1
|
Giannuzzi D, Capra E, Bisutti V, Vanzin A, Marsan PA, Cecchinato A, Pegolo S. Methylome-wide analysis of milk somatic cells upon subclinical mastitis in dairy cattle. J Dairy Sci 2024; 107:1805-1820. [PMID: 37939836 DOI: 10.3168/jds.2023-23821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Better understanding of the molecular mechanisms behind bovine mastitis is fundamental for improving the management of this disease, which continues to be of major concern for the dairy industry, especially in its subclinical form. Disease severity and progression depend on numerous aspects, such as livestock genetics, and the interaction between the causative agent, the host, and the environment. In this context, epigenetic mechanisms have proven to have a role in controlling the response of the animal to inflammation. Therefore, in this study we aimed to explore genome-wide DNA methylation of milk somatic cells (SC) in healthy cows (n = 15) and cows affected by naturally occurring subclinical mastitis by Streptococcus agalactiae (n = 12) and Prototheca spp. (n = 11), to better understand the role of SC methylome in the host response to disease. Differentially methylated regions (DMR) were evaluated comparing: (1) Strep. agalactiae-infected versus healthy; (2) Prototheca-infected versus healthy, and (3) mastitis versus healthy and (4) Strep. agalactiae-infected versus Prototheca-infected. The functional analysis was performed at 2 levels. To begin with, we extracted differentially methylated genes (DMG) from promoter DMR, which were analyzed using the Cytoscape ClueGO plug-in. Coupled with this DMG-driven approach, all the genes associated with promoter-methylated regions were fed to the Pathifier algorithm. From the DMR analysis, we identified 1,081 hypermethylated and 361 hypomethylated promoter regions in Strep. agalactiae-infected animals, while 1,514 hypermethylated and 358 hypomethylated promoter regions were identified in Prototheca-infected animals, when compared with the healthy controls. When considering infected animals as a whole group (regardless of the pathogen), we found 1,576 hypermethylated and 460 hypomethylated promoter regions. Both pathogens were associated with methylation differences in genes involved in pathways related to meiosis, reproduction and tissue remodeling. Exploring the whole methylome, in subclinically infected cows we observed a strong deregulation of immune-related pathways, such as nuclear factor kB and toll-like receptors signaling pathways, and of energy-related pathways such as the tricarboxylic acid cycle and unsaturated fatty acid biosynthesis. In conclusion, no evident pathogen-specific SC methylome signature was detected in the present study. Overall, we observed a clear regulation of host immune response driven by DNA methylation upon subclinical mastitis. Further studies on a larger cohort of animals are needed to validate our results and to possibly identify a unique SC methylome that signifies pathogen-specific alterations.
Collapse
Affiliation(s)
- D Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - E Capra
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA CNR), 26900, Lodi, Italy
| | - V Bisutti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy.
| | - A Vanzin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - P Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - S Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| |
Collapse
|
2
|
Geissler F, Nesic K, Kondrashova O, Dobrovic A, Swisher EM, Scott CL, J. Wakefield M. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther Adv Med Oncol 2024; 16:17588359231220511. [PMID: 38293277 PMCID: PMC10826407 DOI: 10.1177/17588359231220511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024] Open
Abstract
Epigenetic alterations, including aberrant DNA methylation, are now recognized as bone fide hallmarks of cancer, which can contribute to cancer initiation, progression, therapy responses and therapy resistance. Methylation of gene promoters can have a range of impacts on cancer risk, clinical stratification and therapeutic outcomes. We provide several important examples of genes, which can be silenced or activated by promoter methylation and highlight their clinical implications. These include the mismatch DNA repair genes MLH1 and MSH2, homologous recombination DNA repair genes BRCA1 and RAD51C, the TERT oncogene and genes within the P15/P16/RB1/E2F tumour suppressor axis. We also discuss how these methylation changes might occur in the first place - whether in the context of the CpG island methylator phenotype or constitutional DNA methylation. The choice of assay used to measure methylation can have a significant impact on interpretation of methylation states, and some examples where this can influence clinical decision-making are presented. Aberrant DNA methylation patterns in circulating tumour DNA (ctDNA) are also showing great promise in the context of non-invasive cancer detection and monitoring using liquid biopsies; however, caution must be taken in interpreting these results in cases where constitutional methylation may be present. Thus, this review aims to provide researchers and clinicians with a comprehensive summary of this broad, but important subject, illustrating the potentials and pitfalls of assessing aberrant DNA methylation in cancer.
