1
|
Sever RE, Rosenblum LT, Stanley KC, Cortez AG, Menendez DM, Chagantipati B, Nedrow JR, Edwards WB, Malek MM, Kohanbash G. Detection properties of indium-111 and IRDye800CW for intraoperative molecular imaging use across tissue phantom models. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:S13705. [PMID: 39310036 PMCID: PMC11413652 DOI: 10.1117/1.jbo.30.s1.s13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Significance Intraoperative molecular imaging (IMI) enables the detection and visualization of cancer tissue using targeted radioactive or fluorescent tracers. While IMI research has rapidly expanded, including the recent Food and Drug Administration approval of a targeted fluorophore, the limits of detection have not been well-defined. Aim The ability of widely available handheld intraoperative tools (Neoprobe and SPY-PHI) to measure gamma decay and fluorescence intensity from IMI tracers was assessed while varying characteristics of both the signal source and the intervening tissue or gelatin phantoms. Approach Gamma decay signal and fluorescence from tracer-bearing tumors (TBTs) and modifiable tumor-like inclusions (TLIs) were measured through increasing thicknesses of porcine tissue and gelatin in custom 3D-printed molds. TBTs buried beneath porcine tissue were used to simulate IMI-guided tumor resection. Results Gamma decay from TBTs and TLIs was detected through significantly thicker tissue and gelatin than fluorescence, with at least 5% of the maximum signal observed through up to 5 and 0.5 cm, respectively, depending on the overlying tissue type or gelatin. Conclusions We developed novel systems that can be fine-tuned to simulate variable tumor characteristics and tissue environments. These were used to evaluate the detection of fluorescent and gamma signals from IMI tracers and simulate IMI surgery.
Collapse
Affiliation(s)
- ReidAnn E. Sever
- University of Pittsburgh, Department of Neurological Surgery, Pittsburgh, Pennsylvania, United States
| | - Lauren T. Rosenblum
- University of Pittsburgh, Department of Surgery, Pittsburgh, Pennsylvania, United States
| | - Kayla C. Stanley
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Angel G. Cortez
- University of Pittsburgh Medical Center, In Vivo Imaging Facility Core, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States
| | - Dominic M. Menendez
- University of Missouri, Department of Biochemistry, Columbia, Missouri, United States
| | - Bhuvitha Chagantipati
- University of Pittsburgh, Department of Neurological Surgery, Pittsburgh, Pennsylvania, United States
| | - Jessie R. Nedrow
- University of Pittsburgh Medical Center, In Vivo Imaging Facility Core, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States
| | - W. Barry Edwards
- University of Missouri, Department of Biochemistry, Columbia, Missouri, United States
| | - Marcus M. Malek
- University of Pittsburgh, Department of Surgery, Pittsburgh, Pennsylvania, United States
- University of Pittsburgh School of Medicine, Division of Pediatric General and Thoracic Surgery, Department of Surgery, Pittsburgh, Pennsylvania, United States
| | - Gary Kohanbash
- University of Pittsburgh, Department of Neurological Surgery, Pittsburgh, Pennsylvania, United States
- University of Pittsburgh, Department of Immunology, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
2
|
Mumthaj A, Umadevi M, Kesavan MP, Ravi L, Bhaskar R. Insights into Cancer Cell Imaging Probes Based on Chalcone Scaffolds: Theoretical and Experimental Perspectives. J Fluoresc 2024:10.1007/s10895-024-04081-1. [PMID: 39693012 DOI: 10.1007/s10895-024-04081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
The research article details the synthesis of chalcone-chromone-based scaffolds via multicomponent reactions. These compounds were characterized using conventional spectroscopic methods, including NMR (1H and 13C), FT-IR, and HR-MS. Among the synthesized scaffolds, AZBNPy stood out, exhibiting exceptional DNA and protein targeting capabilities with superior binding parameters. Molecular docking studies indicated that AZBNPy has potential as a potent anticancer agent and a probe for cancer cell imaging. The findings showed that AZBNPy effectively inhibited cell proliferation and induced cell death by targeting HER-2, PARP-2, and HFR in MCF-7 cells. Additionally, in vitro fluorescence imaging studies confirmed AZBNPy's specificity for cancer cell receptors, displaying strong fluorescence in human breast cancer tissues. The clinical application of AZBNPy as an optical imaging agent holds significant promise in aiding surgeons with the precise identification and removal of cancerous tissues, potentially improving patient outcomes and survival rates.
