity of the centromeres. In cancer, many alterations in lncRNAs have been found to promote genomic instability, which is a hallmark of cancer and is associated with resistance to chemotherapy. In this review, we analyze the most recent findings of lncRNA alterations in cancer, their relevance in genomic instability, and their impact on the resistance of tumor cells to anticancer therapy.
Collapse
|
2
|
Kroupa M, Tomasova K, Kavec M, Skrobanek P, Buchler T, Kumar R, Vodickova L, Vodicka P. TElomeric repeat-containing RNA (TERRA): Physiological functions and relevance in cancer. Front Oncol 2022; 12:913314. [PMID: 35982970 PMCID: PMC9380590 DOI: 10.3389/fonc.2022.913314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Telomeres are complex protective structures located at the ends of linear eukaryotic chromosomes. Their purpose is to prevent genomic instability. Research progress in telomere biology during the past decades has identified a network of telomeric transcripts of which the best-studied is TElomeric Repeat-containing RNA (TERRA). TERRA was shown to be important not only for the preservation of telomere homeostasis and genomic stability but also for the expression of hundreds of genes across the human genome. These findings added a new level of complexity to telomere biology. Herein we provide insights on the telomere transcriptome, its relevance for proper telomere function, and its implications in human pathology. We also discuss possible clinical opportunities of exosomal telomere transcripts detection as a biomarker in cancer precision medicine.
Collapse
Affiliation(s)
- Michal Kroupa
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- *Correspondence: Michal Kroupa, ; Pavel Vodicka,
| | - Kristyna Tomasova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
| | - Miriam Kavec
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Pavel Skrobanek
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Rajiv Kumar
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Michal Kroupa, ; Pavel Vodicka,
| |
Collapse
|
3
|
Vitelli V, Falvo P, G Nergadze S, Santagostino M, Khoriauli L, Pellanda P, Bertino G, Occhini A, Benazzo M, Morbini P, Paulli M, Porta C, Giulotto E. Telomeric Repeat-Containing RNAs (TERRA) Decrease in Squamous Cell Carcinoma of the Head and Neck Is Associated with Worsened Clinical Outcome. Int J Mol Sci 2018; 19:ijms19010274. [PMID: 29342094 PMCID: PMC5796220 DOI: 10.3390/ijms19010274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 12/16/2022] Open
Abstract
Telomeres are transcribed into noncoding telomeric repeat-containing RNAs (TERRA), which are essential for telomere maintenance. Deregulation of TERRA transcription impairs telomere metabolism and a role in tumorigenesis has been proposed. Head and neck cancer (HNC) is one of the most frequent cancers worldwide, with head and neck squamous cell carcinoma (HNSCC) being the predominant type. Since HNSCC patients are characterized by altered telomere maintenance, a dysfunction in telomere transcription can be hypothesized. In this prospective study, we compared TERRA levels in the tumor and matched normal tissue from 23 HNSCC patients. We then classified patients in two categories according to the level of TERRA expression in the tumor compared to the normal tissue: (1) lower expression in the tumor, (2) higher or similar expression in tumor. A significant proportion of patients in the first group died of the disease within less than 34 months postsurgery, while the majority of patients in the second group were alive and disease-free. Our results highlight a striking correlation between TERRA expression and tumor aggressiveness in HNSCC suggesting that TERRA levels may be proposed as a novel molecular prognostic marker for HNSCC.
Collapse
Affiliation(s)
- Valerio Vitelli
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Paolo Falvo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Solomon G Nergadze
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Marco Santagostino
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Lela Khoriauli
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Paola Pellanda
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Giulia Bertino
- Department of Otorhinolaryngology, IRCCS San Matteo University Hospital Foundation, 27100 Pavia, Italy.
| | - Antonio Occhini
- Department of Otorhinolaryngology, IRCCS San Matteo University Hospital Foundation, 27100 Pavia, Italy.
| | - Marco Benazzo
- Department of Otorhinolaryngology, IRCCS San Matteo University Hospital Foundation, 27100 Pavia, Italy.
