1
|
Duignan JA, Newman C, Sheikh A, Ouellette HA. Musculoskeletal Applications of Dual Energy Computed Tomography (DECT): The Established and the Emerging. Semin Roentgenol 2024; 59:363-377. [PMID: 39490033 DOI: 10.1053/j.ro.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 11/05/2024]
Affiliation(s)
- John A Duignan
- Department of Radiology, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Christopher Newman
- Department of Radiology, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adnan Sheikh
- Department of Radiology, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugue A Ouellette
- Department of Radiology, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Park J, Jung M, Kim SK, Lee YH. Prediction of Bone Marrow Metastases Using Computed Tomography (CT) Radiomics in Patients with Gastric Cancer: Uncovering Invisible Metastases. Diagnostics (Basel) 2024; 14:1689. [PMID: 39125564 PMCID: PMC11312158 DOI: 10.3390/diagnostics14151689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
We investigated whether radiomics of computed tomography (CT) image data enables the differentiation of bone metastases not visible on CT from unaffected bone, using pathologically confirmed bone metastasis as the reference standard, in patients with gastric cancer. In this retrospective study, 96 patients (mean age, 58.4 ± 13.3 years; range, 28-85 years) with pathologically confirmed bone metastasis in iliac bones were included. The dataset was categorized into three feature sets: (1) mean and standard deviation values of attenuation in the region of interest (ROI), (2) radiomic features extracted from the same ROI, and (3) combined features of (1) and (2). Five machine learning models were developed and evaluated using these feature sets, and their predictive performance was assessed. The predictive performance of the best-performing model in the test set (based on the area under the curve [AUC] value) was validated in the external validation group. A Random Forest classifier applied to the combined radiomics and attenuation dataset achieved the highest performance in predicting bone marrow metastasis in patients with gastric cancer (AUC, 0.96), outperforming models using only radiomics or attenuation datasets. Even in the pathology-positive CT-negative group, the model demonstrated the best performance (AUC, 0.93). The model's performance was validated both internally and with an external validation cohort, consistently demonstrating excellent predictive accuracy. Radiomic features derived from CT images can serve as effective imaging biomarkers for predicting bone marrow metastasis in patients with gastric cancer. These findings indicate promising potential for their clinical utility in diagnosing and predicting bone marrow metastasis through routine evaluation of abdominopelvic CT images during follow-up.
Collapse
Affiliation(s)
- Jiwoo Park
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young Han Lee
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| |
Collapse
|
3
|
Hu Z, Yang S, Xu Z, Zhang X, Wang H, Fan G, Liao X. Prevalence and risk factors of bone metastasis and the development of bone metastatic prognostic classification system: a pan-cancer population study. Aging (Albany NY) 2023; 15:13134-13149. [PMID: 37983179 DOI: 10.18632/aging.205224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND The prevalence of bone metastasis (BM) varies among primary cancer patients, and it has a significant impact on prognosis. However, there is a lack of research in this area. This study aims to explore the clinical characteristics, prevalence, and risk factors, and to establish a prognostic classification system for pan-cancer patients with BM. METHODS The data obtained from the Surveillance, Epidemiology and End Results database were investigated. The prevalence and prognosis of patients with BM were analyzed. Hierarchical clustering was used to develop a prognostic classification system. RESULTS From 2010 to 2019, the prevalence of BM has increased by 41.43%. BM most commonly occurs in cancers that originate in the adrenal gland, lung and bronchus and overlapping lesion of digestive systems. Negative prognostic factors included older age, male sex, poorer grade, unmarried status, low income, non-metropolitan living, advanced tumor stages, previous chemotherapy, and synchronous liver, lung, and brain metastasis. Three categories with significantly different survival time were identified in the classification system. CONCLUSIONS The clinical features, prevalence, risk factors, and prognostic factors in pan-cancer patients with BM were investigated. A prognostic classification system was developed to provide survival information and aid physicians in selecting personalized treatment plans for patients with BM.