Collapse
Affiliation(s)
- A Mumthaj
- PG Research Department of Chemistry, Nehru Memorial College (Autonomous), , Puthanampatti, (Affiliated to Bharathidasan University), 626 002, Tiruchirappalli, Tamil Nadu, India
- Department of Chemistry, Hajee Karutha Rowther Howdia College (Autonomous), 625 533, Uthamapalayam, Tamil Nadu, India
| | - M Umadevi
- PG Research Department of Chemistry, Nehru Memorial College (Autonomous), , Puthanampatti, (Affiliated to Bharathidasan University), 626 002, Tiruchirappalli, Tamil Nadu, India.
| | - Mookkandi Palsamy Kesavan
- Department of Chemistry, Hajee Karutha Rowther Howdia College (Autonomous), 625 533, Uthamapalayam, Tamil Nadu, India
| | - Lokesh Ravi
- Department of Food Technology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, 560 054, Bengaluru, Karnataka, India
| | - R Bhaskar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, 632 014, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Kumar A, George JM, Sharma S, Koyyadi S, Sharma SK, Verwilst P, Bhatia A, Patro SK, Aggarwal A, Gupta S, Sharma S, Sharma A. pH-Activatable Molecular Probe for COX-2 Imaging in Human Oral Squamous Carcinoma Cells and Patient-Derived Tissues. ACS APPLIED BIO MATERIALS 2024; 7:8517-8527. [PMID: 39561328 DOI: 10.1021/acsabm.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
For developing a successful cancer therapeutic modality, the early precise detection of cancer cells in patient biopsies in oral squamous cell carcinoma (OSCC) is crucial. This could help researchers create new diagnostic and therapeutic tools and assist clinicians in recommending more effective treatment plans and improving patient survival. We have developed an SMPD, cyclooxygenase-2 (COX-2) targeting pH-activable fluorophore named CNP, combining a potent COX-2 inhibitor, celecoxib, linked to a naphthalimide fluorophore with an acidic microenvironment-responsive piperazine moiety for specific optical imaging of OSCC in cells and patient tissues. Compared to reference probe RNP lacking celecoxib, CNP selectively enters the COX-2 overexpressing oral cancer cells. Its acidity-responsive imaging response enhances selectivity over cancers with lower COX-2 expression levels and normal cells. Further, CNP is demonstrated in imaging OSCC cells in patient-derived biopsies. Thus, multifunctional CNP shows potential in exploring more reagents for fluorescence-based detection of OSCC cells in patient tissues with translational applications.
Collapse
Affiliation(s)
- Akhil Kumar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Jiya Mary George
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
| | - Sushank Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sundar Koyyadi
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Suchinder K Sharma
- Amity School of Physical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
| | - Peter Verwilst
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1041, Leuven 3000, Belgium
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sourabha Kumar Patro
- Department of Otolaryngology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Anjali Aggarwal
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Shipra Gupta
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sheetal Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
| |
Collapse
|
4
|
ArmTan K, Kim YM. Indocyanine green and near-infrared fluorescence-guided surgery for gastric cancer: a narrative review. JOURNAL OF MINIMALLY INVASIVE SURGERY 2024; 27:185-197. [PMID: 39675751 DOI: 10.7602/jmis.2024.27.4.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
In recent years, indocyanine green (ICG) and near-infrared (NIR) fluorescence-guided surgery has become a versatile and well-researched tool for gastric cancer treatment. Our narrative review aims to explore the applications, benefits, and challenges that are associated with this technique. Initially used to detect sentinel lymph nodes in early gastric cancer, its scope has broadened to include several clinical applications. Its most notable advantages are the ability to guide standard lymphadenectomy, intraoperatively localize tumors and define tumor margins. Despite these advantages, there are still ongoing discussions regarding its accuracy, lack of standardized administration, and oncologic safety in sentinel node navigation surgery. The limited tumor specificity of ICG has been especially put into question, hindering its ability to accurately differentiate between malignant and healthy tissue. With ongoing innovations and its integration into newer endoscopic and robotic systems, ICG-NIR fluorescence imaging shows promise in becoming a standard tool in the surgical treatment of gastric cancer.
