1
|
Tosi U, Souweidane M. Fifty years of DIPG: looking at the future with hope. Childs Nerv Syst 2023; 39:2675-2686. [PMID: 37382660 DOI: 10.1007/s00381-023-06037-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a primary brainstem tumor of childhood that carries a dismal prognosis, with median survival of less than 1 year. Because of the brain stem location and pattern of growth within the pons, Dr. Harvey Cushing, the father of modern neurosurgery, urged surgical abandonment. Such a dismal prognosis remained unchanged for decades, coupled with a lack of understanding of tumor biology and an unchanging therapeutic panorama. Beyond palliative external beam radiation therapy, no therapeutic approach has been widely accepted. In the last one to two decades, however, increased tissue availability, an improving understanding of biology, genetics, and epigenetics have led to the development of novel therapeutic targets. In parallel with this biological revolution, new methods intended to enhance drug delivery into the brain stem are contributing to a surge of exciting experimental therapeutic strategies.
Collapse
Affiliation(s)
- Umberto Tosi
- Department of Neurosurgery, Weill Cornell Medicine, 525 E 68th St Box 99, New York, NY, 10021, USA
| | - Mark Souweidane
- Department of Neurosurgery, Weill Cornell Medicine, 525 E 68th St Box 99, New York, NY, 10021, USA.
| |
Collapse
|
2
|
Rechberger JS, Power BT, Power EA, Nesvick CL, Daniels DJ. H3K27-altered diffuse midline glioma: a paradigm shifting opportunity in direct delivery of targeted therapeutics. Expert Opin Ther Targets 2023; 27:9-17. [PMID: 36744399 PMCID: PMC10165636 DOI: 10.1080/14728222.2023.2177531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Despite much progress, the prognosis for H3K27-altered diffuse midline glioma (DMG), previously known as diffuse intrinsic pontine glioma when located in the brainstem, remains dark and dismal. AREAS COVERED A wealth of research over the past decade has revolutionized our understanding of the molecular basis of DMG, revealing potential targetable vulnerabilities for treatment of this lethal childhood cancer. However, obstacles to successful clinical implementation of novel therapies remain, including effective delivery across the blood-brain barrier (BBB) to the tumor site. Here, we review relevant literature and clinical trials and discuss direct drug delivery via convection-enhanced delivery (CED) as a promising treatment modality for DMG. We outline a comprehensive molecular, pharmacological, and procedural approach that may offer hope for afflicted patients and their families. EXPERT OPINION Challenges remain in successful drug delivery to DMG. While CED and other techniques offer a chance to bypass the BBB, the variables influencing successful intratumoral targeting are numerous and complex. We discuss these variables and potential solutions that could lead to the successful clinical implementation of preclinically promising therapeutic agents.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Blake T Power
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Erica A Power
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Cody L Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| |
Collapse
|
3
|
Jovanovich N, Habib A, Head J, Hameed F, Agnihotri S, Zinn PO. Pediatric diffuse midline glioma: Understanding the mechanisms and assessing the next generation of personalized therapeutics. Neurooncol Adv 2023; 5:vdad040. [PMID: 37152806 PMCID: PMC10162114 DOI: 10.1093/noajnl/vdad040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Diffuse midline glioma (DMG) is a pediatric cancer that originates in the midline structures of the brain. Prognosis of DMG patients remains poor due to the infiltrative nature of these tumors and the protection they receive from systemically delivered therapeutics via an intact blood-brain barrier (BBB), making treatment difficult. While the cell of origin remains disputed, it is believed to reside in the ventral pons. Recent research has pointed toward epigenetic dysregulation inducing an OPC-like transcriptomic signature in DMG cells. This epigenetic dysregulation is typically caused by a mutation (K27M) in one of two histone genes-H3F3A or HIST1H3B -and can lead to a differentiation block that increases these cells oncogenic potential. Standard treatment with radiation is not sufficient at overcoming the aggressivity of this cancer and only confers a survival benefit of a few months, and thus, discovery of new therapeutics is of utmost importance. In this review, we discuss the cell of origin of DMGs, as well as the underlying molecular mechanisms that contribute to their aggressivity and resistance to treatment. Additionally, we outline the current standard of care for DMG patients and the potential future therapeutics for this cancer that are currently being tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeffery Head
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Farrukh Hameed
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sameer Agnihotri
- Sameer Agnihtroi, PhD, 4401 Penn Avenue, Office 7126, Pittsburgh, PA 15224, USA ()
| | - Pascal O Zinn
- Corresponding Authors: Pascal O. Zinn, MD, PhD, 5150 Centre Ave. Suite 433, Pittsburgh, PA 15232, USA ()
| |
Collapse
|
4
|
