1
|
Pant K, Richard S, Peixoto E, Baral S, Yang R, Ren Y, Masyuk TV, LaRusso NF, Gradilone SA. Cholangiocyte ciliary defects induce sustained epidermal growth factor receptor signaling. Hepatology 2024:01515467-990000000-01003. [PMID: 39186465 DOI: 10.1097/hep.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND AND AIMS The primary cilium, an organelle that protrudes from cell surfaces, is essential for sensing extracellular signals. With disturbed cellular communication and chronic liver pathologies, this organelle's dysfunctions have been linked to disorders, including polycystic liver disease and cholangiocarcinoma. The goal of this study was to elucidate the relationship between primary cilia and the crucial regulator of cellular proliferation, the epidermal growth factor receptor (EGFR) signaling pathway, which has been associated with various clinical conditions. APPROACH AND RESULTS The study identified aberrant EGFR signaling pathways in cholangiocytes lacking functional primary cilia using liver-specific intraflagellar transport 88 knockout mice, a Pkhd1 mutant rat model, and human cell lines that did not have functional cilia. Cilia-deficient cholangiocytes showed persistent EGFR activation because of impaired receptor degradation, in contrast to their normal counterparts, where EGFR localization to the cilia promotes appropriate signaling. Using histone deacetylase 6 inhibitors to restore primary cilia accelerates EGFR degradation, thereby reducing maladaptive signaling. Importantly, experimental intervention with the histone deacetylase 6 inhibitor tubastatin A in an orthotopic rat model moved EGFR to cilia and reduced ERK phosphorylation. Concurrent administration of EGFR and histone deacetylase 6 inhibitors in cholangiocarcinoma and polycystic liver disease cells demonstrated synergistic antiproliferative effects, which were associated with the restoration of functioning primary cilia. CONCLUSIONS This study's findings shed light on ciliary function and robust EGFR signaling with slower receptor turnover. We could use therapies that restore the function of primary cilia to treat EGFR-driven diseases in polycystic liver disease and cholangiocarcinoma.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | | | - Subheksha Baral
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Rendong Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yanan Ren
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Tham MS, Cottle DL, Zylberberg AK, Short KM, Jones LK, Chan P, Conduit SE, Dyson JM, Mitchell CA, Smyth IM. Deletion of Aurora kinase A prevents the development of polycystic kidney disease in mice. Nat Commun 2024; 15:371. [PMID: 38191531 PMCID: PMC10774271 DOI: 10.1038/s41467-023-44410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
Aurora Kinase A (AURKA) promotes cell proliferation and is overexpressed in different types of polycystic kidney disease (PKD). To understand AURKA's role in regulating renal cyst development we conditionally deleted the gene in mouse models of Autosomal Dominant PKD (ADPKD) and Joubert Syndrome, caused by Polycystin 1 (Pkd1) and Inositol polyphosphate-5-phosphatase E (Inpp5e) mutations respectively. We show that while Aurka is dispensable for collecting duct development and homeostasis, its deletion prevents cyst formation in both disease models. Cross-comparison of transcriptional changes implicated AKT signaling in cyst prevention and we show that (i) AURKA and AKT physically interact, (ii) AURKA regulates AKT activity in a kinase-independent manner and (iii) inhibition of AKT can reduce disease severity. AKT activation also regulates Aurka expression, creating a feed-forward loop driving renal cystogenesis. We find that the AURKA kinase inhibitor Alisertib stabilises the AURKA protein, agonizing its cystogenic functions. These studies identify AURKA as a master regulator of renal cyst development in different types of PKD, functioning in-part via AKT.