Collapse
Affiliation(s)
- Kristoff ArmTan
- Division of Gastrointestinal Surgery, Department of Surgery, Severance Hospital, Seoul, Korea
- Department of Surgery, Chong Hua Hospital, Cebu, Philippines
| | - Yoo Min Kim
- Division of Gastrointestinal Surgery, Department of Surgery, Severance Hospital, Seoul, Korea
| |
Collapse
|
5
|
Han CY, Choi SH, Chi SH, Hong JH, Cho YE, Kim J. Nano-fluorescence imaging: advancing lymphatic disease diagnosis and monitoring. NANO CONVERGENCE 2024; 11:53. [PMID: 39661218 PMCID: PMC11635084 DOI: 10.1186/s40580-024-00462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
The lymphatic system plays a crucial role in maintaining physiological homeostasis and regulating immune responses. Traditional imaging modalities such as magnetic resonance imaging, computerized tomography, and positron emission tomography have been widely used to diagnose disorders in the lymphatic system, including lymphedema, lymphangioma, lymphatic metastasis, and Castleman disease. Nano-fluorescence technology has distinct advantages-including naked-eye visibility, operational simplicity, portability of the laser, and real-time visibility-and serves as an innovative alternative to traditional imaging techniques. This review explores recent advancements in nano-fluorescence imaging aimed at enhancing the resolution of lymphatic structure, function, and immunity. After delineating the fundamental characteristics of lymphatic systems, it elaborates on the development of various nano-fluorescence systems (including nanoparticles incorporating fluorescent dyes and those with intrinsic fluorescence) while addressing key challenges such as photobleaching, limited tissue penetration, biocompatibility, and signal interference from biomolecules. Furthermore, this review highlights the clinical applications of nano-fluorescence and its potential integration into standard diagnostic protocols. Ongoing advancements in nanoparticle technology underscore the potential of nano-fluorescence to revolutionize the diagnosis and treatment of lymphatic disease.
Collapse
Affiliation(s)
- Chae Yeon Han
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Sang-Hun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Soo-Hyang Chi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Ji Hyun Hong
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, 36729, South Korea
| | - Jihoon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
6
|
Abdul-Kadir MA, Hilmi MR, Mohd Kamal K. Safety and efficacy of "hydro-fluorescein" technique in removing Tenon in pterygium surgery: a 1-year follow-up study. Eye (Lond) 2024:10.1038/s41433-024-03539-7. [PMID: 39658711 DOI: 10.1038/s41433-024-03539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/30/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
PURPOSE To assess the effectiveness and safety of the "hydro-fluorescein" adjunct technique for primary pterygium removal. DESIGN/METHODS A non-randomized prospective study was conducted for various types of pterygium excision with superior bulbar conjunctival autograft (CAG) and fibrin glue. We introduced fluorescein staining to ensure thorough elimination of the Tenon tissue around the bare sclera area and the CAG. The primary outcome was the recurrence rate, and the secondary outcome was any complication associated with fluorescein staining. RESULTS Ninety-three participants with primary pterygium of Grades 1-3 were recruited and all completed follow-up for at least 1 year. No recurrence was identified during the follow-up period and no long-term adverse reactions were reported with the "hydro-fluorescein" method. CONCLUSION "Hydro-fluorescein" is effective and a safe adjunct in primary pterygium removal and is effective in various grades of pterygia to minimize recurrence with no adverse reaction within 1 year.
Collapse
Affiliation(s)
- Mohd-Asyraaf Abdul-Kadir
- Department of Ophthalmology, Universiti Malaysia Sarawak, Sarawak, Malaysia
- Department of Ophthalmology, Kulliyyah of Medicine, International Islamic University Malaysia, Pahang, Malaysia
| | - Mohd Radzi Hilmi
- Department of Optometry and Visual Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang, Malaysia
| | - Khairidzan Mohd Kamal
- Department of Ophthalmology, Kulliyyah of Medicine, International Islamic University Malaysia, Pahang, Malaysia.
| |
Collapse
|
7
|
Kotb A, Hafeji Z, Jesry F, Lintern N, Pathak S, Smith AM, Lutchman KRD, de Bruin DM, Hurks R, Heger M, Khaled YS. Intra-Operative Tumour Detection and Staging in Pancreatic Cancer Surgery: An Integrative Review of Current Standards and Future Directions. Cancers (Basel) 2024; 16:3803. [PMID: 39594758 PMCID: PMC11592681 DOI: 10.3390/cancers16223803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Surgical resection for pancreatic ductal adenocarcinoma (PDAC) entails the excision of the primary tumour and regional lymphadenectomy. This traditional strategy is challenged by the high rate of early recurrence, suggesting inadequate disease staging. Novel methods of intra-operative staging are needed to allow surgical resection to be tailored to the disease's biology. METHODS A search of published articles on the PubMed and Embase databases was performed using the terms 'pancreas' OR 'pancreatic' AND 'intra-operative staging/detection' OR 'guided surgery'. Articles published between January 2000 and June 2023 were included. Technologies that offered intra-operative staging and tailored treatment were curated and summarised in the following integrative review. RESULTS lymph node (LN) mapping and radioimmunoguided surgery have shown promising results but lacked practicality to facilitate real-time intra-operative staging for PDAC. Fluorescence-guided surgery (FGS) offers high contrast and sensitivity, enabling the identification of cancerous tissue and positive LNs with improved precision following intravenous administration of a fluorescent agent. The unique properties of optical coherence tomography and ultrasound elastography lend themselves to be platforms for virtual biopsy intra-operatively. CONCLUSIONS Accurate intra-operative staging of PDAC, localisation of metastatic LNs, and identification of extra-pancreatic disease remain clinically unmet needs under current detection methods and staging standards. Tumour-specific FGS combined with other diagnostic and therapeutic modalities could improve tumour detection and staging in patients with PDAC.