Chen T, Liu Y, Wang Y, Chang Q, Wu J, Wang Z, Geng D, Yu JT, Li Y, Li XQ, Chen H, Zhuang D, Li J, Wang B, Jiang T, Lyu L, Song Y, Qiu X, Li W, Lin S, Zhang X, Lu D, Lei J, Chen Y, Mao Y. Evidence-based expert consensus on the management of primary central nervous system lymphoma in China. J Hematol Oncol 2022; 15:136. [PMID: 36176002 PMCID: PMC9524012 DOI: 10.1186/s13045-022-01356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/19/2022] [Indexed: 08/30/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a type of central nervous system restricted non-Hodgkin lymphoma, whose histopathological diagnosis is majorly large B cell lymphoma. To provide specific, evidence-based recommendations for medical professionals and to promote more standardized, effective and safe treatment for patients with PCNSL, a panel of experts from the Chinese Neurosurgical Society of the Chinese Medical Association and the Society of Hematological Malignancies of the Chinese Anti-Cancer Association jointly developed an evidence-based consensus. After comprehensively searching literature and conducting systematic reviews, two rounds of Delphi were conducted to reach consensus on the recommendations as follows: The histopathological specimens of PCNSL patients should be obtained as safely and comprehensively as possible by multimodal tomography-guided biopsy or minimally invasive surgery. Corticosteroids should be withdrawn from, or not be administered to, patients with suspected PCNSL before biopsy if the patient's status permits. MRI (enhanced and DWI) should be performed for diagnosing and evaluating PCNSL patients where whole-body PET-CT be used at necessary time points. Mini-mental status examination can be used to assess cognitive function in the clinical management. Newly diagnosed PCNSL patients should be treated with combined high-dose methotrexate-based regimen and can be treated with a rituximab-inclusive regimen at induction therapy. Autologous stem cell transplantation can be used as a consolidation therapy. Refractory or relapsed PCNSL patients can be treated with ibrutinib with or without high-dose chemotherapy as re-induction therapy. Stereotactic radiosurgery can be used for PCNSL patients with a limited recurrent lesion who were refractory to chemotherapy and have previously received whole-brain radiotherapy. Patients with suspected primary vitreoretinal lymphoma (PVRL) should be diagnosed by vitreous biopsy. PVRL or PCNSL patients with concurrent VRL can be treated with combined systemic and local therapy.
Collapse
Affiliation(s)
- Tong Chen
- Department of Hematology, Institute of Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yang Wang
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai, 201107, China.,National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qing Chang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jinsong Wu
- Department of Neurosurgery, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China.,Institute of Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhiliang Wang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jin-Tai Yu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiao-Qiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Dongxiao Zhuang
- Department of Neurosurgery, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lanting Lyu
- School of Public Administration and Policy, Health Technology Assessment and Policy Evaluation Group, Renmin University of China, Beijing, 100872, China
| | - Yuqin Song
- Department of Lymphoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xiaoguang Qiu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wenbin Li
- Department of Neuro-Oncolgoy, Cancer Center, National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Song Lin
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xinghu Zhang
- Department of Neurology, Neuroimmunology and Neuroinfection Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Dehong Lu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Junqiang Lei
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yaolong Chen
- Research Unit of Evidence-Based Evaluation and Guidelines, Chinese Academy of Medical Sciences (2021RU017), School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China. .,WHO Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, 730000, China. .,Lanzhou University GRADE Center, Lanzhou, 730000, China.
| | - Ying Mao
- Department of Neurosurgery, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China. .,Institute of Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
5
|
Secondary Central Nervous System Lymphoma: Updates in Treatment and Prophylaxis Strategies. Curr Treat Options Oncol 2022; 23:1443-1456. [PMID: 36127571 DOI: 10.1007/s11864-022-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/03/2022]
Abstract
OPINION STATEMENT Referring to any central nervous system (CNS) involvement with preceding or concurrent systemic disease, secondary CNS lymphoma (SCNSL) lacks a clear standard of care and historically carries a very poor prognosis. Aggressive histologies predominate, most notably diffuse large B cell lymphoma (DLBCL), with higher relative frequency in Burkitt lymphoma but lower absolute incidence. Therapeutic strategies commonly feature intensive CNS-penetrant chemotherapy, including methotrexate, cytarabine, and others. Combination regimens, novel targeted agents, and cellular therapy considerations are reviewed, noting that patients with SCNSL are often excluded from clinical trials and dedicated SCNSL studies are historically limited. Given these challenges, there has been renewed attention on CNS prophylaxis as well as strategies for early CNS detection. Prophylaxis is standard of care in Burkitt lymphoma, whereas its role in DLBCL and related histologies is increasingly unclear.