| | - Patrizia Morbini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Marco Paulli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Camillo Porta
- Division of Medical Oncology, IRCCS San Matteo University Hospital Foundation, 27100 Pavia, Italy.
| | - Elena Giulotto
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
4
|
Regulated expression of the lncRNA TERRA and its impact on telomere biology. Mech Ageing Dev 2017; 167:16-23. [PMID: 28888705 DOI: 10.1016/j.mad.2017.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022]
Abstract
The telomere protects against genomic instability by minimizing the accelerated end resection of the genetic material, a phenomenon that results in severe chromosome instability that could favor the transformation of a cell by enabling the emergence of tumor-promoting mutations. Some mechanisms that avoid this fate, such as capping and loop formation, have been very well characterized; however, telomeric non-coding transcripts, such as long non-coding RNAs (lncRNAs), should also be considered in this context because they play roles in the organization of telomere dynamics, involving processes such as replication, degradation, extension, and heterochromatin stabilization. Although the mechanism through which the expression of telomeric transcripts regulates telomere dynamics is not yet clear, a non-coding RNA component opens the research options in telomere biology and the impact that it can have on telomere-associated diseases such as cancer.
Collapse
|
5
|
Oh BK, Keo P, Bae J, Ko JH, Choi JS. Variable TERRA abundance and stability in cervical cancer cells. Int J Mol Med 2017; 39:1597-1604. [PMID: 28440422 DOI: 10.3892/ijmm.2017.2956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/31/2017] [Indexed: 11/05/2022] Open
Abstract
Telomeres are transcribed into long non-coding RNA, referred to as telomeric repeat-containing RNA (TERRA), which plays important roles in maintaining telomere integrity and heterochromatin formation. TERRA has been well characterized in HeLa cells, a type of cervical cancer cell. However, TERRA abundance and stability have not been examined in other cervical cancer cells, at least to the best of our knowledge. Thus, in this study, we measured TERRA levels and stability, as well as telomere length in 6 cervical cancer cell lines, HeLa, SiHa, CaSki, HeLa S3, C-33A and SNU-17. We also examined the association between the TERRA level and its stability and telomere length. We found that the TERRA level was several fold greater in the SiHa, CaSki, HeLa S3, C-33A and SNU-17 cells, than in the HeLa cells. An RNA stability assay of actinomycin D-treated cells revealed that TERRA had a short half-life of ~4 h in HeLa cells, which was consistent with previous studies, but was more stable with a longer half-life (>8 h) in the other 5 cell lines. Telomere length varied from 4 to 9 kb in the cells and did not correlate significantly with the TERRA level. On the whole, our data indicate that TERRA abundance and stability vary between different types of cervical cancer cells. TERRA degrades rapidly in HeLa cells, but is maintained stably in other cervical cancer cells that accumulate higher levels of TERRA. TERRA abundance is associated with the stability of RNA in cervical cancer cells, but is unlikely associated with telomere length.
Collapse
Affiliation(s)
- Bong-Kyeong Oh
- Institute of Medical Science, Hanyang University College of Medicine, Seoul 133-791, Republic of Korea
| | - Ponnarath Keo
- Institute of Medical Science, Hanyang University College of Medicine, Seoul 133-791, Republic of Korea
| | - Jaeman Bae
- Institute of Medical Science, Hanyang University College of Medicine, Seoul 133-791, Republic of Korea
| | - Jung Hwa Ko
- Department of Obstetrics and Gynecology, Hallym University Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Joong Sub Choi
- Institute of Medical Science, Hanyang University College of Medicine, Seoul 133-791, Republic of Korea
| |
Collapse
|
6
|
The Rb1 tumour suppressor gene modifies telomeric chromatin architecture by regulating TERRA expression. Sci Rep 2017; 7:42056. [PMID: 28169375 PMCID: PMC5294645 DOI: 10.1038/srep42056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
The tumour suppressor gene (Rb1) is necessary for the maintenance of telomere integrity in osteoblastic cells. We now show that the compaction of telomeric chromatin and the appropriate histone modifications of telomeric DNA are both dependent upon Rb1-mediated transcription of the telomere-derived long non-coding RNA TERRA. Expression of TERRA was reduced in Rb1 haploinsufficient cells, and further decreased by shRNA-mediated reduction of residual Rb1 expression. Restoration of Rb1 levels through lentiviral transduction was sufficient to reestablish both transcription of TERRA and condensation of telomeric chromatin. The human chromosome 15q TERRA promoter contains predicted retinoblastoma control elements, and was able to confer Rb1-dependent transcription upon a promoterless reporter gene. Chromatin immunoprecipitation revealed preferential binding of phosphorylated over non-phosphorylated Rb1 at the TERRA promoter. As Rb1-deficient cells show increased genomic instability we suggest that this novel non-canonical action of Rb1 may contribute to the tumour suppressive actions of Rb1.
