1
|
Wang S, Ying L, Yu SY, Bai J, Hao C. Can precancerous stem cells be risk markers for malignant transformation in the oral mucosa? Cell Mol Biol Lett 2023; 28:30. [PMID: 37029348 PMCID: PMC10080963 DOI: 10.1186/s11658-023-00441-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
Accurate assessment of the carcinogenic potential of oral mucosal diseases can significantly reduce the prevalence of oral cancer. We speculate that precancerous stem cells (pCSCs) arise during the evolution of carcinomas based on long-term experimental findings, published literature, and the cancer stem cell (CSC) theory, wherein pCSCs exist in precancerous lesions and have characteristics of both CSCs and normal stem cells. This apparently contradictory feature may be the foundation of the reversible transformation of precancerous lesions. Predicting malignant transformation in potentially malignant oral illnesses would allow for focused treatment, prognosis, and secondary prevention. Currently available clinical assays for chromosomal instability and DNA aneuploidy have several deficiencies. We hope that our study will increase attention to pCSC research and lead to the development of novel strategies for the prevention and treatment of oral cancer by identifying pCSC markers.
Collapse
Affiliation(s)
- Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, People's Republic of China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People's Republic of China.
| | - Liu Ying
- College of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Shu-Yi Yu
- Pharmacy Department, First Affiliated Hospital of Jiamusi University, Jiamusi, 154003, People's Republic of China
| | - Jie Bai
- Department of Ophthalmology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, People's Republic of China.
| | - Chunbo Hao
- Department of Stomatology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570100, People's Republic of China.
| |
Collapse
|
2
|
The Contributions of Cancer-Testis and Developmental Genes to the Pathogenesis of Keratinocyte Carcinomas. Cancers (Basel) 2022; 14:cancers14153630. [PMID: 35892887 PMCID: PMC9367444 DOI: 10.3390/cancers14153630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In addition to mutations, ectopically-expressed genes are emerging as important contributors to cancer development. Efforts to characterize the expression patterns in cancers of gamete-restricted cancer-testis antigens and developmentally-restricted genes are underway, revealing these genes to be putative biomarkers and therapeutic targets for various malignancies. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) are two highly-prevalent non-melanoma skin cancers that result in considerable burden on patients and our health system. To optimize disease prognostication and treatment, it is necessary to further classify the molecular complexity of these malignancies. This review describes the expression patterns and functions of cancer-testis antigens and developmentally-restricted genes in BCC and cSCC tumors. A large number of cancer-testis antigens and developmental genes exhibit substantial expression levels in BCC and cSCC. These genes have been shown to contribute to several aspects of cancer biology, including tumorigenesis, differentiation, invasion and responses to anti-cancer therapy. Abstract Keratinocyte carcinomas are among the most prevalent malignancies worldwide. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) are the two cancers recognized as keratinocyte carcinomas. The standard of care for treating these cancers includes surgery and ablative therapies. However, in recent years, targeted therapies (e.g., cetuximab for cSCC and vismodegib/sonidegib for BCC) have been used to treat advanced disease as well as immunotherapy (e.g., cemiplimab). These treatments are expensive and have significant toxicities with objective response rates approaching ~50–65%. Hence, there is a need to dissect the molecular pathogenesis of these cancers to identify novel biomarkers and therapeutic targets to improve disease management. Several cancer-testis antigens (CTA) and developmental genes (including embryonic stem cell factors and fetal genes) are ectopically expressed in BCC and cSCC. When ectopically expressed in malignant tissues, functions of these genes may be recaptured to promote tumorigenesis. CTAs and developmental genes are emerging as important players in the pathogenesis of BCC and cSCC, positioning themselves as attractive candidate biomarkers and therapeutic targets requiring rigorous testing. Herein, we review the current research and offer perspectives on the contributions of CTAs and developmental genes to the pathogenesis of keratinocyte carcinomas.
Collapse
|
3
|
Guo D, Wang Y, Cheng Y, Liao S, Hu J, Du F, Xu G, Liu Y, Cai KQ, Cheung M, Wainwright BJ, Lu QR, Zhao Y, Yang ZJ. Tumor cells generate astrocyte-like cells that contribute to SHH-driven medulloblastoma relapse. J Exp Med 2021; 218:212465. [PMID: 34254999 PMCID: PMC8282281 DOI: 10.1084/jem.20202350] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/26/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Astrocytes, a major glial cell type in the brain, play a critical role in supporting the progression of medulloblastoma (MB), the most common malignant pediatric brain tumor. Through lineage tracing analyses and single-cell RNA sequencing, we demonstrate that astrocytes are predominantly derived from the transdifferentiation of tumor cells in relapsed MB (but not in primary MB), although MB cells are generally believed to be neuronal-lineage committed. Such transdifferentiation of MB cells relies on Sox9, a transcription factor critical for gliogenesis. Our studies further reveal that bone morphogenetic proteins (BMPs) stimulate the transdifferentiation of MB cells by inducing the phosphorylation of Sox9. Pharmacological inhibition of BMP signaling represses MB cell transdifferentiation into astrocytes and suppresses tumor relapse. Our studies establish the distinct cellular sources of astrocytes in primary and relapsed MB and provide an avenue to prevent and treat MB relapse by targeting tumor cell transdifferentiation.
Collapse
Affiliation(s)
- Duancheng Guo
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA.,Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yuan Wang
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Cheng
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA
| | - Shengyou Liao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Jian Hu
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA
| | - Fang Du
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA
| | - Gang Xu
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA
| | - Yongqiang Liu
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Brandon J Wainwright
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Q Richard Lu
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Zeng-Jie Yang
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA
| |
Collapse
|
4
|
Piechowski J. Plausibility of trophoblastic-like regulation of cancer tissue. Cancer Manag Res 2019; 11:5033-5046. [PMID: 31213916 PMCID: PMC6549421 DOI: 10.2147/cmar.s190932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/30/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Thus far, a well-established logical pattern of malignancy does not exist. The current approach to cancer properties is primarily descriptive with usually, for each of them, extensive analyses of the underlying associated biomolecular mechanisms. However, this remains a catalog and it would be valuable to determine the organizational chart that could account for their implementation, hierarchical links and input into tumor regulation. Hypothesis: Striking phenotypic similarities exist between trophoblast (invasive and expanding early placenta) and cancer regarding cell functions, logistics of development, means of protection and capacity to hold sway over the host organism. The concept of cancer cell trophoblastic-like transdifferentiation appears to be a rational proposal in an attempt to explain this analogy and provide a consistent insight into how cancer cells are functioning. Should this concept be validated, it could pave the way to promising research and therapeutic perspectives given that the trophoblastic properties are vital for the tumor while they are permanently epigenetically turned off in normal cells. Specifically targeting expression of the trophoblastic master genes could thereby be envisaged to jeopardize the tumor and its metastases without, in principle, inducing adverse side effects in the healthy tissues. Conclusion: A wide set of functional features of cancer tissue regulation, including some apparently paradoxical facts, was reviewed. Cancer cell misuse of physiological trophoblastic functions can clearly account for them, which identifies trophoblastic-like transdifferentiation as a likely key component of malignancy and makes it a potential relevant anticancer target.
Collapse
|