Collapse
|
6
|
Rechberger JS, Thiele F, Daniels DJ. Status Quo and Trends of Intra-Arterial Therapy for Brain Tumors: A Bibliometric and Clinical Trials Analysis. Pharmaceutics 2021; 13:pharmaceutics13111885. [PMID: 34834300 PMCID: PMC8625566 DOI: 10.3390/pharmaceutics13111885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Intra-arterial drug delivery circumvents the first-pass effect and is believed to increase both efficacy and tolerability of primary and metastatic brain tumor therapy. The aim of this update is to report on pertinent articles and clinical trials to better understand the research landscape to date and future directions. Elsevier's Scopus and ClinicalTrials.gov databases were reviewed in August 2021 for all possible articles and clinical trials of intra-arterial drug injection as a treatment strategy for brain tumors. Entries were screened against predefined selection criteria and various parameters were summarized. Twenty clinical trials and 271 articles satisfied all inclusion criteria. In terms of articles, 201 (74%) were primarily clinical and 70 (26%) were basic science, published in a total of 120 different journals. Median values were: publication year, 1986 (range, 1962-2021); citation count, 15 (range, 0-607); number of authors, 5 (range, 1-18). Pertaining to clinical trials, 9 (45%) were phase 1 trials, with median expected start and completion years in 2011 (range, 1998-2019) and 2022 (range, 2008-2025), respectively. Only one (5%) trial has reported results to date. Glioma was the most common tumor indication reported in both articles (68%) and trials (75%). There were 215 (79%) articles investigating chemotherapy, while 13 (65%) trials evaluated targeted therapy. Transient blood-brain barrier disruption was the commonest strategy for articles (27%) and trials (60%) to optimize intra-arterial therapy. Articles and trials predominately originated in the United States (50% and 90%, respectively). In this bibliometric and clinical trials analysis, we discuss the current state and trends of intra-arterial therapy for brain tumors. Most articles were clinical, and traditional anti-cancer agents and drug delivery strategies were commonly studied. This was reflected in clinical trials, of which only a single study had reported outcomes. We anticipate future efforts to involve novel therapeutic and procedural strategies based on recent advances in the field.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| | - Frederic Thiele
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Heravi Shargh V, Luckett J, Bouzinab K, Paisey S, Turyanska L, Singleton WGB, Lowis S, Gershkovich P, Bradshaw TD, Stevens MFG, Bienemann A, Coyle B. Chemosensitization of Temozolomide-Resistant Pediatric Diffuse Midline Glioma Using Potent Nanoencapsulated Forms of a N(3)-Propargyl Analogue. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35266-35280. [PMID: 34310112 DOI: 10.1021/acsami.1c04164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lack of clinical response to the alkylating agent temozolomide (TMZ) in pediatric diffuse midline/intrinsic pontine glioma (DIPG) has been associated with O6-methylguanine-DNA-methyltransferase (MGMT) expression and mismatch repair deficiency. Hence, a potent N(3)-propargyl analogue (N3P) was derived, which not only evades MGMT but also remains effective in mismatch repair deficient cells. Due to the poor pharmacokinetic profile of N3P (t1/2 < 1 h) and to bypass the blood-brain barrier, we proposed convection enhanced delivery (CED) as a method of administration to decrease dose and systemic toxicity. Moreover, to enhance N3P solubility, stability, and sustained distribution in vivo, either it was incorporated into an apoferritin (AFt) nanocage or its sulfobutyl ether β-cyclodextrin complex was loaded into nanoliposomes (Lip). The resultant AFt-N3P and Lip-N3P nanoparticles (NPs) had hydrodynamic diameters of 14 vs 93 nm, icosahedral vs spherical morphology, negative surface charge (-17 vs -34 mV), and encapsulating ∼630 vs ∼21000 N3P molecules per NP, respectively. Both NPs showed a sustained release profile and instant uptake within 1 h incubation in vitro. In comparison to the naked drug, N3P NPs demonstrated stronger anticancer efficacy against 2D TMZ-resistant DIPG cell cultures [IC50 = 14.6 (Lip-N3P) vs 32.8 μM (N3P); DIPG-IV) and (IC50 = 101.8 (AFt-N3P) vs 111.9 μM (N3P); DIPG-VI)]. Likewise, both N3P-NPs significantly (P < 0.01) inhibited 3D spheroid growth compared to the native N3P in MGMT+ DIPG-VI (100 μM) and mismatch repair deficient DIPG-XIX (50 μM) cultures. Interestingly, the potency of TMZ was remarkably enhanced when encapsulated in AFt NPs against DIPG-IV, -VI, and -XIX spheroid cultures. Dynamic PET scans of CED-administered zirconium-89 (89Zr)-labeled AFt-NPs in rats also demonstrated substantial enhancement over free 89Zr radionuclide in terms of localized distribution kinetics and retention within the brain parenchyma. Overall, both NP formulations of N3P represent promising approaches for treatment of TMZ-resistant DIPG and merit the next phase of preclinical evaluation.