Collapse
|
7
|
Sishc BJ, Nelson CB, McKenna MJ, Battaglia CLR, Herndon A, Idate R, Liber HL, Bailey SM. Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis. Front Oncol 2015; 5:257. [PMID: 26636039 PMCID: PMC4656829 DOI: 10.3389/fonc.2015.00257] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023] Open
Abstract
Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks) and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore, telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR) exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles, telomeres and telomerase play in the response of human cells to IRs of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET) gamma(γ)-rays or high LET, high charge, high energy (HZE) particles, delivered either acutely or at low dose rates. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprograming. Taken together, the results reported here establish the critical importance of telomeres and telomerase in the radiation response and, as such, have compelling implications not only for accelerated tumor repopulation following radiation therapy but also for carcinogenic potential following low dose exposures as well, including those of relevance to spaceflight-associated galactic cosmic radiations.
Collapse
Affiliation(s)
- Brock J Sishc
- Division of Molecular Radiation Oncology, Department of Radiation Oncology, University of Texas Southwestern Medical Center Dallas , Dallas, TX , USA ; Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Christopher B Nelson
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Miles J McKenna
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Christine L R Battaglia
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Andrea Herndon
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Rupa Idate
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Howard L Liber
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| |
Collapse
|
8
|
Early-Life Telomere Dynamics Differ between the Sexes and Predict Growth in the Barn Swallow (Hirundo rustica). PLoS One 2015; 10:e0142530. [PMID: 26565632 PMCID: PMC4643985 DOI: 10.1371/journal.pone.0142530] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022] Open
Abstract
Telomeres are conserved DNA-protein structures at the termini of eukaryotic chromosomes which contribute to maintenance of genome integrity, and their shortening leads to cell senescence, with negative consequences for organismal functions. Because telomere erosion is influenced by extrinsic and endogenous factors, telomere dynamics may provide a mechanistic basis for evolutionary and physiological trade-offs. Yet, knowledge of fundamental aspects of telomere biology under natural selection regimes, including sex- and context-dependent variation in early-life, and the covariation between telomere dynamics and growth, is scant. In this study of barn swallows (Hirundo rustica) we investigated the sex-dependent telomere erosion during nestling period, and the covariation between relative telomere length and body and plumage growth. Finally, we tested whether any covariation between growth traits and relative telomere length depends on the social environment, as influenced by sibling sex ratio. Relative telomere length declined on average over the period of nestling maximal growth rate (between 7 and 16 days of age) and differently covaried with initial relative telomere length in either sex. The frequency distribution of changes in relative telomere length was bimodal, with most nestlings decreasing and some increasing relative telomere length, but none of the offspring traits predicted the a posteriori identified group to which individual nestlings belonged. Tail and wing length increased with relative telomere length, but more steeply in males than females, and this relationship held both at the within- and among-broods levels. Moreover, the increase in plumage phenotypic values was steeper when the sex ratio of an individual’s siblings was female-biased. Our study provides evidence for telomere shortening during early life according to subtly different dynamics in either sex. Furthermore, it shows that the positive covariation between growth and relative telomere length depends on sex as well as social environment, in terms of sibling sex ratio.
Collapse
|
9
|
Szumiel I. From radioresistance to radiosensitivity: In vitro evolution of L5178Y lymphoma. Int J Radiat Biol 2015; 91:465-71. [PMID: 25651039 DOI: 10.3109/09553002.2014.996263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To discuss the possible reasons for the loss of tumourigenicity and the acquisition of new phenotypic features (among them, sensitivity to X and UVC radiations) as a result of in vitro cultivation of L5178Y lymphoma cells. RESULTS Ten years ago the phenotypic differences between LY-R (original L5178Y maintained in vivo and examined in vitro) and LY-S lines were reviewed in detail by the author. The loss of tumourigenicity of LY-R cells upon in vitro cultivation accompanying the acquirement of the LY-S phenotype had been described earlier by Beer et al. (1983). In spite of their common origin, the sublines were shown to differ in their relative sensitivity to a number of DNA damaging agents and in numerous other features. Here, selected differences between LY-R and LY-S lines are briefly reviewed. It is proposed that Wallace's concept (2010a) that mitochondria are the interface between environmental conditions and the genome may explain the LY-R-LY-S conversion under prolonged in vitro cultivation. CONCLUSION The differences between the LY lines were probably of epigenetic rather than genetic character. The properties of LY-R cells changed as a result of exposure to an oxic in vitro milieu. The changes could be preconditioned by heteroplasmy and the selection of cells endowed with mitochondria best fitted to a high oxygen-low carbon dioxide environment.
Collapse
Affiliation(s)
- Irena Szumiel
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| |
Collapse
|
10
|
Maicher A, Lockhart A, Luke B. Breaking new ground: digging into TERRA function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:387-94. [PMID: 24698720 DOI: 10.1016/j.bbagrm.2014.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/30/2022]
Abstract
Despite the fact that telomeres carry chromatin marks typically associated with silent heterochromatin, they are actively transcribed into TElomeric Repeat containing RNA (TERRA). TERRA transcription is conserved from yeast to man, initiates in the subtelomeric region and proceeds through the telomeric tract of presumably each individual telomere. TERRA levels are increased in yeast survivors and in cancer cells employing ALT as a telomere maintenance mechanism (TMM). Thus, TERRA may be a promising biomarker and potential target in anti-cancer therapy. Interestingly, several recent publications implicate TERRA in regulatory processes including telomere end protection and the establishment of the heterochromatic state at telomeres. A picture is emerging whereby TERRA acts as a regulator of telomere length and hence the associated onset of replicative senescence in a cell. In this review we will summarize the latest results regarding TERRA transcription, localization and related function. A special focus will be set on the potential role of TERRA in the regulation of telomere length and replicative senescence. Possible implications of increased TERRA levels in yeast survivors and in ALT cancer cells will be discussed.
Collapse
Affiliation(s)
- André Maicher
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Arianna Lockhart
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Brian Luke
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
11
|
Shim G, Ricoul M, Hempel WM, Azzam EI, Sabatier L. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 760:S1383-5742(14)00002-7. [PMID: 24486376 PMCID: PMC4119099 DOI: 10.1016/j.mrrev.2014.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis.
Collapse
|
12
|
Vitelli V, Falvo P, Khoriauli L, Smirnova A, Gamba R, Santagostino M, Nergadze SG, Giulotto E. More on the Lack of Correlation between Terra Expression and Telomere Length. Front Oncol 2013; 3:245. [PMID: 24066279 PMCID: PMC3776138 DOI: 10.3389/fonc.2013.00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022] Open
Affiliation(s)
- Valerio Vitelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," Università degli Studi di Pavia , Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Van Beneden A, Arnoult N, Decottignies A. Telomeric RNA expression: length matters. Front Oncol 2013; 3:178. [PMID: 23847766 PMCID: PMC3703564 DOI: 10.3389/fonc.2013.00178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/22/2013] [Indexed: 11/25/2022] Open
Affiliation(s)
- Amandine Van Beneden
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Faculty of Pharmacy and Biomedical Sciences, Catholic University of Louvain Brussels, Belgium
| | | | | |
Collapse
|