Collapse
Affiliation(s)
- Ahmed Kotb
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Zaynab Hafeji
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Fadel Jesry
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Nicole Lintern
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Samir Pathak
- The Pancreato-Biliary Unit, St James’s University Teaching Hospital, Leeds LS9 7TF, UK
| | - Andrew M. Smith
- The Pancreato-Biliary Unit, St James’s University Teaching Hospital, Leeds LS9 7TF, UK
| | - Kishan R. D. Lutchman
- Department of Surgery, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Daniel M. de Bruin
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Rob Hurks
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Yazan S. Khaled
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
- The Pancreato-Biliary Unit, St James’s University Teaching Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
8
|
Malik MMUD, Alqahtani MM, Hadadi I, Kanbayti I, Alawaji Z, Aloufi BA. Molecular Imaging Biomarkers for Early Cancer Detection: A Systematic Review of Emerging Technologies and Clinical Applications. Diagnostics (Basel) 2024; 14:2459. [PMID: 39518426 PMCID: PMC11545511 DOI: 10.3390/diagnostics14212459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Early cancer detection is crucial for improving patient outcomes. Molecular imaging biomarkers offer the potential for non-invasive, early-stage cancer diagnosis. OBJECTIVES To evaluate the effectiveness and accuracy of molecular imaging biomarkers for early cancer detection across various imaging modalities and cancer types. METHODS A comprehensive search of PubMed/MEDLINE, Embase, Web of Science, Cochrane Library, and Scopus was performed, covering the period from January 2010 to December 2023. Eligibility criteria included original research articles published in English on molecular imaging biomarkers for early cancer detection in humans. The risk of bias for included studies was evaluated using the QUADAS-2 tool. The findings were synthesized through narrative synthesis, with quantitative analysis conducted where applicable. RESULTS In total, 50 studies were included. Positron emission tomography (PET)-based biomarkers showed the highest sensitivity (mean: 89.5%, range: 82-96%) and specificity (mean: 91.2%, range: 85-100%). Novel tracers such as [68Ga]-PSMA for prostate cancer and [18F]-FES for breast cancer demonstrated promising outcomes. Optical imaging techniques showed high specificity in intraoperative settings. CONCLUSIONS Molecular imaging biomarkers show significant potential for improving early cancer detection. Integration into clinical practice could lead to earlier interventions and improved outcomes. Further research is needed to address standardization and cost-effectiveness.
Collapse
Affiliation(s)
- Maajid Mohi Ud Din Malik
- Dr. D.Y. Patil School of Allied Health Sciences, Dr. D.Y. Patil Vidyapeeth, (Deemed to be University) Sant Tukaram Nagar, Pune 411018, MH, India;
| | - Mansour M. Alqahtani
- Department of Radiological Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Ibrahim Hadadi
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Asir, Abha 62529, Saudi Arabia
| | - Ibrahem Kanbayti
- Radiologic Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Zeyad Alawaji
- Department of Radiologic Technology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Bader A. Aloufi
- Department of Diagnostic Radiology, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia;
| |
Collapse
|
9
|
Bender AA, Holiski CK, Embree M, Hennkens HM, Klaehn JR, Lundgreen E, Roberts AG, Zalupski PR, Mastren T. Pursuing theranostics: a multimodal architecture approach. SENSORS & DIAGNOSTICS 2024:d4sd00221k. [PMID: 39493501 PMCID: PMC11528688 DOI: 10.1039/d4sd00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Theranostics is a field of nuclear medicine which uses the same targeting vector and chelating system for both a diagnostic and therapeutic radionuclide, allowing for uniformity in imaging and treatment. This growing field requires the development of more flexible chelate systems that permit novel targeting strategies. Toward this end, a multimodal architecture has been realized, making use of a phosphazene-based core and click chemistry to achieve a flexible and customizable scaffold. The six arm phosphazene-based core can scaffold six DTPA chelating motifs or a mixed set of 3 : 3 DTPA : DFO chelates resulting in two multimodal compounds, pDbDt and pDbDtDf, respectively. Terbium complexes displayed strong luminescence, supporting that the structures act as an organic antenna for luminescence. Metal displacement titration studies confirmed the desired structures as well as the capability for heterometallic labeling of the structures. These structures were found to have high thermal and biological stability in vitro. Radiolabeling of each compound resulted in high molar activity labeling of each compound: 169 MBq nmol-1: [161Tb]Tb-pDbDt, 170 MBq nmol-1: [89Zr]Zr-pDbDtDf, and the mixed radiolabeling illustrated chelation of both radionuclides in a 1 : 1 ratio. This multimodal architecture is promising as a heterometallic structure for coupling of both a diagnostic and a therapeutic radionuclide with a highly customizable core structure.