Collapse
Affiliation(s)
- Franziska Geissler
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | | | - Clare L. Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
- Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Matthew J. Wakefield
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Bingen JM, Clark LV, Band MR, Munzir I, Carrithers MD. Differential DNA methylation associated with multiple sclerosis and disease modifying treatments in an underrepresented minority population. Front Genet 2023; 13:1058817. [PMID: 36685876 PMCID: PMC9845287 DOI: 10.3389/fgene.2022.1058817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Black and Hispanic American patients frequently develop earlier onset of multiple sclerosis (MS) and a more severe disease course that can be resistant to disease modifying treatments. The objectives were to identify differential methylation of genomic DNA (gDNA) associated with disease susceptibility and treatment responses in a cohort of MS patients from underrepresented minority populations. Patients with MS and controls with non-inflammatory neurologic conditions were consented and enrolled under an IRB-approved protocol. Approximately 64% of donors identified as Black or African American and 30% as White, Hispanic-Latino. Infinium MethylationEPIC bead arrays were utilized to measure epigenome-wide gDNA methylation of whole blood. Data were analyzed in the presence and absence of adjustments for unknown covariates in the dataset, some of which corresponded to disease modifying treatments. Global patterns of differential methylation associated with MS were strongest for those probes that showed relative demethylation of loci with lower M values. Pathway analysis revealed unexpected associations with shigellosis and amoebiasis. Enrichment analysis revealed an over-representation of probes in enhancer regions and an under-representation in promoters. In the presence of adjustments for covariates that included disease modifying treatments, analysis revealed 10 differentially methylated regions (DMR's) with an FDR <1E-77. Five of these genes (ARID5B, BAZ2B, RABGAP1, SFRP2, WBP1L) are associated with cancer risk and cellular differentiation and have not been previously identified in MS studies. Hierarchical cluster and multi-dimensional scaling analysis of differential DNA methylation at 147 loci within those DMR's was sufficient to differentiate MS donors from controls. In the absence of corrections for disease modifying treatments, differential methylation in patients treated with dimethyl fumarate was associated with immune regulatory pathways that regulate cytokine and chemokine signaling, axon guidance, and adherens junctions. These results demonstrate possible associations of gastrointestinal pathogens and regulation of cellular differentiation with MS susceptibility in our patient cohort. This work further suggests that analyses can be performed in the presence and absence of corrections for immune therapies. Because of their high representation in our patient cohort, these results may be of specific relevance in the regulation of disease susceptibility and treatment responses in Black and Hispanic Americans.
Collapse
Affiliation(s)
- Jeremy M. Bingen
- Neurology, University of Illinois College of Medicine, Chicago, IL, United States
- Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, United States
| | - Lindsay V. Clark
- High Performance Biological Computing, and Roy J Carver Biotechnology Center, University of Illinois, Champaign, IL, United States
| | - Mark R. Band
- High Performance Biological Computing, and Roy J Carver Biotechnology Center, University of Illinois, Champaign, IL, United States
| | - Ilyas Munzir
- Neurology, University of Illinois College of Medicine, Chicago, IL, United States
| | - Michael D. Carrithers
- Neurology, University of Illinois College of Medicine, Chicago, IL, United States
- Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, United States
- Neurology, Jesse Brown Veterans Administration Hospital, Chicago, IL, United States
| |
Collapse
|
4
|
Ibrahim J, Peeters M, Van Camp G, Op de Beeck K. Methylation biomarkers for early cancer detection and diagnosis: Current and future perspectives. Eur J Cancer 2023; 178:91-113. [PMID: 36427394 DOI: 10.1016/j.ejca.2022.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
The increase in recent scientific studies on cancer biomarkers has brought great new insights into the field. Moreover, novel technological breakthroughs such as long read sequencing and microarrays have enabled high throughput profiling of many biomarkers, while advances in bioinformatic tools have made the possibility of developing highly reliable and accurate biomarkers a reality. These changes triggered renewed interest in biomarker research and provided tremendous opportunities for enhancing cancer management and improving early disease detection. DNA methylation alterations are known to accompany and contribute to carcinogenesis, making them promising biomarkers for cancer, namely due to their stability, frequency and accessibility in bodily fluids. The advent of newer minimally invasive experimental methods such as liquid biopsies provide the perfect setting for methylation-based biomarker development and application. Despite their huge potential, accurate and robust biomarkers for the conclusive diagnosis of most cancer types are still not routinely used, hence a strong need for sustained research in this field is still needed. This review provides a brief exposition of current methylation biomarkers for cancer diagnosis and early detection, including markers already in clinical use as well as various upcoming ones. It also outlines how recent big data and novel technologies will revolutionise the next generation of cancer tests in supplementing or replacing currently existing invasive techniques.