Collapse
Affiliation(s)
- Zhouyang Hu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Sheng Yang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Spinal Pain Research Institute, Tongji University School of Medicine, Shanghai, China
| | - Zhipeng Xu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xiaoling Zhang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Hong Wang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Guoxin Fan
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xiang Liao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
4
|
Brouns AJM, van Veelen A, Veerman GDM, Steendam C, Dursun S, van der Leest C, Croes S, Dingemans AMC, Hendriks LE. Incidence of Bone Metastases and Skeletal-Related Events in Patients With EGFR-Mutated NSCLC Treated With Osimertinib. JTO Clin Res Rep 2023; 4:100513. [PMID: 37168878 PMCID: PMC10165134 DOI: 10.1016/j.jtocrr.2023.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction Bone metastases are frequent in patients with EGFR-mutated (EGFR+) NSCLC. Skeletal-related events (SREs) are common in these patients; however, no data on SRE in osimertinib-treated patients are reported. We investigated the development of bone metastases and SREs in patients with EGFR+ NSCLC treated with osimertinib. Methods This is a retrospective multicenter cohort study that included patients with metastatic EGFR+ NSCLC who were treated with osimertinib between February 2016 and September 2021. Demographics, bone metastases-related outcomes, SREs, treatment efficacy, and overall survival (OS) were collected. Results In total, 250 patients treated with osimertinib (43% first line) were included. Of the patients, 51% had bone metastases at initiation of osimertinib. Furthermore, 16% of the patients with bone metastases used bone-targeted agents. Median follow-up from initiation of osimertinib was 23.4 months (95% confidence interval [CI]: 19.9-26.9 mo). During osimertinib treatment, 10% developed new bone metastases or bone progression. Of the patients with bone metastases, 39% had more than or equal to one SREs: 28% developed first SRE before osimertinib treatment, 1% after, and 11% during. Median OS post-bone metastasis was 30.8 months (95% CI: 21.9-39.7). Median OS after first SRE was 31.1 months (95% CI: 15.8-46.5). Conclusions Bone metastases and SREs are frequent before and during treatment with osimertinib in EGFR+ NSCLC. Because of these findings and the long OS post-bone metastases, we advocate prescription of bone-targeted agents in these patients and recommend adding bone-specific end points in clinical trials.
Collapse
Affiliation(s)
- Anita J.W. M. Brouns
- Department of Respiratory Medicine, Zuyderland, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- GROW—School for Oncology and Reproduction, Universiteitssingel 40, Maastricht, The Netherlands
| | - Ard van Veelen
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Center+, Maastricht, The Netherlands
- CARIM School for Cardiovascular Disease, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G. D. Marijn Veerman
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christi Steendam
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Safiye Dursun
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Cor van der Leest
- Department of Respiratory Medicine, Amphia Hospital Breda, Breda, The Netherlands
| | - Sander Croes
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Anne-Marie C. Dingemans
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- GROW—School for Oncology and Reproduction, Universiteitssingel 40, Maastricht, The Netherlands
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lizza E.L. Hendriks
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- GROW—School for Oncology and Reproduction, Universiteitssingel 40, Maastricht, The Netherlands
| |
Collapse
|
5
|
Utility of dual energy computed tomography in the evaluation of infiltrative skeletal lesions and metastasis: a literature review. Skeletal Radiol 2022; 51:1731-1741. [PMID: 35294599 DOI: 10.1007/s00256-022-04032-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/02/2023]
Abstract
Computed tomography (CT) is routinely used to diagnose and evaluate metastatic lesions in oncology. CT alone suffers from lack of sensitivity, especially for skeletal lesions in the bone marrow and lesions that have similar attenuation profiles to surrounding bone. Magnetic resonance imaging and nuclear medicine imaging remain the gold standard in evaluating skeletal lesions. However, compared to CT, these modalities are not as widely available or suitable for all patients. Dual energy computed tomography (DECT) exploits variations in linear attenuation coefficient of materials at different photon energy levels to reconstruct images based on material composition. DECT in musculoskeletal imaging is used in the imaging of crystal arthropathy and detecting subtle fractures, but it is not broadly utilized in evaluating infiltrative skeletal lesions. Malignant skeletal lesions have different tissue and molecular compositions compared to normal bone. DECT may exploit these physical differences to delineate infiltrative skeletal lesions from surrounding bone better than conventional monoenergetic CT. Studies so far have examined the utility of DECT in evaluating skeletal metastases, multiple myeloma lesions, pathologic fractures, and performing image-guided biopsies with promising results. These studies were mostly retrospective analyses and case reports containing small samples sizes. As DECT becomes more widely used clinically and more scientific studies evaluating the performance of DECT are published, DECT may eventually become an important modality in the work-up of infiltrative skeletal lesions. It may even challenge MRI and nuclear medicine because of relatively faster scanning times and ease of access.