Collapse
Affiliation(s)
- Aidan A Bender
- Nuclear Engineering Program, University of Utah 110 Central Campus Dr. Suite 2000B Salt Lake City UT 84112 USA
| | - Connor K Holiski
- Nuclear Engineering Program, University of Utah 110 Central Campus Dr. Suite 2000B Salt Lake City UT 84112 USA
| | - Mary Embree
- University of Missouri Research Reactor Columbia MO 65211 USA
| | - Heather M Hennkens
- University of Missouri Research Reactor Columbia MO 65211 USA
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| | - John R Klaehn
- Biological and Chemical Process Sciences, Idaho National Laboratory Idaho Falls ID 83415 USA
| | - Ellie Lundgreen
- Nuclear Engineering Program, University of Utah 110 Central Campus Dr. Suite 2000B Salt Lake City UT 84112 USA
| | - Andrew G Roberts
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| | - Peter R Zalupski
- Aqueous Separations and Radiochemistry, Idaho National Laboratory Idaho Falls ID 83415 USA
| | - Tara Mastren
- Nuclear Engineering Program, University of Utah 110 Central Campus Dr. Suite 2000B Salt Lake City UT 84112 USA
| |
Collapse
|
10
|
Staudt M, Hvass L, Müller M, García-Vázquez R, Jo̷rgensen JT, Shalgunov V, Battisti UM, Kjær A, Herth MM. Development of Polar BODIPY-Tetrazines for Rapid Pretargeted Fluorescence Imaging. ACS OMEGA 2024; 9:42498-42505. [PMID: 39431101 PMCID: PMC11483389 DOI: 10.1021/acsomega.4c06570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Polar BODIPY-tetrazine dyes were developed and clicked in vivo to a preaccumulated trans-cyclooctene-modified anti-TAG72 monoclonal antibody CC49 (CC49-TCO). The in vivo click performance was evaluated using an in-house developed ex vivo blocking assay. All tested polar BODIPY structures exhibited excellent in vivo binding, confirming that the turn-on tetrazine dyes successfully clicked in vivo to pretargeted CC49-TCO. Fluorescence imaging showed high tumor-to-muscle ratios of 4:1. This proof-of-concept study indicates that the pretargeting concept based on turn-on probes could be used for cancer treatments, such as photodynamic or -thermal therapy.
Collapse
Affiliation(s)
- Markus Staudt
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Lars Hvass
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark
| | - Marius Müller
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rocío García-Vázquez
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper Tranekjær Jo̷rgensen
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Andreas Kjær
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Bassler MC, Hiller J, Wackenhut F, Zur Oven-Krockhaus S, Frech P, Schmidt F, Kertzscher C, Rammler T, Ritz R, Braun K, Scheele M, Meixner AJ, Brecht M. Fluorescence lifetime imaging unravels the pathway of glioma cell death upon hypericin-induced photodynamic therapy. RSC Chem Biol 2024; 5:d4cb00107a. [PMID: 39421718 PMCID: PMC11474773 DOI: 10.1039/d4cb00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Malignant primary brain tumors are a group of highly aggressive and often infiltrating tumors that lack adequate therapeutic treatments to achieve long time survival. Complete tumor removal is one precondition to reach this goal. A promising approach to optimize resection margins and eliminate remaining infiltrative so-called guerilla cells is photodynamic therapy (PDT) using organic photosensitizers that can pass the disrupted blood-brain-barrier and selectively accumulate in tumor tissue. Hypericin fulfills these conditions and additionally offers outstanding photophysical properties, making it an excellent choice as a photosensitizing molecule for PDT. However, the actual hypericin-induced PDT cell death mechanism is still under debate. In this work, hypericin-induced PDT was investigated by employing the three distinct fluorescent probes hypericin, resorufin and propidium iodide (PI) in fluorescence-lifetime imaging microscopy (FLIM). This approach enables visualizing the PDT-induced photodamaging and dying of single, living glioma cells, as an in vitro tumor model for glioblastoma. Hypericin PDT and FLIM image acquisition were simultaneously induced by 405 nm laser irradiation and sequences of FLIM images and fluorescence spectra were recorded to analyze the PDT progression. The reproducibly observed cellular changes provide insight into the mechanism of cell death during PDT and suggest that apoptosis is the initial mechanism followed by necrosis after continued irradiation. These new insights into the mechanism of hypericin PDT of single glioma cells may help to adjust irradiation doses and improve the implementation as a therapy for primary brain tumors.