Collapse
Affiliation(s)
- Ming Shen Tham
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Denny L Cottle
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Allara K Zylberberg
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kieran M Short
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lynelle K Jones
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Perkin Chan
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sarah E Conduit
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jennifer M Dyson
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ian M Smyth
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
3
|
Chitale S, Wu W, Mukherjee A, Lannon H, Suresh P, Nag I, Ambrosi CM, Gertner RS, Melo H, Powers B, Wilkins H, Hinton H, Cheah M, Boynton ZG, Alexeyev A, Sword D, Basan M, Park H, Ham D, Abbott J. A semiconductor 96-microplate platform for electrical-imaging based high-throughput phenotypic screening. Nat Commun 2023; 14:7576. [PMID: 37990016 PMCID: PMC10663594 DOI: 10.1038/s41467-023-43333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
High-content imaging for compound and genetic profiling is popular for drug discovery but limited to endpoint images of fixed cells. Conversely, electronic-based devices offer label-free, live cell functional information but suffer from limited spatial resolution or throughput. Here, we introduce a semiconductor 96-microplate platform for high-resolution, real-time impedance imaging. Each well features 4096 electrodes at 25 µm spatial resolution and a miniaturized data interface allows 8× parallel plate operation (768 total wells) for increased throughput. Electric field impedance measurements capture >20 parameter images including cell barrier, attachment, flatness, and motility every 15 min during experiments. We apply this technology to characterize 16 cell types, from primary epithelial to suspension cells, and quantify heterogeneity in mixed co-cultures. Screening 904 compounds across 13 semiconductor microplates reveals 25 distinct responses, demonstrating the platform's potential for mechanism of action profiling. The scalability and translatability of this semiconductor platform expands high-throughput mechanism of action profiling and phenotypic drug discovery applications.
Collapse
Affiliation(s)
| | - Wenxuan Wu
- CytoTronics Inc., Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Avik Mukherjee
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Rona S Gertner
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | | | | | - Henry Hinton
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | | | | | | | - Markus Basan
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | - Hongkun Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| | - Donhee Ham
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Jeffrey Abbott
- CytoTronics Inc., Boston, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Chitale S, Wu W, Mukherjee A, Lannon H, Suresh P, Nag I, Ambrosi CM, Gertner RS, Melo H, Powers B, Wilkins H, Hinton H, Cheah M, Boynton Z, Alexeyev A, Sword D, Basan M, Park H, Ham D, Abbott J. A semiconductor 96-microplate platform for electrical-imaging based high-throughput phenotypic screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543281. [PMID: 37333319 PMCID: PMC10274629 DOI: 10.1101/2023.06.01.543281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Profiling compounds and genetic perturbations via high-content imaging has become increasingly popular for drug discovery, but the technique is limited to endpoint images of fixed cells. In contrast, electronic-based devices offer label-free, functional information of live cells, yet current approaches suffer from low-spatial resolution or single-well throughput. Here, we report a semiconductor 96-microplate platform designed for high-resolution real-time impedance "imaging" at scale. Each well features 4,096 electrodes at 25 µm spatial resolution while a miniaturized data interface allows 8× parallel plate operation (768 total wells) within each incubator for enhanced throughputs. New electric field-based, multi-frequency measurement techniques capture >20 parameter images including tissue barrier, cell-surface attachment, cell flatness, and motility every 15 min throughout experiments. Using these real-time readouts, we characterized 16 cell types, ranging from primary epithelial to suspension, and quantified heterogeneity in mixed epithelial and mesenchymal co-cultures. A proof-of-concept screen of 904 diverse compounds using 13 semiconductor microplates demonstrates the platform's capability for mechanism of action (MOA) profiling with 25 distinct responses identified. The scalability of the semiconductor platform combined with the translatability of the high dimensional live-cell functional parameters expands high-throughput MOA profiling and phenotypic drug discovery applications.