Collapse
|
6
|
Franquet E, Park H. Molecular imaging in oncology: Common PET/CT radiopharmaceuticals and applications. Eur J Radiol Open 2022; 9:100455. [DOI: 10.1016/j.ejro.2022.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
|
7
|
Cheung H, Yechoor A, Behnia F, Abadi AB, Khodarahmi I, Soltanolkotabi M, Shafiei M, Chalian M. Common Skeletal Neoplasms and Nonneoplastic Lesions at 18F-FDG PET/CT. Radiographics 2021; 42:250-267. [PMID: 34919467 DOI: 10.1148/rg.210090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Numerous primary and metastatic osseous lesions and incidental osseous findings are encountered at fluorine 18 (18F) fluorodeoxyglucose (FDG) PET/CT. These lesions show varying degrees of FDG uptake. Malignancies are generally more FDG avid than are benign lesions, but many exceptions exist. Although aggressive lesions tend to be more FDG avid than nonaggressive lesions, this concept holds true particularly for lesions of the same histologic subtype. In addition, some benign osseous processes such as Paget disease have variable degrees of FDG avidity on the basis of disease metabolic activity. This creates a diagnostic dilemma for radiologists and clinicians, especially in patients with known malignancies, and can result in unnecessary diagnostic imaging or interventions for incidental osseous lesions. Evaluation of morphologic CT characteristics of osseous lesions at FDG PET/CT can be a valuable adjunct to metabolic analysis to further characterize lesions, enhance diagnostic and staging accuracy, and avoid unnecessary invasive biopsy procedures. The authors review the common primary and metastatic bone lesions at FDG PET/CT, with an emphasis on morphologic CT assessment of lesions to help narrow the differential diagnosis. Imaging manifestations of common incidental nonneoplastic bone lesions at FDG PET/CT are discussed to provide information on differentiation of these lesions from osseous neoplasms. The guidelines of the National Comprehensive Cancer Network (NCCN) for common primary osseous malignancies are also summarized. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Hoiwan Cheung
- From the Department of Radiology, Divisions of Musculoskeletal Imaging and Intervention (H.C., A.Y., A.B.A., M. Shafiei, M.C.) and Nuclear Medicine (F.B.), University of Washington, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105; Department of Radiology, Division of Musculoskeletal Imaging, NYU Langone Health, New York, NY (I.K.); and Department of Radiology, Division of Musculoskeletal Imaging, University of Utah, Salt Lake City, Utah (M. Soltanolkotabi)
| | - Alekhya Yechoor
- From the Department of Radiology, Divisions of Musculoskeletal Imaging and Intervention (H.C., A.Y., A.B.A., M. Shafiei, M.C.) and Nuclear Medicine (F.B.), University of Washington, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105; Department of Radiology, Division of Musculoskeletal Imaging, NYU Langone Health, New York, NY (I.K.); and Department of Radiology, Division of Musculoskeletal Imaging, University of Utah, Salt Lake City, Utah (M. Soltanolkotabi)
| | - Fatemeh Behnia
- From the Department of Radiology, Divisions of Musculoskeletal Imaging and Intervention (H.C., A.Y., A.B.A., M. Shafiei, M.C.) and Nuclear Medicine (F.B.), University of Washington, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105; Department of Radiology, Division of Musculoskeletal Imaging, NYU Langone Health, New York, NY (I.K.); and Department of Radiology, Division of Musculoskeletal Imaging, University of Utah, Salt Lake City, Utah (M. Soltanolkotabi)
| | - Alireza Behrad Abadi
- From the Department of Radiology, Divisions of Musculoskeletal Imaging and Intervention (H.C., A.Y., A.B.A., M. Shafiei, M.C.) and Nuclear Medicine (F.B.), University of Washington, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105; Department of Radiology, Division of Musculoskeletal Imaging, NYU Langone Health, New York, NY (I.K.); and Department of Radiology, Division of Musculoskeletal Imaging, University of Utah, Salt Lake City, Utah (M. Soltanolkotabi)
| | - Iman Khodarahmi
- From the Department of Radiology, Divisions of Musculoskeletal Imaging and Intervention (H.C., A.Y., A.B.A., M. Shafiei, M.C.) and Nuclear Medicine (F.B.), University of Washington, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105; Department of Radiology, Division of Musculoskeletal Imaging, NYU Langone Health, New York, NY (I.K.); and Department of Radiology, Division of Musculoskeletal Imaging, University of Utah, Salt Lake City, Utah (M. Soltanolkotabi)
| | - Maryam Soltanolkotabi
- From the Department of Radiology, Divisions of Musculoskeletal Imaging and Intervention (H.C., A.Y., A.B.A., M. Shafiei, M.C.) and Nuclear Medicine (F.B.), University of Washington, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105; Department of Radiology, Division of Musculoskeletal Imaging, NYU Langone Health, New York, NY (I.K.); and Department of Radiology, Division of Musculoskeletal Imaging, University of Utah, Salt Lake City, Utah (M. Soltanolkotabi)