Collapse
Affiliation(s)
| | | | | | - Stephen Paisey
- Wales Research and Diagnostic PET Imaging Centre, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Lyudmila Turyanska
- Faculty of Engineering, University of Nottingham, Nottingham, Nottinghamshire NG7 2RD, United Kingdom
| | - William G B Singleton
- Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | | | | | | | | | - Alison Bienemann
- Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | | |
Collapse
|
8
|
Price G, Bouras A, Hambardzumyan D, Hadjipanayis CG. Current knowledge on the immune microenvironment and emerging immunotherapies in diffuse midline glioma. EBioMedicine 2021; 69:103453. [PMID: 34157482 PMCID: PMC8220552 DOI: 10.1016/j.ebiom.2021.103453] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Diffuse midline glioma (DMG) is an incurable malignancy with the highest mortality rate among pediatric brain tumors. While radiotherapy and chemotherapy are the most common treatments, these modalities have limited promise. Due to their diffuse nature in critical areas of the brain, the prognosis of DMG remains dismal. DMGs are characterized by unique phenotypic heterogeneity and histological features. Mutations of H3K27M, TP53, and ACVR1 drive DMG tumorigenesis. Histological artifacts include pseudopalisading necrosis and vascular endothelial proliferation. Mouse models that recapitulate human DMG have been used to study key driver mutations and the tumor microenvironment. DMG consists of a largely immunologically cold tumor microenvironment that lacks immune cell infiltration, immunosuppressive factors, and immune surveillance. While tumor-associated macrophages are the most abundant immune cell population, there is reduced T lymphocyte infiltration. Immunotherapies can stimulate the immune system to find, attack, and eliminate cancer cells. However, it is critical to understand the immune microenvironment of DMG before designing immunotherapies since differences in the microenvironment influence treatment efficacy. To this end, our review aims to overview the immune microenvironment of DMG, discuss emerging insights about the immune landscape that drives disease pathophysiology, and present recent findings and new opportunities for therapeutic discovery.
Collapse
Affiliation(s)
- Gabrielle Price
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai,10 Union Square East, 5th Floor, Suite 5E, New York, NY 10003, USA; Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai,10 Union Square East, 5th Floor, Suite 5E, New York, NY 10003, USA; Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dolores Hambardzumyan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai,10 Union Square East, 5th Floor, Suite 5E, New York, NY 10003, USA; Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Constantinos G Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai,10 Union Square East, 5th Floor, Suite 5E, New York, NY 10003, USA; Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Current and emerging therapies for primary central nervous system lymphoma. Biomark Res 2021; 9:32. [PMID: 33957995 PMCID: PMC8101140 DOI: 10.1186/s40364-021-00282-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022] Open
Abstract
Primary central nervous system (CNS) lymphoma (PCNSL) is a rare type of extranodal lymphoma exclusively involving the CNS at the onset, with diffuse large B-cell lymphoma (DLBCL) as the most common histological subtype. As PCNSL is a malignancy arising in an immune-privileged site, suboptimal delivery of systemic agents into tumor tissues results in poorer outcomes in PCNSL than in non-CNS DLBCLs. Commonly used regimens for PCNSL include high-dose methotrexate-based chemotherapy with rituximab for induction therapy and intensive chemotherapy followed by autologous hematopoietic stem cell transplantation or whole-brain radiotherapy for consolidation therapy. Targeted agents against the B-cell receptor signaling pathway, microenvironment immunomodulation and blood-brain barrier (BBB) permeabilization appear to be promising in treating refractory/relapsed patients. Chimeric antigen receptor-T cells (CAR-T cells) have been shown to penetrate the BBB as a potential tool to manipulate this disease entity while controlling CAR-T cell-related encephalopathy syndrome. Future approaches may stratify patients according to age, performance status, molecular biomarkers and cellular bioinformation. This review summarizes the current therapies and emerging agents in clinical development for PCNSL treatment.