Collapse
Affiliation(s)
- Miriam C Bassler
- Process Analysis and Technology (PA&T), Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Jonas Hiller
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Frank Wackenhut
- Process Analysis and Technology (PA&T), Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
| | - Sven Zur Oven-Krockhaus
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Philipp Frech
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Felix Schmidt
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Christoph Kertzscher
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Tim Rammler
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Rainer Ritz
- Department of Neurosurgery, Schwarzwald-Baar Clinic 78052 Villingen-Schwenningen Germany
| | - Kai Braun
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Marcus Scheele
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Marc Brecht
- Process Analysis and Technology (PA&T), Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
12
|
Scorzo AV, Byrd BK, Kwon CY, Strawbridge RR, Samkoe KS, Hoopes PJ, Paulsen KD, Roberts DW, Davis SC. Whole-body fluorescence cryotomography identifies a fast-acting, high-contrast, durable contrast agent for fluorescence-guided surgery. Theranostics 2024; 14:6426-6445. [PMID: 39479457 PMCID: PMC11519800 DOI: 10.7150/thno.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
Imaging of tumor-specific fluorescent contrast agents to guide tumor removal has been shown to improve outcomes and is now standard practice for some neurosurgical procedures. However, many agents require administration hours before surgery, a practical challenge, and may exhibit inconsistent concordance with contrast-enhanced MRI (CE-MRI), the current standard for diagnosing and guiding glioma removal. A fluorescent agent that accurately marks tumor shortly after administration and is otherwise similar to CE-MRI would help overcome these shortcomings. Methods: We used whole-body 3-D fluorescence cryo-imaging and co-registered CE-MRI volumes to evaluate several fluorescent contrast agent candidates for diagnostic performance and concordance with CE-MRI. Mice with brain tumors were administered a cocktail of fluorescent agent candidates and a MRI contrast agent, and then imaged with MRI and fluorescence cryo-imaging at several timepoints after administration. The high-resolution 3-D cryo-imaging volumes of the fluorescent agents were used to determine diagnostic performance metrics and correlation with CE-MRI. Results: While all agents showed positive metrics, one agent, tetramethylrhodamine conjugated to a small polyethylene glycol chain (TMR-PEG1k), outperformed the others, exhibiting minimal normal brain signal, high tumor-to-background-ratio, diagnostic accuracy, and cross-correlation to CE-MRI at all post-administration timepoints (10-90 min) and tumor lines examined. Conclusion: These favorable properties establish TMR-PEG1k as a promising candidate for surgical guidance.
Collapse
Affiliation(s)
- Augustino V. Scorzo
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Brook K. Byrd
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Caleb Y. Kwon
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Kimberley S. Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - P. Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - David W. Roberts
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Scott C. Davis
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
13
|
Hazarika D, Sarma S, Shankarishan P. Nanotechnology in cancer therapeutics, diagnosis, and management. BIOTECHNOLOGIA 2024; 105:287-303. [PMID: 39439717 PMCID: PMC11492894 DOI: 10.5114/bta.2024.141807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 10/25/2024] Open
Abstract
Nanotechnology presents an exciting opportunity in cancer research by offering significant advancements in therapies, diagnosis, and management. It possesses unparalleled potential to enhance the accuracy and effectiveness of cancer therapy while simultaneously reducing adverse effects, owing to its distinctive capability to manipulate matter at a molecular level. Using nanoparticle carriers has facilitated the precise administration of therapeutic agents to afflicted areas within the human body through customized drug delivery systems, resulting in improved treatment accuracy and efficacy while reducing adverse effects. These techniques improve drug solubility and stability, leading to elevated levels of biochemical availability and improved efficacy outcomes for patients with minimal negative effects during treatment cycles. Another use case for nanoparticles includes tumor imaging; functionalized with targeting ligands containing diagnostic agents, they foster early detection, making quicker remedial action plans possible. Overall, the incorporation of nanotechnology ensures a promising future, although it stresses the need to address regulatory hurdles and safety concerns before widespread clinical implementation. Despite the complexity of cancer research and patient care, nanotechnology shows promise in transforming both fields.