Collapse
Affiliation(s)
- Joe Ibrahim
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium; Department of Medical Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium.
| |
Collapse
|
5
|
The Modes of Dysregulation of the Proto-Oncogene T-Cell Leukemia/Lymphoma 1A. Cancers (Basel) 2021; 13:cancers13215455. [PMID: 34771618 PMCID: PMC8582492 DOI: 10.3390/cancers13215455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary T-cell leukemia/lymphoma 1A (TCL1A) is a proto-oncogene that is mainly expressed in embryonic and fetal tissues, as well as in some lymphatic cells. It is frequently overexpressed in a variety of T- and B-cell lymphomas and in some solid tumors. In chronic lymphocytic leukemia and in T-prolymphocytic leukemia, TCL1A has been implicated in the pathogenesis of these conditions, and high-level TCL1A expression correlates with more aggressive disease characteristics and poorer patient survival. Despite the modes of TCL1A (dys)regulation still being incompletely understood, there are recent advances in understanding its (post)transcriptional regulation. This review summarizes the current concepts of TCL1A’s multi-faceted modes of regulation. Understanding how TCL1A is deregulated and how this can lead to tumor initiation and sustenance can help in future approaches to interfere in its oncogenic actions. Abstract Incomplete biological concepts in lymphoid neoplasms still dictate to a large extent the limited availability of efficient targeted treatments, which entertains the mostly unsatisfactory clinical outcomes. Aberrant expression of the embryonal and lymphatic TCL1 family of oncogenes, i.e., the paradigmatic TCL1A, but also TML1 or MTCP1, is causally implicated in T- and B-lymphocyte transformation. TCL1A also carries prognostic information in these particular T-cell and B-cell tumors. More recently, the TCL1A oncogene has been observed also in epithelial tumors as part of oncofetal stemness signatures. Although the concepts on the modes of TCL1A dysregulation in lymphatic neoplasms and solid tumors are still incomplete, there are recent advances in defining the mechanisms of its (de)regulation. This review presents a comprehensive overview of TCL1A expression in tumors and the current understanding of its (dys)regulation via genomic aberrations, epigenetic modifications, or deregulation of TCL1A-targeting micro RNAs. We also summarize triggers that act through such transcriptional and translational regulation, i.e., altered signals by the tumor microenvironment. A refined mechanistic understanding of these modes of dysregulations together with improved concepts of TCL1A-associated malignant transformation can benefit future approaches to specifically interfere in TCL1A-initiated or -driven tumorigenesis.
Collapse
|
6
|
Bae DH, Kim HJ, Yoon BH, Park JL, Kim M, Kim SK, Kim SY, Lee SI, Song KS, Kim YS. STK31 upregulation is associated with chromatin remodeling in gastric cancer and induction of tumorigenicity in a xenograft mouse model. Oncol Rep 2021; 45:42. [PMID: 33649810 PMCID: PMC7934220 DOI: 10.3892/or.2021.7993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Pathological changes in the epigenetic landscape of chromatin are hallmarks of cancer. Our previous study showed that global methylation of promoters may increase or decrease during the transition from gastric mucosa to intestinal metaplasia (IM) to gastric cancer (GC). Here, CpG hypomethylation of the serine/threonine kinase STK31 promoter in IM and GC was detected in a reduced representation bisulfite sequencing database. STK31 hypomethylation, which resulted in its upregulation in 120 cases of primary GC, was confirmed. Using public genome-wide histone modification data, upregulation of STK31 promoter activity was detected in primary GC but not in normal mucosae, suggesting that STK31 may be repressed in gastric mucosa but activated in GC as a consequence of hypomethylation-associated chromatin remodeling. STK31 knockdown suppressed the proliferation, colony formation and migration activities of GC cells in vitro, whereas stable overexpression of STK31 promoted the proliferation, colony formation, and migration activities of GC cells in vitro and tumorigenesis in nude mice. Patients with GC in which STK31 was upregulated exhibited significantly shorter survival times in a combined cohort. Thus, activation of STK31 by chromatin remodeling may be associated with gastric carcinogenesis and also may help predict GC prognosis.
Collapse
Affiliation(s)
- Dong Hyuck Bae
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hee-Jin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Byoung-Ha Yoon
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jong-Lyul Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mirang Kim
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Seon-Young Kim
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang-Il Lee
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Kyu-Sang Song
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Yong Sung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Lopusna K, Nowialis P, Opavska J, Abraham A, Riva A, Haney SL, Opavsky R. Decreases in different Dnmt3b activities drive distinct development of hematologic malignancies in mice. J Biol Chem 2021; 296:100285. [PMID: 33450231 PMCID: PMC7949038 DOI: 10.1016/j.jbc.2021.100285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
DNA methylation regulates gene transcription and is involved in various physiological processes in mammals, including development and hematopoiesis. It is catalyzed by DNA methyltransferases including Dnmt1, Dnmt3a, and Dnmt3b. For Dnmt3b, its effects on transcription can result from its own DNA methylase activity, the recruitment of other Dnmts to mediate methylation, or transcription repression in a methylation-independent manner. Low-frequency mutations in human DNMT3B are found in hematologic malignancies including cutaneous T-cell lymphomas, hairy cell leukemia, and diffuse large B-cell lymphomas. Moreover, Dnmt3b is a tumor suppressor in oncogene-driven lymphoid and myeloid malignancies in mice. However, it is poorly understood how the different Dnmt3b activities contribute to these outcomes. We modulated Dnmt3b activity in vivo by generating Dnmt3b+/- mice expressing one wild-type allele as well as Dnmt3b+/CI and Dnmt3bCI/CI mice where one or both alleles express catalytically inactive Dnmt3bCI. We show that 43% of Dnmt3b+/- mice developed T-cell lymphomas, chronic lymphocytic leukemia, and myeloproliferation over 18 months, thus resembling phenotypes previously observed in Dnmt3a+/- mice, possibly through regulation of shared target genes. Interestingly, Dnmt3b+/CI and Dnmt3bCI/CI mice survived postnatal development and were affected by B-cell rather than T-cell malignancies with decreased penetrance. Genome-wide hypomethylation, increased expression of oncogenes such as Jdp2, STAT1, and Trip13, and p53 downregulation were major events contributing to Dnmt3b+/- lymphoma development. We conclude that Dnmt3b catalytic activity is critical to prevent B-cell transformation in vivo, whereas accessory and methylation-independent repressive functions are important to prevent T-cell transformation.
Collapse
MESH Headings
- ATPases Associated with Diverse Cellular Activities/genetics
- ATPases Associated with Diverse Cellular Activities/metabolism
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- DNA (Cytosine-5-)-Methyltransferases/deficiency
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA Methylation
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Heterozygote
- Homozygote
- Humans
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, T-Cell/enzymology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Male
- Mice
- Mice, Knockout
- Myeloproliferative Disorders/enzymology
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/pathology
- Neoplasms, Experimental/enzymology
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Katarina Lopusna
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jana Opavska
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ajay Abraham
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alberto Riva
- ICBR Bioinformatics, Cancer and Genetics Research Complex, University of Florida, Gainesville, Florida, USA
| | - Staci L Haney
- Department of Internal Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA.
| |
Collapse
|
8
|
Seo EH, Kim HJ, Kim JH, Lim B, Park JL, Kim SY, Lee SI, Jeong HY, Song KS, Kim YS. ONECUT2 upregulation is associated with CpG hypomethylation at promoter-proximal DNA in gastric cancer and triggers ACSL5. Int J Cancer 2020; 146:3354-3368. [PMID: 32129880 PMCID: PMC7217064 DOI: 10.1002/ijc.32946] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
Many studies have focused on global hypomethylation or hypermethylation of tumor suppressor genes, but less is known about the impact of promoter hypomethylation of oncogenes. We previously showed that promoter methylation may gradually increase or decrease during the transition from gastric mucosa (GM) to intestinal metaplasia (IM) to gastric cancer (GC). In our study, we focused on regional CpG hypomethylation of the promoter‐proximal DNA of the transcription factor ONECUT2 (OC2) in IM and GC cells. We validated the hypomethylation of promoter‐proximal DNA of OC2 in 160 primary GCs, in which methylation level correlated negatively with OC2 mRNA level. IM and GC cells stained positively for OC2, whereas GM cells did not. Stable transfection of OC2 in GC cells promoted colony formation, cell migration, invasion and proliferation. Moreover, OC2 knockdown with a short hairpin RNA suppressed tumorigenesis in nude mice. In addition, chromatin immunoprecipitation coupled with DNA sequencing and RNA‐seq analyses revealed that OC2 triggered ACSL5, which is strongly expressed in IM of the stomach but not in GM, indicating that OC2 and ACSL5 are early‐stage biomarkers for GC. We also observed a high correlation between the levels of OC2 and ACSL5 mRNAs in the GENT database These results suggest that epigenetic alteration of OC2 upregulates its expression, which then activates ACSL5; thus, OC2 is induced in IM by epigenetic alteration and triggers ACSL5 expression, and thus OC2 and ACSL5 may cooperatively promote intestinal differentiation and GC progression. What's new? DNA hypomethylation can promote cancer development through activation of genes with oncogenic potential. Here, the authors found that CpGs in the promoter‐proximal DNA of ONECUT2 were hypomethylated in intestinal metaplasia and gastric cancers, and that hypomethylation was associated with ONECUT2 upregulation. Functional analysis demonstrated that ONECUT2 has oncogenic potential and could activate ACSL5, which is also expressed in intestinal metaplasia, suggesting that ONECUT2 and ACSL5 may cooperate to promote intestinal differentiation or development of gastric cancer. Taken together, the findings suggest that ONECUT2 and its downstream target ACSL5 could be used to develop early detection biomarkers and prevent gastric carcinogenesis.
Collapse
Affiliation(s)
- Eun-Hye Seo
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Hee-Jin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Byungho Lim
- Division of Drug Discovery Research, Research Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jong-Lyul Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea.,Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sang-Il Lee
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Yong Jeong
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyu-Sang Song
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Sung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Wei J, Xu Z, Chen X, Wang X, Zeng S, Qian L, Yang X, Ou C, Lin W, Gong Z, Yan Y. Overexpression of GSDMC is a prognostic factor for predicting a poor outcome in lung adenocarcinoma. Mol Med Rep 2019; 21:360-370. [PMID: 31939622 PMCID: PMC6896373 DOI: 10.3892/mmr.2019.10837] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023] Open
Abstract
The gasdermin (GSDM) superfamily has been demonstrated to consist of several important molecules that modulate multifunctional signal processes, such as cell pyroptosis. In this research, the roles of the GSDM superfamily on the occurrence and prognosis of lung adenocarcinoma (LUAD) were evaluated using integrative bioinformatic analyses and in vitro methods. Here, data from several bioinformatic platforms revealed that GSDMC is significantly upregulated in LUAD tissues and cell lines. Real-time fluorescence quantitative PCR (qPCR) demonstrated that GSDMC was obviously upregulated in radio-resistant LUAD cells, compared with their parental cells. Moreover, upregulated GSDMC expression was confirmed to be an independent indicator of poor first progression (FP) and overall survival (OS) in LUAD patients. DNA methylation analysis showed an evidently negative correlation between GSDMC expression and methylation status of one CpG site (cg05316065) in its DNA sequence. Patients with high methylation values had significantly higher Karnofsky performance scores (KPSs) and prolonged OS rates. Together, we confirmed that overexpression of GSDMC acts as a promising predictive factor for the poor prognosis of LUAD patients.
Collapse
Affiliation(s)
- Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
10
|
Udristioiu A, Nica-Badea D. Signification of protein p-53 isoforms and immune therapeutic success in chronic lymphocytic leukemia. Biomed Pharmacother 2018; 106:50-53. [PMID: 29945117 PMCID: PMC11103075 DOI: 10.1016/j.biopha.2018.06.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022] Open
Abstract
In the past few years has used thetechnique for analyzing deletions of genes, its rearrangements, cross-reactivity or multiplications in human genome affected of genetic diseases. Was proved that, the best techniques in the investigation of malignant lymphocytes are the Flow Cytometry, Elisa, ICT and Fluorescence in situ hybridization (FISH). Last method, FISH is used as an alternative to chromosomal banding, a conventional application in molecular medicine and can detect the chromosomal rearrangements and complexes of different genes in malignant diseases, like chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia, (ALL), or multiple myeloma (MM). Identification of P53 gene deletions and mutations in regions of chromosome 17 in hematological malignancies is important because these mutations have an impact on the clinical management of patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- DNA Damage
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Molecular Targeted Therapy
- Mutation
- Precision Medicine
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Protein Isoforms
- Treatment Outcome
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Aurelian Udristioiu
- Molecular Biology, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Delia Nica-Badea
- Constantin Brancusi University, Faculty of Medical Science and Behaviors, Târgu Jiu, Romania.
| |
Collapse
|
11
|
Dmitrijeva M, Ossowski S, Serrano L, Schaefer MH. Tissue-specific DNA methylation loss during ageing and carcinogenesis is linked to chromosome structure, replication timing and cell division rates. Nucleic Acids Res 2018; 46:7022-7039. [PMID: 29893918 PMCID: PMC6101545 DOI: 10.1093/nar/gky498] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is an epigenetic mechanism known to affect gene expression and aberrant DNA methylation patterns have been described in cancer. However, only a small fraction of differential methylation events target genes with a defined role in cancer, raising the question of how aberrant DNA methylation contributes to carcinogenesis. As recently a link has been suggested between methylation patterns arising in ageing and those arising in cancer, we asked which aberrations are unique to cancer and which are the product of normal ageing processes. We therefore compared the methylation patterns between ageing and cancer in multiple tissues. We observed that hypermethylation preferentially occurs in regulatory elements, while hypomethylation is associated with structural features of the chromatin. Specifically, we observed consistent hypomethylation of late-replicating, lamina-associated domains. The extent of hypomethylation was stronger in cancer, but in both ageing and cancer it was proportional to the replication timing of the region and the cell division rate of the tissue. Moreover, cancer patients who displayed more hypomethylation in late-replicating, lamina-associated domains had higher expression of cell division genes. These findings suggest that different cell division rates contribute to tissue- and cancer type-specific DNA methylation profiles.
Collapse
Affiliation(s)
- Marija Dmitrijeva
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Stephan Ossowski
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Martin H Schaefer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| |
Collapse
|
12
|
Murín R, Abdalla M, Murínová N, Hatok J, Dobrota D. The metabolism of 5-methylcytosine residues in DNA. Physiol Res 2018. [PMID: 29527909 DOI: 10.33549/physiolres.933550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The fundamental biochemical processes of 5-methylcytosine (5-mC) synthesis, maintenance, conversion and removal determine the time and spatial pattern of DNA methylation. This has a strong effect on a plethora of physiological aspects of cellular metabolism. While the presence of 5-mC within the promoter region can silence gene expression, its derivative - 5-hydroxymethylcytosine exerts an opposite effect. Dysregulations in the metabolism of 5-mC lead to an altered DNA methylation pattern which is linked with a disrupted epigenome, and are considered to play a significant part in the etiology of several human diseases. A summary of recent knowledge about the molecular processes participating in DNA methylation pattern shaping is provided here.