Collapse
|
10
|
Convection-enhanced delivery for H3K27M diffuse midline glioma: how can we efficaciously modulate the blood-brain barrier? Ther Deliv 2021; 12:419-422. [PMID: 33949200 DOI: 10.4155/tde-2021-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Graphical abstract [Formula: see text].
Collapse
|
11
|
Beccaria K, Canney M, Bouchoux G, Puget S, Grill J, Carpentier A. Blood-brain barrier disruption with low-intensity pulsed ultrasound for the treatment of pediatric brain tumors: a review and perspectives. Neurosurg Focus 2021; 48:E10. [PMID: 31896084 DOI: 10.3171/2019.10.focus19726] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/03/2019] [Indexed: 11/06/2022]
Abstract
Pediatric brain tumors are the most common solid tumor and the first cause of cancer death in childhood, adolescence, and young adulthood. Current treatments are far from optimal in most of these tumors and the prognosis remains dismal for many of them. One of the main causes of the failure of current medical treatments is in part due to the existence of the blood-brain barrier (BBB), which limits drug delivery to tumors. Opening of the BBB with low-intensity pulsed ultrasound (LIPU) has emerged during the last 2 decades as a promising technique for enhancing drug delivery to the brain. In preclinical models, enhanced delivery of a wide range of therapeutic agents, from low-molecular-weight drugs, to antibodies and immune cells, has been observed as well as tumor control and increased survival. This technique has recently entered clinical trials with extracranial and intracranial devices. The safety and feasibility of this technique has furthermore been shown in patients treated monthly for recurrent glioblastoma receiving carboplatin chemotherapy. In this review, the characteristics of the BBB in the most common pediatric brain tumors are reviewed. Then, principles and mechanisms of BBB disruption with ultrasound (US) are summarized and described at the histological and biological levels. Lastly, preclinical studies that have used US-induced BBB opening in tumor models, recent clinical trials, and the potential use of this technology in pediatrics are provided.
Collapse
Affiliation(s)
- Kévin Beccaria
- 1Department of Pediatric Neurosurgery, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris 5 University, Paris
| | - Michael Canney
- 2CarThera, Institut du Cerveau et de la Moelle épinière (ICM), Paris
| | | | - Stéphanie Puget
- 1Department of Pediatric Neurosurgery, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris 5 University, Paris
| | - Jacques Grill
- 3Department of Pediatric Oncology, Gustave-Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif.,4UMR8203 "Vectorologie et Thérapeutiques Anticancéreuses," CNRS, Gustave-Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif; and
| | - Alexandre Carpentier
- 5Department of Neurosurgery, Sorbonne Université, UPMC Paris 6, AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière, Paris, France
| |
Collapse
|
12
|
Rechberger JS, Power EA, Lu VM, Zhang L, Sarkaria JN, Daniels DJ. Evaluating infusate parameters for direct drug delivery to the brainstem: a comparative study of convection-enhanced delivery versus osmotic pump delivery. Neurosurg Focus 2021; 48:E2. [PMID: 31896090 DOI: 10.3171/2019.10.focus19703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Convection-enhanced delivery (CED) and osmotic pump delivery both have been promoted as promising techniques to deliver drugs to pediatric diffuse intrinsic pontine gliomas (DIPGs). Correspondingly, the aim of this study was to understand how infusate molecular weight (MW), duration of delivery, and mechanism of delivery (CED or osmotic pump) affect volume of distribution (Vd) in the brainstem, to better inform drug selection and delivery in future DIPG investigations. METHODS A series of in vivo experiments were conducted using rat models. CED and osmotic pump delivery systems were surgically implanted in the brainstem, and different MW fluorescent dextran beads were infused either once (acute) or daily for 5 days (chronic) in a volume infused (Vi). Brainstems were harvested after the last infusion, and Vd was quantified using serial sectioning and fluorescence imaging. RESULTS Fluorescence imaging showed infusate uptake within the brainstem for both systems without complication. A significant inverse relationship was observed between infusate MW and Vd in all settings, which was distinctly exponential in nature in the setting of acute delivery across the 570-Da to 150-kDa range. Chronic duration and CED technique resulted in significantly greater Vd compared to acute duration or osmotic pump delivery, respectively. When accounting for Vi, acute infusion yielded significantly greater Vd/Vi than chronic infusion. The distribution in CED versus osmotic pump delivery was significantly affected by infusate MW at higher weights. CONCLUSIONS Here the authors demonstrate that infusate MW, duration of infusion, and infusion mechanism all impact the Vd of an infused agent and should be considered when selecting drugs and infusion parameters for novel investigations to treat DIPGs.