Collapse
Affiliation(s)
- Disha Hazarika
- University of Science and Technology Meghalaya (USTM), Meghalaya, India
| | - Sumit Sarma
- University of Science and Technology Meghalaya (USTM), Meghalaya, India
| | | |
Collapse
|
14
|
Lewis MR, Schaedler AW, Ho KV, Golzy M, Mathur A, Pun M, Gallazzi F, Watkinson LD, Carmack TL, Sikligar K, Anderson CJ, Smith CJ. Evaluation of a bimodal, matched pair theranostic agent targeting prostate-specific membrane antigen. Nucl Med Biol 2024; 136-137:108938. [PMID: 39032262 DOI: 10.1016/j.nucmedbio.2024.108938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Prostate cancer affects 1 in 6 men, and it is the second‑leading cause of cancer-related death in American men. Surgery is one of the main treatment modalities for prostate cancer, but it often results in incomplete resection margins or complete resection that leads to nerve damage and undesirable side effects. In the present work, we have developed a new bimodal tracer, NODAGA-sCy7.5 PSMAi (prostate-specific membrane antigen inhibitor), labeled with the true matched theranostic pair 64Cu/67Cu and a near-infrared fluorescent dye. This agent could potentially be used for concomitant PET imaging, optical surgical navigation, and targeted radiopharmaceutical therapy. METHODS A prostate-specific membrane antigen (PSMA)-targeting urea derivative was conjugated to NODAGA for copper radiolabeling and to the near-infrared fluorophore sulfo-Cy7.5 (sCy7.5). Binding studies were performed in PSMA-positive PC-3 PIP cells, as well as uptake and internalization assays in PC-3 PIP cells and PSMA-negative PC-3 wild type cells. Biodistribution studies of the 64Cu-labeled compound were performed in PC-3 PIP- and PC-3 tumor-bearing mice, and 67Cu biodistributions of the agent were obtained in PC-3 PIP tumor-carrying mice. PET imaging and fluorescence imaging were also performed, using the same molar doses, in the two mouse models. RESULTS The PSMA conjugate bound with high affinity to PSMA-positive prostate cancer cells, as opposed to cells that were PSMA-negative. Uptake and internalization were rapid and PSMA-mediated in PC-3 PIP cells, while only minimal non-specific uptake was observed in PC-3 cells. Biodistribution studies showed specific uptake in PC-3 PIP tumors, while accumulation in PC-3 tumor-bearing mice was low. Furthermore, tumor uptake of the 67Cu-labeled agent in the PC-3 PIP model was statistically equivalent to that of 64Cu. PET and fluorescence imaging at 0.5 nmol per mouse also demonstrated that PC-3 PIP tumors could be clearly detected, while PC-3 tumors showed no tumor accumulation. CONCLUSIONS NODAGA-sCy7.5-PSMAi was specific and selective in detecting PSMA-positive, as opposed to PSMA-negative, tumors in mouse models of prostate cancer. This bioconjugate could potentially be used for PET staging with 64Cu, targeted radiopharmaceutical therapy with 67Cu, and/or image-guided surgery with sCy7.5.
Collapse
Affiliation(s)
- Michael R Lewis
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States of America; Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, United States of America.