| | - Mehrzad Shafiei
- From the Department of Radiology, Divisions of Musculoskeletal Imaging and Intervention (H.C., A.Y., A.B.A., M. Shafiei, M.C.) and Nuclear Medicine (F.B.), University of Washington, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105; Department of Radiology, Division of Musculoskeletal Imaging, NYU Langone Health, New York, NY (I.K.); and Department of Radiology, Division of Musculoskeletal Imaging, University of Utah, Salt Lake City, Utah (M. Soltanolkotabi)
| | - Majid Chalian
- From the Department of Radiology, Divisions of Musculoskeletal Imaging and Intervention (H.C., A.Y., A.B.A., M. Shafiei, M.C.) and Nuclear Medicine (F.B.), University of Washington, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105; Department of Radiology, Division of Musculoskeletal Imaging, NYU Langone Health, New York, NY (I.K.); and Department of Radiology, Division of Musculoskeletal Imaging, University of Utah, Salt Lake City, Utah (M. Soltanolkotabi)
| |
Collapse
|
8
|
Yamamoto S, Kamei S, Tomita K, Fujita C, Endo K, Hiraiwa S, Hasebe T. CT-guided bone biopsy using electron density maps from dual-energy CT. Radiol Case Rep 2021; 16:2343-2346. [PMID: 34306278 PMCID: PMC8258786 DOI: 10.1016/j.radcr.2021.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 10/29/2022] Open
Abstract
Computed tomography (CT) -guided bone biopsy is a diagnostic procedure performed on the musculoskeletal system with a high diagnostic yield and low complications. However, CT-guided bone biopsy has the disadvantage that it is difficult to confirm the presence of tumor cells during the biopsy procedure. Recently, the clinical benefits of dual-energy CT (DECT) over single-energy CT have been revealed. DECT can provide material decomposition images including calcium suppression images, and effective atomic number (Zeff) and electron density (ED) maps. ED maps have been reported to indicate cellularity. A 61-year-old woman with a history of breast cancer surgery was admitted to our hospital and underwent a CT-guided bone biopsy of the right ilium using ED maps. As a result, she was diagnosed with breast cancer metastases of intertrabecular bone. A comparison of ED maps with a pathological specimen revealed that high ED values occurred exclusively in the tumor area with high cellularity. This study indicates that ED maps produced using DECT may have potential utility in the accurate identification of metastases with high cellularity in bone lesions.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Tokyo, Japan
| | - Shunsuke Kamei
- Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Tokyo, Japan
| | - Kosuke Tomita
- Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Tokyo, Japan
| | - Chikara Fujita
- Department of Radiological Technology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Tokyo, Japan
| | - Kazuyuki Endo
- Department of Radiological Technology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Tokyo, Japan
| | - Shinichiro Hiraiwa
- Department of Pathology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Tokyo, Japan
| | - Terumitsu Hasebe
- Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Mizuno T, Konno H, Nagata T, Isaka M, Ohde Y. Osteogenic and brain metastases after non-small cell lung cancer resection. Int J Clin Oncol 2021; 26:1840-1846. [PMID: 34165658 DOI: 10.1007/s10147-021-01969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND A significant number of non-small cell lung cancer (NSCLC) patients develop osteogenic metastases (OMs) and/or brain metastases (BMs) after surgery, however, routine chest computed tomography (CT) sometimes fails to diagnose these recurrences. We investigated the incidence of BMs and OMs after pulmonary resection and aimed to identify candidates who can benefit from brain magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) in addition to CT. METHODS We retrospectively reviewed medical records of 1099 NSCLC patients who underwent pulmonary resection between 2002 and 2013. Clinicopathological factors associated with OM and/or BM were investigated using univariate and multivariate analyses. RESULTS Postoperative recurrence occurred in 344 patients (32.6%). OMs were diagnosed in 56 patients (5.6%) with 93% within 3 years. BMs were identified in 72 patients (6.6%) with 91.1% within 3 years. Multivariate analysis revealed that poorly differentiated tumor and the presence of pathological nodal metastases were significantly associated with postoperative BM (p = 0.037, < 0.001), preoperative serum carcinoembryonic antigen (CEA) level of 5 ng/mL or higher and the presence of pathological nodal metastases were significantly associated with OM (p = 0.034, < 0.001). The prevalence of OM and/or BM in 5 years was as high as 25.9% in patients with pathological nodal metastases. CONCLUSIONS We identified significant predictive factors of postoperative BM and OM. Under patient selection, the effectiveness of intensive surveillance for the modes of recurrence should be investigated with respect to earlier detection, maintenance of quality of life, and survival outcomes.