Collapse
Affiliation(s)
| | - Erica A Power
- 1Department of Neurologic Surgery, Mayo Clinic.,2Mayo Clinic Graduate School of Biomedical Sciences
| | - Victor M Lu
- 1Department of Neurologic Surgery, Mayo Clinic
| | - Liang Zhang
- 1Department of Neurologic Surgery, Mayo Clinic
| | | | - David J Daniels
- 1Department of Neurologic Surgery, Mayo Clinic.,4Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
13
|
Epigenetic-Targeted Treatments for H3K27M-Mutant Midline Gliomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:73-84. [PMID: 33155139 DOI: 10.1007/978-981-15-8104-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a lethal midline brainstem tumor that most commonly occurs in children and is genetically defined by substitution of methionine for lysine at site 27 of histone 3 (H3K27M) in the majority of cases. This mutation has since been shown to exert an influence on the posttranslational epigenetic landscape of this disease, with the loss of trimethylation at lysine 27 (H3K27me3) the most common alteration. Based on these findings, a number of drugs targeting these epigenetic changes have been proposed, specifically that alter histone trimethylation, acetylation, or phosphorylation. Various mechanisms have been explored, including inhibition of H327 demethylase and methyltransferase to target trimethylation, inhibition of histone deacetylase (HDAC) and bromodomain and extraterminal (BET) to target acetylation, and inhibition of phosphatase-related enzymes to target phosphorylation. This chapter reviews the current rationales and progress made to date in epigenetically targeting DIPG via these mechanisms.
Collapse
|
14
|
El-Khouly FE, Haumann R, Breur M, Veldhuijzen van Zanten SE, Kaspers GJ, Hendrikse NH, Hulleman E, van Vuurden DG, Bugiani M. The neurovascular unit in diffuse intrinsic pontine gliomas. FREE NEUROPATHOLOGY 2021; 2:2-17. [PMID: 37284626 PMCID: PMC10227752 DOI: 10.17879/freeneuropathology-2021-3341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/27/2021] [Indexed: 06/08/2023]
Abstract
Aims: Diffuse intrinsic pontine glioma (DIPG) is a childhood brainstem tumor with a median overall survival of eleven months. Lack of chemotherapy efficacy may be related to an intact blood-brain barrier (BBB). In this study we aim to investigate the neurovascular unit (NVU) in DIPG patients. Methods: DIPG biopsy (n = 4) and autopsy samples (n = 6) and age-matched healthy pons samples (n = 20) were immunohistochemically investigated for plasma protein extravasation, and the expression of tight junction proteins claudin-5 and zonula occludens-1 (ZO-1), basement membrane component laminin, pericyte marker PDGFR-β, and efflux transporters P-gp and BCRP. The mean vascular density and diameter were also assessed. Results: DIPGs show a heterogeneity in cell morphology and evidence of BBB leakage. Both in tumor biopsy and autopsy samples, expression of claudin-5, ZO-1, laminin, PDGFR-β and P-gp was reduced compared to healthy pontine tissues. In DIPG autopsy samples, vascular density was lower compared to healthy pons. The density of small vessels (<10 µm) was significantly lower (P<0.001), whereas the density of large vessels (≥10 µm) did not differ between groups (P = 0.404). The median vascular diameter was not significantly different: 6.21 µm in DIPG autopsy samples (range 2.25-94.85 µm), and 6.26 µm in controls (range 1.17-264.77 µm). Conclusion: Our study demonstrates evidence of structural changes in the NVU in DIPG patients, both in biopsy and autopsy samples, as well as a reduced vascular density in end-stage disease. Adding such a biological perspective may help to better direct future treatment choices for DIPG patients.
Collapse
Affiliation(s)
- Fatma E. El-Khouly
- Emma Children’s Hospital, Amsterdam UMC – location VUmc, Department of Pediatric Oncology, Cancer Center AmsterdamNetherlands
- Princess Máxima Center for Pediatric Oncology, UtrechtNetherlands
| | - Rianne Haumann
- Emma Children’s Hospital, Amsterdam UMC – location VUmc, Department of Pediatric Oncology, Cancer Center AmsterdamNetherlands
- Princess Máxima Center for Pediatric Oncology, UtrechtNetherlands
| | - Marjolein Breur
- Amsterdam UMC – location VUmc, Department of Pathology, de Boelelaan 1117, AmsterdamNetherlands
| | - Sophie E.M. Veldhuijzen van Zanten
- Emma Children’s Hospital, Amsterdam UMC – location VUmc, Department of Pediatric Oncology, Cancer Center AmsterdamNetherlands
- Princess Máxima Center for Pediatric Oncology, UtrechtNetherlands
| | - Gertjan J.L. Kaspers
- Emma Children’s Hospital, Amsterdam UMC – location VUmc, Department of Pediatric Oncology, Cancer Center AmsterdamNetherlands
- Princess Máxima Center for Pediatric Oncology, UtrechtNetherlands
| | - N. Harry Hendrikse
- Amsterdam UMC – location VUmc, Department of Clinical Pharmacology & Pharmacy, AmsterdamNetherlands
- Amsterdam UMC – location VUmc, Department of Radiology & Nuclear Medicine, AmsterdamNetherlands
| | - Esther Hulleman
- Emma Children’s Hospital, Amsterdam UMC – location VUmc, Department of Pediatric Oncology, Cancer Center AmsterdamNetherlands
- Princess Máxima Center for Pediatric Oncology, UtrechtNetherlands
| | - Dannis G. van Vuurden
- Emma Children’s Hospital, Amsterdam UMC – location VUmc, Department of Pediatric Oncology, Cancer Center AmsterdamNetherlands
- Princess Máxima Center for Pediatric Oncology, UtrechtNetherlands
| | - Marianna Bugiani
- Amsterdam UMC – location VUmc, Department of Pathology, de Boelelaan 1117, AmsterdamNetherlands
| |
Collapse
|
15
|
Kluiver TA, Alieva M, van Vuurden DG, Wehrens EJ, Rios AC. Invaders Exposed: Understanding and Targeting Tumor Cell Invasion in Diffuse Intrinsic Pontine Glioma. Front Oncol 2020; 10:92. [PMID: 32117746 PMCID: PMC7020612 DOI: 10.3389/fonc.2020.00092] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Diffuse Intrinsic Pontine Glioma (DIPG) is a rare, highly aggressive pediatric brain tumor that originates in the pons. DIPG is untreatable and universally fatal, with a median life expectancy of less than a year. Resection is not an option, due to the anatomical location of the tumor, radiotherapy has limited effect and no chemotherapeutic or targeted treatment approach has proven to be successful. This poor prognosis is partly attributed to the tumor's highly infiltrative diffuse and invasive spread. Thus, targeting the invasive behavior of DIPG has the potential to be of therapeutic value. In order to target DIPG invasion successfully, detailed mechanistic knowledge on the underlying drivers is required. Here, we review both DIPG tumor cell's intrinsic molecular processes and extrinsic environmental factors contributing to DIPG invasion. Importantly, DIPG represents a heterogenous disease and through advances in whole-genome sequencing, different subtypes of disease based on underlying driver mutations are now being recognized. Recent evidence also demonstrates intra-tumor heterogeneity in terms of invasiveness and implies that highly infiltrative tumor subclones can enhance the migratory behavior of neighboring cells. This might partially be mediated by “tumor microtubes,” long membranous extensions through which tumor cells connect and communicate, as well as through the secretion of extracellular vesicles. Some of the described processes involved in invasion are already being targeted in clinical trials. However, more research into the mechanisms of DIPG invasion is urgently needed and might result in the development of an effective therapy for children suffering from this devastating disease. We discuss the implications of newly discovered invasive mechanisms for therapeutic targeting and the challenges therapy development face in light of disease in the developing brain.
Collapse
Affiliation(s)
- T A Kluiver
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - M Alieva
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - D G van Vuurden
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| |
Collapse
|
16
|
van der Louw EJTM, Reddingius RE, Olieman JF, Neuteboom RF, Catsman-Berrevoets CE. Ketogenic diet treatment in recurrent diffuse intrinsic pontine glioma in children: A safety and feasibility study. Pediatr Blood Cancer 2019; 66:e27561. [PMID: 30484948 DOI: 10.1002/pbc.27561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The mean overall survival rate of children with diffuse intrinsic pontine glioma (DIPG) is 9-11 months, with current standard treatment with fractionated radiotherapy and adjuvant chemotherapy. So far, novel therapeutic strategies have not yet resulted in significantly better survival. The main source of energy for glioblastoma cells is glucose. Therefore, metabolic alterations induced by the use of the extremely carbohydrate-restricted ketogenic diet (KD) as adjuvant therapy are subject of interest in cancer research. PROCEDURE This study explores the safety and feasibility of the KD in children with recurrent DIPG and no remaining treatment options. Safety was defined as the number of adverse effects. Feasibility was defined as the number of patients who were able to use the KD for three months. Coping of patients and parents was measured with questionnaires. RESULTS Three of 14 children referred to our hospital between 2010 and 2015 were included. Two patients completed the study, and one died before the end of the study. Hospitalizations were needed for placing a nasogastric tube (n = 1) and epileptic seizures (n = 1). Adverse effects related to the diet were mild and transient. Parents were highly motivated during the study. CONCLUSION Use of KD is safe and feasible, but the effect on survival has to be proven in a larger cohort of children who start the KD earlier after diagnosis, preferably as adjuvant therapy to fractionated radiotherapy.
Collapse
Affiliation(s)
- Elles J T M van der Louw
- Department of Dietetics, Erasmus MC Sophia Children's Hospital, University Medical Centre, Rotterdam, the Netherlands
| | - Roel E Reddingius
- Princess Maxima Centre for Paediatric Oncology, Utrecht, the Netherlands
| | - Joanne F Olieman
- Department of Dietetics, Erasmus MC Sophia Children's Hospital, University Medical Centre, Rotterdam, the Netherlands
| | - Rinze F Neuteboom
- Department of Paediatric Neurology, Erasmus MC Sophia Children's Hospital, University Medical Centre, Rotterdam, the Netherlands
| | - Coriene E Catsman-Berrevoets
- Department of Paediatric Neurology, Erasmus MC Sophia Children's Hospital, University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
17
|
Veldhuijzen van Zanten SEM, De Witt Hamer PC, van Dongen GAMS. Brain Access of Monoclonal Antibodies as Imaged and Quantified by 89Zr-Antibody PET: Perspectives for Treatment of Brain Diseases. J Nucl Med 2019; 60:615-616. [PMID: 30737301 DOI: 10.2967/jnumed.118.220939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/13/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Sophie E M Veldhuijzen van Zanten
- Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; and
| | - Guus A M S van Dongen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Moscote-Salazar L, Padilla-Zambrano H, Garcia-Ballestas E, Agrawal A, Paez-Nova M, Pacheco-Hernandez A. Pediatric diffuse intrinsic pontine gliomas. GLIOMA 2019. [DOI: 10.4103/glioma.glioma_50_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Intersection of Brain Development and Paediatric Diffuse Midline Gliomas: Potential Role of Microenvironment in Tumour Growth. Brain Sci 2018; 8:brainsci8110200. [PMID: 30453529 PMCID: PMC6266894 DOI: 10.3390/brainsci8110200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/03/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a devastating and incurable paediatric brain tumour with a median overall survival of 9 months. Until recently, DIPGs were treated similarly to adult gliomas, but due to the advancement in molecular and imaging technologies, our understanding of these tumours has increased dramatically. While extensive research is being undertaken to determine the function of the molecular aberrations in DIPG, there are significant gaps in understanding the biology and the influence of the tumour microenvironment on DIPG growth, specifically in regards to the developing pons. The precise orchestration and co-ordination of the development of the brain, the most complex organ in the body, is still not fully understood. Herein, we present a brief overview of brainstem development, discuss the developing microenvironment in terms of DIPG growth, and provide a basis for the need for studies focused on bridging pontine development and DIPG microenvironment. Conducting investigations in the context of a developing brain will lead to a better understanding of the role of the tumour microenvironment and will help lead to identification of drivers of tumour growth and therapeutic resistance.
Collapse
|
20
|
Convection-enhanced delivery: chemosurgery in diffuse intrinsic pontine glioma. Lancet Oncol 2018; 19:1001-1003. [PMID: 29914797 DOI: 10.1016/s1470-2045(18)30408-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 02/03/2023]
|