| | - Alexander W Schaedler
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States of America; Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America
| | - Khanh-Van Ho
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Department of Chemistry, University of Missouri, Columbia, MO, United States of America
| | - Mojgan Golzy
- Biostatistics Unit, University of Missouri, Columbia, MO, United States of America
| | - Anupam Mathur
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Research Reactor Center, Columbia, MO, United States of America
| | - Michael Pun
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Department of Chemistry, University of Missouri, Columbia, MO, United States of America
| | - Fabio Gallazzi
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Molecular Interactions Core, University of Missouri, Columbia, MO, United States of America
| | - Lisa D Watkinson
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Research Reactor Center, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America
| | - Terry L Carmack
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Research Reactor Center, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America
| | - Kanishka Sikligar
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Department of Chemistry, University of Missouri, Columbia, MO, United States of America
| | - Carolyn J Anderson
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, United States of America; Department of Chemistry, University of Missouri, Columbia, MO, United States of America; Department of Radiology, University of Missouri, Columbia, MO, United States of America
| | - Charles J Smith
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Department of Radiology, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
15
|
Mc Larney BE, Sonay AY, Apfelbaum E, Mostafa N, Monette S, Goerzen D, Aguirre N, Exner RM, Habjan C, Isaac E, Phung NB, Skubal M, Kim M, Ogirala A, Veach D, Heller DA, Grimm J. A pan-cancer dye for solid-tumour screening, resection and wound monitoring via short-wave and near-infrared fluorescence imaging. Nat Biomed Eng 2024; 8:1092-1108. [PMID: 39251765 DOI: 10.1038/s41551-024-01248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/21/2024] [Indexed: 09/11/2024]
Abstract
The efficacy of fluorescence-guided surgery in facilitating the real-time delineation of tumours depends on the optical contrast of tumour tissue over healthy tissue. Here we show that CJ215-a commercially available, renally cleared carbocyanine dye sensitive to apoptosis, and with an absorption and emission spectra suitable for near-infrared fluorescence imaging (wavelengths of 650-900 nm) and shortwave infrared (SWIR) fluorescence imaging (900-1,700 nm)-can facilitate fluorescence-guided tumour screening, tumour resection and the assessment of wound healing. In tumour models of either murine or human-derived breast, prostate and colon cancers and of fibrosarcoma, and in a model of intraperitoneal carcinomatosis, imaging of CJ215 with ambient light allowed for the delineation of nearly all tumours within 24 h after intravenous injection of the dye, which was minimally taken up by healthy organs. At later timepoints, CJ215 provided tumour-to-muscle contrast ratios up to 100 and tumour-to-liver contrast ratios up to 18. SWIR fluorescence imaging with the dye also allowed for quantifiable non-contact wound monitoring through commercial bandages. CJ215 may be compatible with existing and emerging clinical solutions.
Collapse
Affiliation(s)
| | - Ali Yasin Sonay
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elana Apfelbaum
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Nermin Mostafa
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sébastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY, USA
| | - Dana Goerzen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Nicole Aguirre
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rüdiger M Exner
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christine Habjan
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Elizabeth Isaac
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Ngan Bao Phung
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Magdalena Skubal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mijin Kim
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anuja Ogirala
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darren Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center, New York, NY, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical Center, New York, NY, USA.
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Vulasala SS, Sutphin P, Shyn P, Kalva S. Intraoperative Imaging Techniques in Oncology. Clin Oncol (R Coll Radiol) 2024; 36:e255-e268. [PMID: 38242817 DOI: 10.1016/j.clon.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Imaging-based procedures have become well integrated into the diagnosis and management of oncological patients and play a significant role in reducing morbidity and mortality rates. Here we describe the established and upcoming surgical oncological imaging techniques and their impact on cancer management.
Collapse
Affiliation(s)
- S S Vulasala
- Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida, USA.
| | - P Sutphin
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - P Shyn
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - S Kalva
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Hitchcock CL, Chapman GJ, Mojzisik CM, Mueller JK, Martin EW. A Concept for Preoperative and Intraoperative Molecular Imaging and Detection for Assessing Extent of Disease of Solid Tumors. Oncol Rev 2024; 18:1409410. [PMID: 39119243 PMCID: PMC11306801 DOI: 10.3389/or.2024.1409410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
The authors propose a concept of "systems engineering," the approach to assessing the extent of diseased tissue (EODT) in solid tumors. We modeled the proof of this concept based on our clinical experience with colorectal carcinoma (CRC) and gastrinoma that included short and long-term survival data of CRC patients. This concept, applicable to various solid tumors, combines resources from surgery, nuclear medicine, radiology, pathology, and oncology needed for preoperative and intraoperative assessments of a patient's EODT. The concept begins with a patient presenting with biopsy-proven cancer. An appropriate preferential locator (PL) is a molecule that preferentially binds to a cancer-related molecular target (i.e., tumor marker) lacking in non-malignant tissue and is the essential element. Detecting the PL after an intravenous injection requires the PL labeling with an appropriate tracer radionuclide, a fluoroprobe, or both. Preoperative imaging of the tracer's signal requires molecular imaging modalities alone or in combination with computerized tomography (CT). These include positron emission tomography (PET), PET/CT, single-photon emission computed tomography (SPECT), SPECT/CT for preoperative imaging, gamma cameras for intraoperative imaging, and gamma-detecting probes for precise localization. Similarly, fluorescent-labeled PLs require appropriate cameras and probes. This approach provides the surgeon with real-time information needed for R0 resection.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Actis Medical, LLC, Powell, OH, United States
| | - Gregg J. Chapman
- Actis Medical, LLC, Powell, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | | | | | - Edward W. Martin
- