1
|
Kumari A, Mishra G, Parihar P, Dudhe SS. Role of Magnetic Resonance Spectroscopy in Evaluating Choline Levels in Gallbladder Carcinoma: A Comprehensive Review. Cureus 2024; 16:e66205. [PMID: 39233932 PMCID: PMC11374109 DOI: 10.7759/cureus.66205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Gallbladder carcinoma (GBC) presents a significant clinical challenge due to its aggressive nature and often asymptomatic progression, resulting in late-stage diagnoses and a poor prognosis. Early detection and accurate staging are pivotal for improving patient outcomes, highlighting the critical role of advanced imaging techniques in oncological practice. Magnetic resonance spectroscopy (MRS) has emerged as a valuable non-invasive tool capable of assessing biochemical changes within tissues, including alterations in choline metabolism-a biomarker indicative of cell membrane turnover and proliferation. This review explores the application of MRS in evaluating choline levels in gallbladder carcinoma, synthesizing current literature to elucidate its potential in clinical settings. By analyzing studies investigating the correlation between choline levels detected via MRS and tumor characteristics, this review underscores MRS's role in enhancing diagnostic precision and guiding therapeutic decision-making. Moreover, it discusses the challenges and limitations associated with MRS in clinical practice alongside future research and technological advancement directions. Ultimately, integrating MRS into the diagnostic armamentarium for gallbladder carcinoma promises to improve early detection and treatment outcomes. This review provides insights into the evolving landscape of MRS in oncology, emphasizing its contribution to personalized medicine approaches aimed at optimizing patient care and management strategies for GBC.
Collapse
Affiliation(s)
- Anjali Kumari
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Gaurav Mishra
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pratapsingh Parihar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sakshi S Dudhe
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Rashidi A, Billingham LK, Zolp A, Chia TY, Silvers C, Katz JL, Park CH, Delay S, Boland L, Geng Y, Markwell SM, Dmello C, Arrieta VA, Zilinger K, Jacob IM, Lopez-Rosas A, Hou D, Castro B, Steffens AM, McCortney K, Walshon JP, Flowers MS, Lin H, Wang H, Zhao J, Sonabend A, Zhang P, Ahmed AU, Brat DJ, Heiland DH, Lee-Chang C, Lesniak MS, Chandel NS, Miska J. Myeloid cell-derived creatine in the hypoxic niche promotes glioblastoma growth. Cell Metab 2024; 36:62-77.e8. [PMID: 38134929 PMCID: PMC10842612 DOI: 10.1016/j.cmet.2023.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/08/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Glioblastoma (GBM) is a malignancy dominated by the infiltration of tumor-associated myeloid cells (TAMCs). Examination of TAMC metabolic phenotypes in mouse models and patients with GBM identified the de novo creatine metabolic pathway as a hallmark of TAMCs. Multi-omics analyses revealed that TAMCs surround the hypoxic peri-necrotic regions of GBM and express the creatine metabolic enzyme glycine amidinotransferase (GATM). Conversely, GBM cells located within these same regions are uniquely specific in expressing the creatine transporter (SLC6A8). We hypothesized that TAMCs provide creatine to tumors, promoting GBM progression. Isotopic tracing demonstrated that TAMC-secreted creatine is taken up by tumor cells. Creatine supplementation protected tumors from hypoxia-induced stress, which was abrogated with genetic ablation or pharmacologic inhibition of SLC6A8. Lastly, inhibition of creatine transport using the clinically relevant compound, RGX-202-01, blunted tumor growth and enhanced radiation therapy in vivo. This work highlights that myeloid-to-tumor transfer of creatine promotes tumor growth in the hypoxic niche.
Collapse
Affiliation(s)
- Aida Rashidi
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Leah K Billingham
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Andrew Zolp
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Tzu-Yi Chia
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Caylee Silvers
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Joshua L Katz
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Cheol H Park
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Suzi Delay
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Lauren Boland
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Yuheng Geng
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Steven M Markwell
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Victor A Arrieta
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Kaylee Zilinger
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Irene M Jacob
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - David Hou
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Brandyn Castro
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Alicia M Steffens
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Jordain P Walshon
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Mariah S Flowers
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Hanchen Lin
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Hanxiang Wang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Adam Sonabend
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Daniel J Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Dieter H Heiland
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA; Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Department of Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg, Germany. German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2330, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Zeinali-Rafsanjani B, Jalli R, Saeedi-Moghadam M, Pishdad P. Magnetic resonance spectroscopy and its application in colorectal cancer diagnosis and screening: A narrative review. J Med Imaging Radiat Sci 2020; 51:654-661. [PMID: 32718849 DOI: 10.1016/j.jmir.2020.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 12/01/2022]
Abstract
There are several slightly invasive methods to detect colorectal carcinoma (CRC) including colonoscopy and sigmoidoscopy; but there is no noninvasive, accurate screening test. It is recommended to initiate screening at the age of 50 for non-familial CRC. Laboratory tests are routinely suggested if internal observation and imaging are recommended for further evaluation. Spectroscopic-based imaging, such as magnetic resonance spectroscopy (MRS) is an interesting and promising tool with the potential to be an alternative to some minimally invasive procedures, such as biopsy. Accordingly, MRS might be a suitable substitution for invasive methods, such as colonoscopy. This article aimed to review the studies that have evaluated the MRS technique as a screening tool in CRC.
Collapse
Affiliation(s)
- Banafsheh Zeinali-Rafsanjani
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Nuclear Medicine and Molecular Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Jalli
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Saeedi-Moghadam
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Parisa Pishdad
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Fennell JT, Gkika E, Grosu AL. Molecular Imaging in Photon Radiotherapy. Recent Results Cancer Res 2020; 216:845-863. [PMID: 32594409 DOI: 10.1007/978-3-030-42618-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, more than ever before, the treatment of cancer patients requires an interdisciplinary approach more than ever. Radiation therapy (RT) has become an indispensable pillar of cancer treatment early on, offering a local, curative treatment option and symptom control in palliative cases.
Collapse
Affiliation(s)
| | - Eleni Gkika
- Department of Radiation Oncology, University of Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Zeinali-Rafsanjani B, Mosleh-Shirazi MA, Faghihi R, Saeedi-Moghadam M, Lotfi M, Jalli R. A method for cranial target delineation in radiotherapy treatment planning aided by single-voxel magnetic resonance spectroscopy: evaluation using a custom-designed gel-based phantom and simulations. Br J Radiol 2019; 92:20190216. [PMID: 31556332 DOI: 10.1259/bjr.20190216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Magnetic resonance spectroscopy (MRS) has been useful in radiotherapy treatment planning (RTP) especially in tumor delineation. Routinely, 2D/3D MRSI data are used for this application. However, not all centers have access to 2D/3D MRSI. The objective of this study was to introduce a method of using single-voxel spectroscopy (SVS) data in target delineation and assess its reliability. METHODS A gel-based phantom containing Creatine (Cr), N-acetyl-l-aspartic-acid (NAA), and Choline (Cho) was designed and built. The metabolite ratios simulate the normal and tumoral part of the brain. The jMRUI software (v. 6.0) was used to simulate a 1.5 T GE MRI scanner. The metabolite spectra provided by different time of echos (TE)s of the Point-RESolved Spectroscopy pulse-sequence (PRESS), different data-points, and post-processings were quantized by jMRUI. PseudoMRSI maps of Cho/Cr, NAA/Cr, and Cho + Cr/NAA were created. A conformity index (CI) was used to determine which metabolite-ratio isolines are more appropriate for tumor delineation. RESULTS The simulation accuracy was verified. There were no differences > 4% between the measured and simulated spectra in peak regions. The pseudoMRSI map of Cho + Cr/NAA smoothly followed the complicated geometry of the tumor inside the gel-based phantom. The results showed that the single-voxel spectra produced by the PRESS pulse sequence with the TE of 144 ms, 512 data-points, and minimum post-processings of water suppression, eddy current correction, and baseline correction can be used for target delineation. CONCLUSION This study suggests that SVS data can be used to aid target delineation by using a mathematical approach. This can enable a wider use of MR-derived information in radiotherapy. ADVANCES IN KNOWLEDGE To the best of our knowledge, until now, 2D or 3D MRSI data provided from 3T MRI scanners have been used for MRS-based radiotherapy treatment planning. However, there are a lot of centers that are equipped to 1.5 T MRI scanners and some of them just equipped to SVS. This study introduces a mathematical approach to help these centers to take the benefits of MRS-based treatment planning.
Collapse
Affiliation(s)
- Banafsheh Zeinali-Rafsanjani
- Medical imaging research center, Shiraz University of medical sciences, Shiraz, Iran.,Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Ionizing and Nonionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Radiotherapy and Oncology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Faghihi
- Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.,Radiation research center, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Mahdi Saeedi-Moghadam
- Medical imaging research center, Shiraz University of medical sciences, Shiraz, Iran
| | - Mehrzad Lotfi
- Medical imaging research center, Shiraz University of medical sciences, Shiraz, Iran
| | - Reza Jalli
- Medical imaging research center, Shiraz University of medical sciences, Shiraz, Iran
| |
Collapse
|
6
|
Olsson LE, Johansson M, Zackrisson B, Blomqvist LK. Basic concepts and applications of functional magnetic resonance imaging for radiotherapy of prostate cancer. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2019; 9:50-57. [PMID: 33458425 PMCID: PMC7807726 DOI: 10.1016/j.phro.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/27/2018] [Accepted: 02/08/2019] [Indexed: 12/30/2022]
Abstract
Recently, the interest to integrate magnetic resonance imaging (MRI) in radiotherapy for prostate cancer has increased considerably. MRI can contribute in all steps of the radiotherapy workflow from diagnosis, staging, and target definition to treatment follow-up. Of particular interest is the ability of MRI to provide a wide range of functional measures. The complexity of MRI as an imaging modality combined with the growing interest of the application to prostate cancer radiotherapy, emphasize the need for dedicated education within the radiation oncology community. In this context, an overview of the most common as well as a few upcoming functional MR imaging techniques is presented: the basic methodology and measurement is described, the link between the functional measures and the underlying biology is established, and finally relevant applications of functional MRI useful for prostate cancer radiotherapy are given.
Collapse
Affiliation(s)
- Lars E Olsson
- Department of Medical Radiation Physics, Translational Medicine, Lund University, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden
| | | | | | - Lennart K Blomqvist
- Department of Radiology, Molecular Medicine and Surgery, Karolinska University, Sweden
| |
Collapse
|
7
|
Press RH, Shu HKG, Shim H, Mountz JM, Kurland BF, Wahl RL, Jones EF, Hylton NM, Gerstner ER, Nordstrom RJ, Henderson L, Kurdziel KA, Vikram B, Jacobs MA, Holdhoff M, Taylor E, Jaffray DA, Schwartz LH, Mankoff DA, Kinahan PE, Linden HM, Lambin P, Dilling TJ, Rubin DL, Hadjiiski L, Buatti JM. The Use of Quantitative Imaging in Radiation Oncology: A Quantitative Imaging Network (QIN) Perspective. Int J Radiat Oncol Biol Phys 2018; 102:1219-1235. [PMID: 29966725 PMCID: PMC6348006 DOI: 10.1016/j.ijrobp.2018.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/25/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Modern radiation therapy is delivered with great precision, in part by relying on high-resolution multidimensional anatomic imaging to define targets in space and time. The development of quantitative imaging (QI) modalities capable of monitoring biologic parameters could provide deeper insight into tumor biology and facilitate more personalized clinical decision-making. The Quantitative Imaging Network (QIN) was established by the National Cancer Institute to advance and validate these QI modalities in the context of oncology clinical trials. In particular, the QIN has significant interest in the application of QI to widen the therapeutic window of radiation therapy. QI modalities have great promise in radiation oncology and will help address significant clinical needs, including finer prognostication, more specific target delineation, reduction of normal tissue toxicity, identification of radioresistant disease, and clearer interpretation of treatment response. Patient-specific QI is being incorporated into radiation treatment design in ways such as dose escalation and adaptive replanning, with the intent of improving outcomes while lessening treatment morbidities. This review discusses the current vision of the QIN, current areas of investigation, and how the QIN hopes to enhance the integration of QI into the practice of radiation oncology.
Collapse
Affiliation(s)
- Robert H. Press
- Dept. of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Hui-Kuo G. Shu
- Dept. of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Hyunsuk Shim
- Dept. of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - James M. Mountz
- Dept. of Radiology, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Ella F. Jones
- Dept. of Radiology, University of California, San Francisco, San Francisco, CA
| | - Nola M. Hylton
- Dept. of Radiology, University of California, San Francisco, San Francisco, CA
| | - Elizabeth R. Gerstner
- Dept. of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Lori Henderson
- Cancer Imaging Program, National Cancer Institute, Bethesda, MD
| | | | - Bhadrasain Vikram
- Radiation Research Program/Division of Cancer Treatment & Diagnosis, National Cancer Institute, Bethesda, MD
| | - Michael A. Jacobs
- Dept. of Radiology and Radiological Science, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore MD
| | - Matthias Holdhoff
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore MD
| | - Edward Taylor
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - David A. Jaffray
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - David A. Mankoff
- Dept. of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | | | - Philippe Lambin
- Dept. of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Thomas J. Dilling
- Dept. of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | - John M. Buatti
- Dept. of Radiation Oncology, University of Iowa, Iowa City, IA
| |
Collapse
|
8
|
Meyer P, Noblet V, Mazzara C, Lallement A. Survey on deep learning for radiotherapy. Comput Biol Med 2018; 98:126-146. [PMID: 29787940 DOI: 10.1016/j.compbiomed.2018.05.018] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022]
Abstract
More than 50% of cancer patients are treated with radiotherapy, either exclusively or in combination with other methods. The planning and delivery of radiotherapy treatment is a complex process, but can now be greatly facilitated by artificial intelligence technology. Deep learning is the fastest-growing field in artificial intelligence and has been successfully used in recent years in many domains, including medicine. In this article, we first explain the concept of deep learning, addressing it in the broader context of machine learning. The most common network architectures are presented, with a more specific focus on convolutional neural networks. We then present a review of the published works on deep learning methods that can be applied to radiotherapy, which are classified into seven categories related to the patient workflow, and can provide some insights of potential future applications. We have attempted to make this paper accessible to both radiotherapy and deep learning communities, and hope that it will inspire new collaborations between these two communities to develop dedicated radiotherapy applications.
Collapse
Affiliation(s)
- Philippe Meyer
- Department of Medical Physics, Paul Strauss Center, Strasbourg, France.
| | | | | | | |
Collapse
|
9
|
Zygogianni A, Protopapa M, Kougioumtzopoulou A, Simopoulou F, Nikoloudi S, Kouloulias V. From imaging to biology of glioblastoma: new clinical oncology perspectives to the problem of local recurrence. Clin Transl Oncol 2018; 20:989-1003. [PMID: 29335830 DOI: 10.1007/s12094-018-1831-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
Abstract
GBM is one of the most common and aggressive brain tumors. Surgery and adjuvant chemoradiation have succeeded in providing a survival benefit. Although most patients will eventually experience local recurrence, the means to fight recurrence are limited and prognosis remains poor. In a disease where local control remains the major challenge, few trials have addressed the efficacy of local treatments, either surgery or radiation therapy. The present article reviews recent advances in the biology, imaging and biomarker science of GBM as well as the current treatment status of GBM, providing new perspectives to the problem of local recurrence.
Collapse
Affiliation(s)
- A Zygogianni
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - M Protopapa
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - A Kougioumtzopoulou
- Radiotherapy Unit, 2nd Department of Radiology, Medical School, ATTIKON University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462, Chaidari, Greece
| | - F Simopoulou
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - S Nikoloudi
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - V Kouloulias
- Radiotherapy Unit, 2nd Department of Radiology, Medical School, ATTIKON University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462, Chaidari, Greece.
| |
Collapse
|
10
|
Abstract
Fluorodeoxyglucose PET and PET/computed tomography have gained acceptance in the evaluation of disease. Nontargeted tracers have been used in the diagnosis of certain malignancies but may not be sensitive or specific enough to become standard of care. Newer targeted PET tracers have been developed that target disease-specific biomarkers, and allow accurate and sensitive detection of disease. Combined with the capabilities of MR imaging to evaluate soft tissue, precision imaging with PET/MR imaging can change the diagnosis. This article discusses specific areas in which precision imaging with nontargeted and targeted diagnostic agents can change the diagnosis and treatment.
Collapse
Affiliation(s)
- Eugene Huo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Laura Eisenmenger
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Radiology, San Francisco VA Health Care System, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
11
|
Ginn JS, Agazaryan N, Cao M, Baharom U, Low DA, Yang Y, Gao Y, Hu P, Lee P, Lamb JM. Characterization of spatial distortion in a 0.35 T MRI-guided radiotherapy system. Phys Med Biol 2017; 62:4525-4540. [PMID: 28425431 DOI: 10.1088/1361-6560/aa6e1a] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spatial distortion results in image deformation that can degrade accurate targeting and dose calculations in MRI-guided adaptive radiotherapy. The authors present a comprehensive assessment of a 0.35 T MRI-guided radiotherapy system's spatial distortion using two commercially-available phantoms with regularly spaced markers. Images of the spatial integrity phantoms were acquired using five clinical protocols on the MRI-guided radiotherapy machine with the radiotherapy gantry positioned at various angles. Software was developed to identify and localize all phantom markers using a template matching approach. Rotational and translational corrections were implemented to account for imperfect phantom alignment. Measurements were made to assess uncertainties arising from susceptibility artifacts, image noise, and phantom construction accuracy. For a clinical 3D imaging protocol with a 1.5 mm reconstructed slice thickness, 100% of spheres within a 50 mm radius of isocenter had a 3D deviation of 1 mm or less. Of the spheres within 100 mm of isocenter, 99.9% had a 3D deviation less than 1 mm. 94.8% and 100% of the spheres within 175 mm were found to be within 1 mm and 2 mm of the expected positions in 3D respectively. Maximum 3D distortions within 50 mm, 100 mm and 175 mm of isocenter were 0.76 mm, 1.15 mm and 1.88 mm respectively. Distortions present in images acquired using the real-time imaging sequence were less than 1 mm for 98.1% and 95.0% of the cylinders within 50 mm and 100 mm of isocenter. The corresponding maximum distortion in these regions was 1.10 mm and 1.67 mm. These results may be used to inform appropriate planning target volume (PTV) margins for 0.35 T MRI-guided radiotherapy. Observed levels of spatial distortion should be explicitly considered when using PTV margins of 3 mm or less or in the case of targets displaced from isocenter by more than 50 mm.
Collapse
Affiliation(s)
- John S Ginn
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pollard JM, Wen Z, Sadagopan R, Wang J, Ibbott GS. The future of image-guided radiotherapy will be MR guided. Br J Radiol 2017; 90:20160667. [PMID: 28256898 DOI: 10.1259/bjr.20160667] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Advances in image-guided radiotherapy (RT) have allowed for dose escalation and more precise radiation treatment delivery. Each decade brings new imaging technologies to help improve RT patient setup. Currently, the most frequently used method of three-dimensional pre-treatment image verification is performed with cone beam CT. However, more recent developments have provided RT with the ability to have on-board MRI coupled to the teleradiotherapy unit. This latest tool for treating cancer is known as MR-guided RT. Several varieties of these units have been designed and installed in centres across the globe. Their prevalence, history, advantages and disadvantages are discussed in this review article. In preparation for the next generation of image-guided RT, this review also covers where MR-guided RT might be heading in the near future.
Collapse
Affiliation(s)
| | - Zhifei Wen
- UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jihong Wang
- UT MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
13
|
Wetter A, Grüneisen J, Fliessbach K, Lütje S, Schaarschmidt B, Umutlu L. Choline-based imaging of prostate cancer with combined [ 18F] fluorocholine PET and 1H MR spectroscopy by means of integrated PET/MRI. Clin Imaging 2017; 42:198-202. [PMID: 28110202 DOI: 10.1016/j.clinimag.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To evaluate integrated PET/MRI/1H MR spectroscopy in patients with prostate cancer. SUBJECTS AND METHODS Data analysis comprised calculations of correlations of standardized uptake values (SUVs) and ratios of (choline+creatine)/citrate as well as of single metabolite values and a logistic regression analysis of PET data and MR spectroscopy data in 22 patients. RESULTS SUVmean and integral values of choline correlated significantly in tumors. Logistic regression analysis demonstrated diagnostic superiority of PET over spectroscopy. CONCLUSION Simultaneous acquisition of PET and MR spectroscopy with integrated PET/MRI is feasible. Choline compounds and choline metabolism show a positive significant correlation.
Collapse
Affiliation(s)
- Axel Wetter
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45122 Essen, Germany.
| | - Johannes Grüneisen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Klaus Fliessbach
- Department of Psychiatry, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Susanne Lütje
- Department of Nuclear Medicine, University Hospital Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Benedikt Schaarschmidt
- Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45122 Essen, Germany
| |
Collapse
|
14
|
Abstract
Glioblastoma is regarded as the most aggressive and most common primary malignant brain tumor in adults. Despite advancements in chemotherapy and radiotherapy, prognosis and overall survival of glioblastoma patients remain dismal. Recently, progresses in genetic profiling have increased our understanding of the underlying heterogenous molecular nature of this aggressive tumor. Several prognostic and predictive molecular biomarkers have been identified that have been linked to patient's survival and response to treatment, respectively. Imaging genomics represents a novel entity in clinical sciences that bidirectionally links imaging features with underlying molecular profile and thus can serve as a surrogate for noninvasive genomic correlation, prediction, and identification.
Collapse
|
15
|
Review of potential improvements using MRI in the radiotherapy workflow. Z Med Phys 2015; 25:210-20. [PMID: 25779877 DOI: 10.1016/j.zemedi.2014.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/20/2014] [Accepted: 11/25/2014] [Indexed: 12/29/2022]
Abstract
The goal of modern radiotherapy is to deliver a lethal amount of dose to tissue volumes that contain a significant amount of tumour cells while sparing surrounding unaffected or healthy tissue. Online image guided radiotherapy with stereotactic ultrasound, fiducial-based planar X-ray imaging or helical/conebeam CT has dramatically improved the precision of radiotherapy, with moving targets still posing some methodical problems regarding positioning. Therefore, requirements for precise target delineation and identification of functional body structures to be spared by high doses become more evident. The identification of areas of relatively radioresistant cells or areas of high tumor cell density is currently under development. This review outlines the state of the art of MRI integration into treatment planning and its importance in follow up and the quantification of biological effects. Finally the current state of the art of online imaging for patient positioning will be outlined and indications will be given what the potential of integrated radiotherapy/online MRI systems is.
Collapse
|
16
|
Automatic voxel positioning for MRS at 7 T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2014; 28:259-70. [PMID: 25408107 DOI: 10.1007/s10334-014-0469-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
OBJECT The purpose of this study was to test, for the first time, whether spectroscopy voxels could be positioned automatically with high accuracy and reproducibility in ultrahigh-field longitudinal magnetic resonance spectroscopy (MRS) studies. MATERIALS AND METHODS MRS voxels were automatically positioned in two cingulate subregions of 12 healthy subjects using a vendor-provided automatic voxel positioning (AutoAlign) technique, and were manually placed in the same regions of 10 healthy subjects by an experienced technician in three 7 T MRS scan sessions. Different coils were used for manual (24-channel coil) and automatic (32-channel coil) voxel placement, and the effects of signal-to-noise-ratio differences on the spectra were considered. RESULTS Over three scan sessions and two regions scanned for each subject, a mean voxel geometric overlap ratio of 0.91 for automatic positioning reflected accurate voxel alignment, while the geometric overlap ratio was only 0.70 for voxels placed manually. Comparable voxel positions among the three scan sessions (p > 0.05) indicated high reproducibility of automatic voxel alignment. In comparison, significant voxel displacement among scan sessions (p < 0.05) was found using manual voxel positioning. CONCLUSIONS In view of the highly accurate and reproducible voxel alignment with automatic voxel positioning, we propose the application of automatic rather than manual voxel positioning in future ultrahigh-field longitudinal MRS studies.
Collapse
|