1
|
Richard Q, Laurenge A, Mallat M, Sanson M, Castro-Vega LJ. New insights into the Immune TME of adult-type diffuse gliomas. Curr Opin Neurol 2022; 35:794-802. [PMID: 36226710 PMCID: PMC9671594 DOI: 10.1097/wco.0000000000001112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Adult-type diffuse gliomas are highly heterogeneous tumors. Bulk transcriptome analyses suggested that the composition of the tumor microenvironment (TME) corresponds to genetic and clinical features. In this review, we highlight novel findings on the intratumoral heterogeneity of IDH-wildtype and IDH-mutant gliomas characterized at single-cell resolution, and emphasize the mechanisms shaping the immune TME and therapeutic implications. RECENT FINDINGS Emergent evidence indicates that in addition to genetic drivers, epigenetic mechanisms and microenvironmental factors influence the glioma subtypes. Interactions between glioma and immune cells contribute to immune evasion, particularly in aggressive tumors. Spatial and temporal heterogeneity of malignant and immune cell subpopulations is high in recurrent gliomas. IDH-wildtype and IDH-mutant tumors display distinctive changes in their myeloid and lymphoid compartments, and D-2HG produced by IDH-mutant cells impacts the immune TME. SUMMARY The comprehensive dissection of the intratumoral ecosystem of human gliomas using single-cell and spatial transcriptomic approaches advances our understanding of the mechanisms underlying the immunosuppressed state of the TME, supports the prognostic value of tumor-associated macrophages and microglial cells, and sheds light on novel therapeutic options.
Collapse
Affiliation(s)
- Quentin Richard
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
| | - Alice Laurenge
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
| | - Michel Mallat
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
| | - Marc Sanson
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
- Department of Neurology 2, Pitié-Salpêtrière Hospital
- Onconeurotek Tumor Bank, Paris, France
| | - Luis Jaime Castro-Vega
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
| |
Collapse
|
2
|
Rajani K, Olson I, Jacobs JJ, Riviere-Cazaux C, Burns K, Carlstrom L, Schroeder M, Oh J, Howe CL, Rahman M, Sarkaria JN, Elmquist WF, Burns TC. Methods for intratumoral microdialysis probe targeting and validation in murine brain tumor models. J Neurosci Methods 2021; 363:109321. [PMID: 34390758 PMCID: PMC10703144 DOI: 10.1016/j.jneumeth.2021.109321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/27/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microdialysis is a well validated sampling technique that can be used for pharmacokinetic studies of oncological drugs targeting the central nervous system. This technique has also been applied to evaluate tumor metabolism and identify pharmacodynamic biomarkers of drug activity. Despite the potential utility of microdialysis for therapeutic discovery, variability in tumor size and location hamper routine use of microdialysis as a preclinical tool. Quantitative validation of microdialysis membrane location relative to radiographically evident tumor regions could facilitate rigorous preclinical studies. However, a widely accessible standardized workflow for preclinical catheter placement and validation is needed. NEW METHOD We provide methods for a workflow to yield tailored placement of microdialysis probes within a murine intracranial tumor and illustrate in an IDH1-mutant patient-derived xenograft (PDX) model. This detailed workflow uses a freely available on-line tool built within 3D-slicer freeware to target microdialysis probe placement within the tumor core and validate probe placement fully within the tumor. RESULTS We illustrate use of this workflow to validate microdialysis probe location relative to implanted IDH1-mutant PDXs, using the microdialysis probes to quantify levels of extracellular onco-metabolite D-2 hydroxyglutarate. COMPARISON WITH EXISTING METHODS Previous methods have used 3D slicer to reliably measure tumor volumes. Prior microdialysis studies have targeted expected tumor locations without validation. CONCLUSIONS The new method offers a streamlined and freely available workflow in 3D slicer to optimize and validate microdialysis probe placement within a murine brain tumor.
Collapse
Affiliation(s)
- Karishma Rajani
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ian Olson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Joshua J Jacobs
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | | | - Kirsten Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Lucas Carlstrom
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Mark Schroeder
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Juhee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, United States
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Masum Rahman
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, United States; Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, United States
| | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
3
|
Tesileanu CMS, Vallentgoed WR, Sanson M, Taal W, Clement PM, Wick W, Brandes AA, Baurain JF, Chinot OL, Wheeler H, Gill S, Griffin M, Rogers L, Rudà R, Weller M, McBain C, Reijneveld J, Enting RH, Caparrotti F, Lesimple T, Clenton S, Gijtenbeek A, Lim E, de Vos F, Mulholland PJ, Taphoorn MJB, de Heer I, Hoogstrate Y, de Wit M, Boggiani L, Venneker S, Oosting J, Bovée JVMG, Erridge S, Vogelbaum MA, Nowak AK, Mason WP, Kros JM, Wesseling P, Aldape K, Jenkins RB, Dubbink HJ, Baumert B, Golfinopoulos V, Gorlia T, van den Bent M, French PJ. Non-IDH1-R132H IDH1/2 mutations are associated with increased DNA methylation and improved survival in astrocytomas, compared to IDH1-R132H mutations. Acta Neuropathol 2021; 141:945-957. [PMID: 33740099 PMCID: PMC8113211 DOI: 10.1007/s00401-021-02291-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Somatic mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 occur at high frequency in several tumour types. Even though these mutations are confined to distinct hotspots, we show that gliomas are the only tumour type with an exceptionally high percentage of IDH1R132H mutations. Patients harbouring IDH1R132H mutated tumours have lower levels of genome-wide DNA-methylation, and an associated increased gene expression, compared to tumours with other IDH1/2 mutations ("non-R132H IDH1/2 mutations"). This reduced methylation is seen in multiple tumour types and thus appears independent of the site of origin. For 1p/19q non-codeleted glioma (astrocytoma) patients, we show that this difference is clinically relevant: in samples of the randomised phase III CATNON trial, patients harbouring tumours with IDH mutations other than IDH1R132H have a better outcome (hazard ratio 0.41, 95% CI [0.24, 0.71], p = 0.0013). Such non-R132H IDH1/2-mutated tumours also had a significantly lower proportion of tumours assigned to prognostically poor DNA-methylation classes (p < 0.001). IDH mutation-type was independent in a multivariable model containing known clinical and molecular prognostic factors. To confirm these observations, we validated the prognostic effect of IDH mutation type on a large independent dataset. The observation that non-R132H IDH1/2-mutated astrocytomas have a more favourable prognosis than their IDH1R132H mutated counterpart indicates that not all IDH-mutations are identical. This difference is clinically relevant and should be taken into account for patient prognostication.
Collapse
|
4
|
Yuan BF. Quantitative Analysis of Oncometabolite 2-Hydroxyglutarate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:161-172. [PMID: 33791981 DOI: 10.1007/978-3-030-51652-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gain-of-function mutations of isocitrate dehydrogenase 1 and 2 (IDH1/2) were demonstrated to induce the production and accumulation of oncometabolite 2-hydroxyglutarate (2HG). 2HG is a potent competitor of α-ketoglutarate (α-KG) and can inhibit multiple α-KG-dependent dioxygenases that are critical for regulating the metabolic and epigenetic state of cells. The accumulation of 2HG contributes to elevated risk of malignant tumors. 2HG carries an asymmetric carbon atom in its carbon backbone and therefore occurs in two enantiomers, D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG). Each enantiomer is produced and metabolized in independent biochemical pathway and catalyzed by different enzymes. The accurate diagnosis of 2HG-related diseases relies on determining the configuration of the two enantiomers. Quantitative methods for analysis of D-2HG and L-2HG have been well developed. These analytical strategies mainly include the use of chiral chromatography medium to facilitate chromatographic separation of enantiomers prior to spectroscopy or mass spectrometry analysis and the use of chiral derivatization reagents to convert the enantiomers to diastereomers with differential physical and chemical properties that can improve their chromatographic separation. Here, we summarize and discuss these established methods for analysis of total 2HG as well as the determination of the enantiomers of D-2HG and L-2HG.
Collapse
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Parri M, Ippolito L, Cirri P, Ramazzotti M, Chiarugi P. Metabolic cell communication within tumour microenvironment: models, methods and perspectives. Curr Opin Biotechnol 2020; 63:210-219. [PMID: 32416546 DOI: 10.1016/j.copbio.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
Environmental cues are essential in defining tumour malignancy, by promoting tumour initiation, progression and metastatic spreading. Stromal cells may metabolically cooperate or compete with cancer cells, playing a mandatory role in defining cancer metabolic plasticity, potentially dictating the final tumour outcome. Assessing shared nutrients between different tumoural or stromal compartments is essential to understand the impact of environmental nutrients on the metabolic plasticity of tumours. Here, we review analytical and computational approaches for studying the tumour metabolic microenvironment, the destiny of nutrients shared among tumour and stromal populations, as well as the molecular modules of these metabolic relationships.
Collapse
Affiliation(s)
- M Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - L Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - P Cirri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - M Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - P Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
6
|
Low-grade glioma harbors few CD8 T cells, which is accompanied by decreased expression of chemo-attractants, not immunogenic antigens. Sci Rep 2019; 9:14643. [PMID: 31601888 PMCID: PMC6787014 DOI: 10.1038/s41598-019-51063-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
In multiple tumor types, prediction of response to immune therapies relates to the presence, distribution and activation state of tumor infiltrating lymphocytes (TILs). Although such therapies are, to date, unsuccessful in gliomas, little is known on the immune contexture of TILs in these tumors. We assessed whether low and high-grade glioma (LGG and HGG, grade II and IV respectively) differ with respect to number, location and tumor reactivity of TILs; as well as expression of molecules involved in the trafficking and activation of T cells. Intra-tumoral CD8 T cells were quantified by flow cytometry (LGG: n = 12; HGG: n = 8) and immunofluorescence (LGG: n = 28; HGG: n = 28). Neoantigen load and expression of Cancer Germline Antigens (CGAs) were assessed using whole exome sequencing and RNA-seq. TIL-derived DNA was sequenced and the variable domain of the TCRβ chain was classified according to IMGT nomenclature. QPCR was used to determine expression of T cell-related genes. CD8 T cell numbers were significantly lower in LGG and, in contrast to HGG, mainly remained in close vicinity to blood vessels. This was accompanied by lower expression of chemo-attractants CXCL9, CXCL10 and adhesion molecule ICAM1. We did not observe a difference in the number of expressed neoantigens or CGAs, nor in diversity of TCR-Vβ gene usage. In summary, LGG have lower numbers of intra-tumoral CD8 T cells compared to HGG, potentially linked to decreased T cell trafficking. We have found no evidence for distinct tumor reactivity of T cells in either tumor type. The near absence of TILs in LGG suggest that, at present, checkpoint inhibitors are unlikely to have clinical efficacy in this tumor type.
Collapse
|