Collapse
|
5
|
Abstract
Among the factors that have been strongly implicated in regulating cancerous transformation, the primary monocilium (cilium) has gained increasing attention. The cilium is a small organelle extending from the plasma membrane, which provides a localized hub for concentration of transmembrane receptors. These receptors transmit signals from soluble factors (including Sonic hedgehog (SHH), platelet-derived growth factor (PDGF-AA), WNT, TGFβ, NOTCH, and others) that regulate cell growth, as well as mechanosensory cues provided by flow or extracellular matrix. Ciliation is regulated by cell cycle, with most cells that are in G0 (quiescent) or early G1 ciliation and cilia typically absent in G2/M cells. Notably, while most cells organized in solid tissues are ciliated, cancerous transformation induces significant changes in ciliation. Most cancer cells lose cilia; medulloblastomas and basal cell carcinomas, dependent on an active SHH pathway, rely on ciliary maintenance. Changes in cancer cell ciliation are driven by core oncogenic pathways (EGFR, KRAS, AURKA, PI3K), and importantly ciliation status regulates functionality of those pathways. Ciliation is both influenced by targeted cancer therapies and linked to therapeutic resistance; recent studies suggest ciliation may also influence cancer cell metabolism and stem cell identity. We review recent studies defining the relationship between cilia and cancer.
Collapse
|
6
|
Sundar SV, Zhou JX, Magenheimer BS, Reif GA, Wallace DP, Georg GI, Jakkaraj SR, Tash JS, Yu ASL, Li X, Calvet JP. The lonidamine derivative H2-gamendazole reduces cyst formation in polycystic kidney disease. Am J Physiol Renal Physiol 2022; 323:F492-F506. [PMID: 35979967 PMCID: PMC9529276 DOI: 10.1152/ajprenal.00095.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating renal neoplastic disorder with limited treatment options. It is characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. We tested the effectiveness of the indazole carboxylic acid H2-gamendazole (H2-GMZ), a derivative of lonidamine, to inhibit these processes using in vitro and in vivo models of ADPKD. H2-GMZ was effective in rapidly blocking forskolin-induced, Cl--mediated short-circuit currents in human ADPKD cells, and it significantly inhibited both cAMP- and epidermal growth factor-induced proliferation of ADPKD cells. Western blot analysis of H2-GMZ-treated ADPKD cells showed decreased phosphorylated ERK and decreased hyperphosphorylated retinoblastoma levels. H2-GMZ treatment also decreased ErbB2, Akt, and cyclin-dependent kinase 4, consistent with inhibition of heat shock protein 90, and it decreased levels of the cystic fibrosis transmembrane conductance regulator Cl- channel protein. H2-GMZ-treated ADPKD cultures contained a higher proportion of smaller cells with fewer and smaller lamellipodia and decreased cytoplasmic actin staining, and they were unable to accomplish wound closure even at low H2-GMZ concentrations, consistent with an alteration in the actin cytoskeleton and decreased cell motility. Experiments using mouse metanephric organ cultures showed that H2-GMZ inhibited cAMP-stimulated cyst growth and enlargement. In vivo, H2-GMZ was effective in slowing postnatal cyst formation and kidney enlargement in the Pkd1flox/flox: Pkhd1-Cre mouse model. Thus, H2-GMZ treatment decreases Cl- secretion, cell proliferation, cell motility, and cyst growth. These properties, along with its reported low toxicity, suggest that H2-GMZ might be an attractive candidate for treatment of ADPKD.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is a renal neoplastic disorder characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. This study shows that the lonidamine derivative H2-GMZ inhibits Cl- secretion, cell proliferation, and cyst growth, suggesting that it might have therapeutic value for the treatment of ADPKD.
Collapse
Affiliation(s)
- Shirin V Sundar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Julie Xia Zhou
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Brenda S Magenheimer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Gail A Reif
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Darren P Wallace
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Sudhakar R Jakkaraj
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joseph S Tash
- Department of Molecular and Integrated Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S L Yu
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaogang Li
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
7
|
Olesen ETB, Fenton RA. Aquaporin 2 regulation: implications for water balance and polycystic kidney diseases. Nat Rev Nephrol 2021; 17:765-781. [PMID: 34211154 DOI: 10.1038/s41581-021-00447-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Targeting the collecting duct water channel aquaporin 2 (AQP2) to the plasma membrane is essential for the maintenance of mammalian water homeostasis. The vasopressin V2 receptor (V2R), which is a GS protein-coupled receptor that increases intracellular cAMP levels, has a major role in this targeting process. Although a rise in cAMP levels and activation of protein kinase A are involved in facilitating the actions of V2R, studies in knockout mice and cell models have suggested that cAMP signalling pathways are not an absolute requirement for V2R-mediated AQP2 trafficking to the plasma membrane. In addition, although AQP2 phosphorylation is a known prerequisite for V2R-mediated plasma membrane targeting, none of the known AQP2 phosphorylation events appears to be rate-limiting in this process, which suggests the involvement of other factors; cytoskeletal remodelling has also been implicated. Notably, several regulatory processes and signalling pathways involved in AQP2 trafficking also have a role in the pathophysiology of autosomal dominant polycystic kidney disease, although the role of AQP2 in cyst progression is unknown. Here, we highlight advances in the field of AQP2 regulation that might be exploited for the treatment of water balance disorders and provide a rationale for targeting these pathways in autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Emma T B Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Endocrinology and Nephrology, North Zealand Hospital, Hillerød, Denmark.
| | - Robert A Fenton
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Millet-Boureima C, He S, Le TBU, Gamberi C. Modeling Neoplastic Growth in Renal Cell Carcinoma and Polycystic Kidney Disease. Int J Mol Sci 2021; 22:3918. [PMID: 33920158 PMCID: PMC8070407 DOI: 10.3390/ijms22083918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) and autosomal dominant polycystic kidney disease (ADPKD) share several characteristics, including neoplastic cell growth, kidney cysts, and limited therapeutics. As well, both exhibit impaired vasculature and compensatory VEGF activation of angiogenesis. The PI3K/AKT/mTOR and Ras/Raf/ERK pathways play important roles in regulating cystic and tumor cell proliferation and growth. Both RCC and ADPKD result in hypoxia, where HIF-α signaling is activated in response to oxygen deprivation. Primary cilia and altered cell metabolism may play a role in disease progression. Non-coding RNAs may regulate RCC carcinogenesis and ADPKD through their varied effects. Drosophila exhibits remarkable conservation of the pathways involved in RCC and ADPKD. Here, we review the progress towards understanding disease mechanisms, partially overlapping cellular and molecular dysfunctions in RCC and ADPKD and reflect on the potential for the agile Drosophila genetic model to accelerate discovery science, address unresolved mechanistic aspects of these diseases, and perform rapid pharmacological screens.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Thi Bich Uyen Le
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
- Haematology-Oncology Research Group, National University Cancer Institute, Singapore 119228, Singapore
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29528-6054, USA
| |
Collapse
|
9
|
Alfieri M, Iaconis D, Tammaro R, Perone L, Calì G, Nitsch L, Dougherty GW, Ragnini-Wilson A, Franco B. The centrosomal/basal body protein OFD1 is required for microtubule organization and cell cycle progression. Tissue Cell 2020; 64:101369. [PMID: 32473706 DOI: 10.1016/j.tice.2020.101369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022]
Abstract
Oral-Facial-Digital type I (OFD1) is a rare inherited form of renal cystic disease associated with ciliary dysfunction. This disorder is due to mutations in the OFD1 gene that encodes a protein localized to centrosomes and basal bodies in different cell types. Immunofluorescence analysis demonstrated that OFD1 displays a dynamic distribution during cell cycle. High-content microscopy analysis of Ofd1-depleted fibroblasts revealed impaired cell cycle progression. Immunofluorescence analysis and cell proliferation assays also indicated the presence of a variety of defects such as centrosome accumulation, nuclear abnormalities and aneuploidy. In addition, Ofd1-depleted cells displayed an abnormal microtubule network that may underlie these defects. All together our results suggest that OFD1 contributes to the function of the microtubule organizing center (MTOC) in the cell, controlling cell cycle progression both in vitro and in vivo.
Collapse
Affiliation(s)
- Mariaevelina Alfieri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Daniela Iaconis
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Lucia Perone
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Gaetano Calì
- National Research Council - Institute of Experimental Endocrinology and Oncology, Naples, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Gerard W Dougherty
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of General Pediatrics, University Hospital Muenster, 48149, Muenster, Germany
| | | | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples "Federico II", Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
10
|
Parker MI, Nikonova AS, Sun D, Golemis EA. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal 2019; 67:109497. [PMID: 31830556 DOI: 10.1016/j.cellsig.2019.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
A primary pathological feature of polycystic kidney disease (PKD) is the hyperproliferation of epithelial cells in renal tubules, resulting in formation of fluid-filled cysts. The proliferative aspects of the two major forms of PKD-autosomal dominant PKD (ADPKD), which arises from mutations in the polycystins PKD1 and PKD2, and autosomal recessive PKD (ARPKD), which arises from mutations in PKHD1-has encouraged investigation into protein components of the core cell proliferative machinery as potential drivers of PKD pathogenesis. In this review, we examine the role of signaling by ERBB proteins and their effectors, with a primary focus on ADPKD. The ERBB family of receptor tyrosine kinases (EGFR/ERBB1, HER2/ERBB2, ERBB3, and ERBB4) are activated by extracellular ligands, inducing multiple pro-growth signaling cascades; among these, activation of signaling through the RAS GTPase, and the RAF, MEK1/2, and ERK1/2 kinases enhance cell proliferation and restrict apoptosis during renal tubuloepithelial cyst formation. Characteristics of PKD include overexpression and mislocalization of the ERBB receptors and ligands, leading to enhanced activation and increased activity of downstream signaling proteins. The altered regulation of ERBBs and their effectors in PKD is influenced by enhanced activity of SRC kinase, which is promoted by the loss of cytoplasmic Ca2+ and an increase in cAMP-dependent PKA kinase activity that stimulates CFTR, driving the secretory phenotype of ADPKD. We discuss the interplay between ERBB/SRC signaling, and polycystins and their depending signaling, with emphasis on thes changes that affect cell proliferation in cyst expansion, as well as the inflammation-associated fibrogenesis, which characterizes progressive disease. We summarize the current progress of preclinical and clinical trials directed at inhibiting this signaling axis, and discuss potential future strategies that may be productive for controlling PKD.
Collapse
Affiliation(s)
- Mitchell I Parker
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, 19102, USA
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA
| | - Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Institute of Life Science, Jiangsu University, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA.
| |
Collapse
|
11
|
Kiseleva AA, Korobeynikov VA, Nikonova AS, Zhang P, Makhov P, Deneka AY, Einarson MB, Serebriiskii IG, Liu H, Peterson JR, Golemis EA. Unexpected Activities in Regulating Ciliation Contribute to Off-target Effects of Targeted Drugs. Clin Cancer Res 2019; 25:4179-4193. [PMID: 30867219 DOI: 10.1158/1078-0432.ccr-18-3535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/14/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE For many tumors, signaling exchanges between cancer cells and other cells in their microenvironment influence overall tumor signaling. Some of these exchanges depend on expression of the primary cilium on nontransformed cell populations, as extracellular ligands including Sonic Hedgehog (SHH), PDGFRα, and others function through receptors spatially localized to cilia. Cell ciliation is regulated by proteins that are themselves therapeutic targets. We investigated whether kinase inhibitors of clinical interest influence ciliation and signaling by proteins with ciliary receptors in cancer and other cilia-relevant disorders, such as polycystic kidney disease (PKD). EXPERIMENTAL DESIGN We screened a library of clinical and preclinical kinase inhibitors, identifying drugs that either prevented or induced ciliary disassembly. Specific bioactive protein targets of the drugs were identified by mRNA depletion. Mechanism of action was defined, and activity of select compounds investigated. RESULTS We identified multiple kinase inhibitors not previously linked to control of ciliation, including sunitinib, erlotinib, and an inhibitor of the innate immune pathway kinase, IRAK4. For all compounds, activity was mediated through regulation of Aurora-A (AURKA) activity. Drugs targeting cilia influenced proximal cellular responses to SHH and PDGFRα. In vivo, sunitinib durably limited ciliation and cilia-related biological activities in renal cells, renal carcinoma cells, and PKD cysts. Extended analysis of IRAK4 defined a subset of innate immune signaling effectors potently affecting ciliation. CONCLUSIONS These results suggest a paradigm by which targeted drugs may have unexpected off-target effects in heterogeneous cell populations in vivo via control of a physical platform for receipt of extracellular ligands.
Collapse
Affiliation(s)
- Anna A Kiseleva
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russian Federation
| | - Vladislav A Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Anna S Nikonova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Peishan Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Petr Makhov
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alexander Y Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russian Federation
| | - Margret B Einarson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ilya G Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russian Federation
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jeffrey R Peterson
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
12
|
Nikonova AS, Deneka AY, Kiseleva AA, Korobeynikov V, Gaponova A, Serebriiskii IG, Kopp MC, Hensley HH, Seeger-Nukpezah TN, Somlo S, Proia DA, Golemis EA. Ganetespib limits ciliation and cystogenesis in autosomal-dominant polycystic kidney disease (ADPKD). FASEB J 2018; 32:2735-2746. [PMID: 29401581 DOI: 10.1096/fj.201700909r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is associated with progressive formation of renal cysts, kidney enlargement, hypertension, and typically end-stage renal disease. In ADPKD, inherited mutations disrupt function of the polycystins (encoded by PKD1 and PKD2), thus causing loss of a cyst-repressive signal emanating from the renal cilium. Genetic studies have suggested ciliary maintenance is essential for ADPKD pathogenesis. Heat shock protein 90 (HSP90) clients include multiple proteins linked to ciliary maintenance. We determined that ganetespib, a clinical HSP90 inhibitor, inhibited proteasomal repression of NEK8 and the Aurora-A activator trichoplein, rapidly activating Aurora-A kinase and causing ciliary loss in vitro. Using conditional mouse models for ADPKD, we performed long-term (10 or 50 wk) dosing experiments that demonstrated HSP90 inhibition caused durable in vivo loss of cilia, controlled cystic growth, and ameliorated symptoms induced by loss of Pkd1 or Pkd2. Ganetespib efficacy was not increased by combination with 2-deoxy-d-glucose, a glycolysis inhibitor showing some promise for ADPKD. These studies identify a new biologic activity for HSP90 and support a cilia-based mechanism for cyst repression.-Nikonova, A. S., Deneka, A. Y., Kiseleva, A. A., Korobeynikov, V., Gaponova, A., Serebriiskii, I. G., Kopp, M. C., Hensley, H. H., Seeger-Nukpezah, T. N., Somlo, S., Proia, D. A., Golemis, E. A. Ganetespib limits ciliation and cystogenesis in autosomal-dominant polycystic kidney disease (ADPKD).
Collapse
Affiliation(s)
- Anna S Nikonova
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Alexander Y Deneka
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Kazan Federal University, Kazan, Russia
| | - Anna A Kiseleva
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Kazan Federal University, Kazan, Russia
| | - Vladislav Korobeynikov
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Anna Gaponova
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Laboratory of Genome Engineering, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Immanuel Kant Baltic Federal University, Konigsberg, Russia
| | - Ilya G Serebriiskii
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Kazan Federal University, Kazan, Russia
| | - Meghan C Kopp
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Cancer Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Harvey H Hensley
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Tamina N Seeger-Nukpezah
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Department I of Internal Medicine and Center for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Stefan Somlo
- Departments of Internal Medicine and Genetics, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - David A Proia
- Synta Pharmaceuticals Corporation, Lexington, Massachusetts, USA
| | - Erica A Golemis
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Deneka AY, Haber L, Kopp MC, Gaponova AV, Nikonova AS, Golemis EA. Tumor-targeted SN38 inhibits growth of early stage non-small cell lung cancer (NSCLC) in a KRas/p53 transgenic mouse model. PLoS One 2017; 12:e0176747. [PMID: 28453558 PMCID: PMC5409145 DOI: 10.1371/journal.pone.0176747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/14/2017] [Indexed: 11/19/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide, with a 5-year survival of only ~16%. Potential strategies to address NSCLC mortality include improvements in early detection and prevention, and development of new therapies suitable for use in patients with early and late stage diagnoses. Controlling the growth of early stage tumors could yield significant clinical benefits for patients with comorbidities that make them poor candidates for surgery: however, many drugs that limit cancer growth are not useful in the setting of long-term use or in comorbid patients, because of associated toxicities. In this study, we explored the use of a recently described small molecule agent, STA-8666, as a potential agent for controlling early stage tumor growth. STA-8666 uses a cleavable linker to merge a tumor-targeting moiety that binds heat shock protein 90 (HSP90) with the cytotoxic chemical SN38, and has been shown to have high efficacy and low toxicity, associated with efficient tumor targeting, in preclinical studies using patient-derived and other xenograft models for pancreatic, bladder, and small cell lung cancer. Using a genetically engineered model of NSCLC arising from induced mutation of KRas and knockout of Trp53, we continuously dosed mice with STA-8666 from immediately after tumor induction for 15 weeks. STA-8666 significantly slowed the rate of tumor growth, and was well tolerated over this extended dosing period. STA-8666 induced DNA damage and apoptosis, and reduced proliferation and phosphorylation of the proliferation-associated protein ERK1/2, selectively in tumor tissue. In contrast, STA-8666 did not affect tumor features, such as degree of vimentin staining, associated with epithelial-mesenchymal transition (EMT), or downregulate tumor expression of HSP90. These data suggest STA-8666 and other similar targeted compounds may be useful additions to control the growth of early stage NSCLC in patient populations.
Collapse
Affiliation(s)
- Alexander Y. Deneka
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry, Kazan Federal University, Kazan, Russia
- * E-mail: (EG); (AD)
| | - Leora Haber
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Meghan C. Kopp
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Anna V. Gaponova
- Laboratory of Genome Engineering, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Immanuel Kant Baltic Federal University, Konigsberg, Russia
| | - Anna S. Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Erica A. Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail: (EG); (AD)
| |
Collapse
|
14
|
Korobeynikov V, Deneka AY, Golemis EA. Mechanisms for nonmitotic activation of Aurora-A at cilia. Biochem Soc Trans 2017; 45:37-49. [PMID: 28202658 PMCID: PMC5860652 DOI: 10.1042/bst20160142] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Overexpression of the Aurora kinase A (AURKA) is oncogenic in many tumors. Many studies of AURKA have focused on activities of this kinase in mitosis, and elucidated the mechanisms by which AURKA activity is induced at the G2/M boundary through interactions with proteins such as TPX2 and NEDD9. These studies have informed the development of small molecule inhibitors of AURKA, of which a number are currently under preclinical and clinical assessment. While the first activities defined for AURKA were its control of centrosomal maturation and organization of the mitotic spindle, an increasing number of studies over the past decade have recognized a separate biological function of AURKA, in controlling disassembly of the primary cilium, a small organelle protruding from the cell surface that serves as a signaling platform. Importantly, these activities require activation of AURKA in early G1, and the mechanisms of activation are much less well defined than those in mitosis. A better understanding of the control of AURKA activity and the role of AURKA at cilia are both important in optimizing the efficacy and interpreting potential downstream consequences of AURKA inhibitors in the clinic. We here provide a current overview of proteins and mechanisms that have been defined as activating AURKA in G1, based on the study of ciliary disassembly.
Collapse
Affiliation(s)
- Vladislav Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, U.S.A
| | - Alexander Y Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A
- Kazan Federal University, Kazan 420000, Russian Federation
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A.
| |
Collapse
|