Collapse
Affiliation(s)
- R Murín
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | |
Collapse
|
13
|
Robinson JE, Cutucache CE. Deciphering splenic marginal zone lymphoma pathogenesis: the proposed role of microRNA. Oncotarget 2018; 9:30005-30022. [PMID: 30042829 PMCID: PMC6057449 DOI: 10.18632/oncotarget.25487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a malignancy of mature B-cells that primarily involves the spleen, but can affect peripheral organs as well. Even though SMZL is overall considered an indolent malignancy, the majority of cases will eventually progress to be more aggressive. In recent years, the gene expression profile of SMZL has been characterized in an effort to identify: 1) the etiology of SMZL, 2) biological consequences of SMZL, and 3) putative therapeutic targets. However, due to the vast heterogeneity of the malignancy, no conclusive target(s) have been deciphered. However, the role of miRNA in SMZL, much as it has in chronic lymphocytic leukemia, may serve as a guiding light. As a result, we review the comprehensive expression profiling in SMZL to-date, as well as describe the miRNA (and potential mechanistic roles) that may play a role in SMZL transformation, particularly within the 7q region.
Collapse
Affiliation(s)
- Jacob E Robinson
- Deptartment of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | | |
Collapse
|
14
|
Bagacean C, Le Dantec C, Berthou C, Tempescul A, Saad H, Bordron A, Zdrenghea M, Cristea V, Douet-Guilbert N, Renaudineau Y. Combining cytogenetic and epigenetic approaches in chronic lymphocytic leukemia improves prognosis prediction for patients with isolated 13q deletion. Clin Epigenetics 2017; 9:122. [PMID: 29209431 PMCID: PMC5704505 DOI: 10.1186/s13148-017-0422-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/17/2017] [Indexed: 11/10/2022] Open
Abstract
Background Both defective DNA methylation and active DNA demethylation processes are emerging as important risk factors in chronic lymphocytic leukemia (CLL). However, associations between 5-cytosine epigenetic markers and the most frequent chromosomal abnormalities detected in CLL remain to be established. Methods CLL patients were retrospectively classified into a cytogenetic low-risk group (isolated 13q deletion), an intermediate-risk group (normal karyotype or trisomy 12), and a high-risk group (11q deletion, 17p deletion, or complex karyotype [≥ 3 breakpoints]). The two 5-cytosine derivatives, 5-methylcytosine (5-mCyt) and 5-hydroxymethylcytosine (5-hmCyt), were tested by ELISA (n = 60), while real-time quantitative PCR was used for determining transcriptional expression levels of DNMT and TET (n = 24). Results By using global DNA methylation/demethylation levels, in the low-risk disease group, two subgroups with significantly different clinical outcomes have been identified (median treatment-free survival [TFS] 45 versus > 120 months for 5-mCyt, p = 0.0008, and 63 versus > 120 months for 5-hmCyt, p = 0.04). A defective 5-mCyt status was further associated with a higher percentage of 13q deleted nuclei (> 80%), thus suggesting an acquired process. When considering the cytogenetic intermediate/high-risk disease groups, an association of 5-mCyt status with lymphocytosis (p = 0.0008) and the lymphocyte doubling time (p = 0.04) but not with TFS was observed, as well as a reduction of DNMT3A, TET1, and TET2 transcripts. Conclusions Combining cytogenetic studies with 5-mCyt assessment adds accuracy to CLL patients’ prognoses and particularly for those with 13q deletion as a sole cytogenetic abnormality.
Collapse
Affiliation(s)
- Cristina Bagacean
- U1227 B lymphocytes and autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, networks IC-CGO and REpiCGO from "Canceropole Grand Ouest", Brest, France.,Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, BP 824, 29609 Brest, France.,"Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Christelle Le Dantec
- U1227 B lymphocytes and autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, networks IC-CGO and REpiCGO from "Canceropole Grand Ouest", Brest, France
| | - Christian Berthou
- U1227 B lymphocytes and autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, networks IC-CGO and REpiCGO from "Canceropole Grand Ouest", Brest, France.,Department of Hematology, Brest University Medical School Hospital, Brest, France
| | - Adrian Tempescul
- U1227 B lymphocytes and autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, networks IC-CGO and REpiCGO from "Canceropole Grand Ouest", Brest, France.,Department of Hematology, Brest University Medical School Hospital, Brest, France
| | - Hussam Saad
- Department of Hematology, Brest University Medical School Hospital, Brest, France
| | - Anne Bordron
- U1227 B lymphocytes and autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, networks IC-CGO and REpiCGO from "Canceropole Grand Ouest", Brest, France
| | - Mihnea Zdrenghea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| | - Victor Cristea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Yves Renaudineau
- U1227 B lymphocytes and autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, networks IC-CGO and REpiCGO from "Canceropole Grand Ouest", Brest, France.,Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, BP 824, 29609 Brest, France
| |
Collapse
|
15
|
Bagacean C, Tempescul A, Le Dantec C, Bordron A, Mohr A, Saad H, Olivier V, Zdrenghea M, Cristea V, Cartron PF, Douet-Guilbert N, Berthou C, Renaudineau Y. Alterations in DNA methylation/demethylation intermediates predict clinical outcome in chronic lymphocytic leukemia. Oncotarget 2017; 8:65699-65716. [PMID: 29029465 PMCID: PMC5630365 DOI: 10.18632/oncotarget.20081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Abstract
Cytosine derivative dysregulations represent important epigenetic modifications whose impact on the clinical outcome in chronic lymphocytic leukemia (CLL) is incompletely understood. Hence, global levels of 5-methylcytosine (5-mCyt), 5-hydroxymethylcytosine (5-hmCyt), 5-carboxylcytosine (5-CaCyt) and 5-hydroxymethyluracil were tested in purified B cells from CLL patients (n = 55) and controls (n = 17). The DNA methylation 'writers' (DNA methyltransferases [DNMT1/3A/3B]), 'readers' (methyl-CpG-binding domain [MBD2/4]), 'editors' (ten-eleven translocation [TET1/2/3]) and 'modulators' (SAT1) were also evaluated. Accordingly, patients were stratified into three subgroups. First, a subgroup with a global deficit in cytosine derivatives characterized by hyperlymphocytosis, reduced median progression free survival (PFS = 52 months) and shorter treatment free survival (TFS = 112 months) was identified. In this subgroup, major epigenetic modifications were highlighted including a reduction of 5-mCyt, 5-hmCyt, 5-CaCyt associated with DNMT3A, MBD2/4 and TET1/2 downregulation. Second, the cytosine derivative analysis revealed a subgroup with a partial deficit (PFS = 84, TFS = 120 months), mainly affecting DNA demethylation (5-hmCyt reduction, SAT1 induction). Third, a subgroup epigenetically similar to controls was identified (PFS and TFS > 120 months). The prognostic impact of stratifying CLL patients within three epigenetic subgroups was confirmed in a validation cohort. In conclusion, our results suggest that dysregulations of cytosine derivative regulators represent major events acquired during CLL progression and are independent from IGHV mutational status.
Collapse
Affiliation(s)
- Cristina Bagacean
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
- Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Brest, France
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Tempescul
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
- Department of Hematology, Brest University Medical School Hospital, Brest, France
| | - Christelle Le Dantec
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
| | - Anne Bordron
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
| | - Audrey Mohr
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
| | - Hussam Saad
- Department of Hematology, Brest University Medical School Hospital, Brest, France
| | - Valerie Olivier
- Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Brest, France
| | - Mihnea Zdrenghea
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, ‘Ion Chiricuta’ Oncology Institute, Cluj-Napoca, Romania
| | - Victor Cristea
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | - Christian Berthou
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
- Department of Hematology, Brest University Medical School Hospital, Brest, France
| | - Yves Renaudineau
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
- Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Brest, France
| |
Collapse
|