Collapse
Affiliation(s)
- Tetsuya Mizuno
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shimonagakubo 1007, Nagaizumi-cho, Shunto-gun, Shizuoka, 411-8777, Japan.
| | - Hayato Konno
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shimonagakubo 1007, Nagaizumi-cho, Shunto-gun, Shizuoka, 411-8777, Japan
| | - Toshiyuki Nagata
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shimonagakubo 1007, Nagaizumi-cho, Shunto-gun, Shizuoka, 411-8777, Japan
| | - Mitsuhiro Isaka
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shimonagakubo 1007, Nagaizumi-cho, Shunto-gun, Shizuoka, 411-8777, Japan
| | - Yasuhisa Ohde
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shimonagakubo 1007, Nagaizumi-cho, Shunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
10
|
Ishiwata Y, Hieda Y, Kaki S, Aso S, Horie K, Kobayashi Y, Nakamura M, Yamada K, Yamashiro T, Utsunomiya D. Improved Diagnostic Accuracy of Bone Metastasis Detection by Water-HAP Associated to Non-Contrast CT. Diagnostics (Basel) 2020; 10:diagnostics10100853. [PMID: 33092274 PMCID: PMC7589875 DOI: 10.3390/diagnostics10100853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
We examined whether water-hydroxyapatite (HAP) images improve the diagnostic accuracy of bone metastasis compared with non-contrast CT alone. We retrospectively evaluated dual-energy computed tomography (DECT) images of 83 cancer patients (bone metastasis, 31; without bone metastasis, 52) from May 2018 to June 2019. Initially, two evaluators examined for bone metastasis on conventional CT images. In the second session, both CT and CT images plus water-HAP images on DECT. The confidence of bone metastasis was scored from 1 (benign) to 5 (malignant). The sensitivity, specificity, positive predictive values, and negative predictive values for both modalities were calculated based on true positive and negative findings. The intra-observer area under curve (AUC) for detecting bone metastasis was compared by receiver operating characteristic analysis. Kappa coefficient calculated the inter-observer agreement. In conventional CT images, sensitivity, specificity, positive predictive value, and negative predictive value of raters 1 and 2 for the identification of bone metastases were 0.742 and 0.710, 0.981 and 0.981, 0.958 and 0.957, and 0.864 and 0.850, respectively. In water-HAP, they were 1.00 and 1.00, 0.981 and 1.00, 0.969 and 1.00, and 1.00 and 1.00, respectively. In CT, AUCs were 0.861 and 0.845 in each observer. On water-HAP images, AUCs were 0.990 and 1.00. Kappa coefficient was 0.964 for CT and 0.976 for water-HAP images. The combination of CT and water-HAP images significantly increased diagnostic accuracy for detecting bone metastasis. Water-HAP images on DECT may enable accurate initial staging, reduced radiation exposure, and cost.
Collapse
Affiliation(s)
- Yoshinobu Ishiwata
- Department of Radiology, Yokohama City University Hospital, 3–9 Fukuura, Kanazawa-ward, Yokohama City 2360004, Japan; (S.A.); (K.H.); (T.Y.); (D.U.)
- Correspondence: ; Tel.: +81-457-872-696; Fax: +81-457-860-369
| | - Yojiro Hieda
- Department of Radiology, Odawara Municipal Hospital, 46 Kuno, Odawara City 2508558, Japan; (Y.H.); (S.K.); (K.Y.)
| | - Soichiro Kaki
- Department of Radiology, Odawara Municipal Hospital, 46 Kuno, Odawara City 2508558, Japan; (Y.H.); (S.K.); (K.Y.)
| | - Shinjiro Aso
- Department of Radiology, Yokohama City University Hospital, 3–9 Fukuura, Kanazawa-ward, Yokohama City 2360004, Japan; (S.A.); (K.H.); (T.Y.); (D.U.)
| | - Keiichi Horie
- Department of Radiology, Yokohama City University Hospital, 3–9 Fukuura, Kanazawa-ward, Yokohama City 2360004, Japan; (S.A.); (K.H.); (T.Y.); (D.U.)
| | - Yusuke Kobayashi
- Department of Radiology, Yokohama City University Medical Center, 4–57 Urafune, Minami-ward, Yokohama City 2320024, Japan; (Y.K.); (M.N.)
| | - Motoki Nakamura
- Department of Radiology, Yokohama City University Medical Center, 4–57 Urafune, Minami-ward, Yokohama City 2320024, Japan; (Y.K.); (M.N.)
| | - Kazuhiko Yamada
- Department of Radiology, Odawara Municipal Hospital, 46 Kuno, Odawara City 2508558, Japan; (Y.H.); (S.K.); (K.Y.)
| | - Tsuneo Yamashiro
- Department of Radiology, Yokohama City University Hospital, 3–9 Fukuura, Kanazawa-ward, Yokohama City 2360004, Japan; (S.A.); (K.H.); (T.Y.); (D.U.)
| | - Daisuke Utsunomiya
- Department of Radiology, Yokohama City University Hospital, 3–9 Fukuura, Kanazawa-ward, Yokohama City 2360004, Japan; (S.A.); (K.H.); (T.Y.); (D.U.)
| |
Collapse
|
11
|
Wada Y, Anbai A, Kumagai S, Okuyama E, Hatakeyama K, Takagi N, Hashimoto M. Effect of the types of pretreatment imaging modalities on the treatment response to palliative radiation for painful bone metastases from solid cancer: a single-center retrospective analysis. Radiat Oncol 2019; 14:98. [PMID: 31174548 PMCID: PMC6556015 DOI: 10.1186/s13014-019-1310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/29/2019] [Indexed: 11/17/2022] Open
Abstract
Background Determining the appropriate gross tumor volume is important for irradiation planning in addition to palliative radiation for bone metastases. While irradiation planning is commonly performed using simulation computed tomography (CT), magnetic resonance imaging (MRI), bone scintigraphy, and 18fluorodeoxyglucose-positron emission tomography-CT (18FDG-PET-CT) are more sensitive for detecting bone metastasis and invasion areas. Therefore, this study evaluated whether pretreatment imaging modalities influenced the response to palliative radiation therapy (i.e., the irradiation effect) for painful bone metastases from solid malignant carcinomas. Methods Consecutive patients with painful bone metastases treated with palliative radiation between January 2013 and December 2017 at our institution were included. We retrospectively investigated the pretreatment images from the different imaging modalities (CT, MRI, bone scintigraphy, and 18FDG-PET-CT) obtained between 1 month before and the initiation of palliative radiation and determined the primary site of carcinoma, histological type, metastatic lesion type (osteolytic, osteoblastic, or mixed), pathological fracture, and metastatic site (vertebral or not). We then evaluated the relationship between these factors and treatment response. We defined “response” as the condition in which patients achieved pain relief or reduced the use of painkiller medicines. Results In total, 131 patients (78 men and 53 women) were included; the median age was 66 years (range, 24–89 years). Prescribed doses were 8–50 Gy/1–25 fractions with 2–8 Gy/fraction. Among the 131 patients, 105 were responders (response rate, 80%). The imaging modalities performed before irradiation were CT in 131 patients, MRI in 54, bone scintigraphy in 56, and 18FDG-PET-CT in 14. The Welch t-test and chi-square test showed no significant association between treatment response and each factor. Multiple logistic regression analysis including the imaging modality, metastatic site, and pathological fracture also showed no significant association with each factor. Conclusions There was no significant relationship between the type of pretreatment imaging and treatment response for painful bone metastases. Thus, setting the appropriate radiation field according to CT images and clinical findings could help avoiding further image inspection before palliative radiation for painful bone metastases.
Collapse
Affiliation(s)
- Yuki Wada
- Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8545, Japan.
| | - Akira Anbai
- Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8545, Japan
| | - Satoshi Kumagai
- Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8545, Japan
| | - Eriko Okuyama
- Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8545, Japan
| | - Kento Hatakeyama
- Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8545, Japan
| | - Noriko Takagi
- Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8545, Japan
| | - Manabu Hashimoto
- Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8545, Japan
| |
Collapse
|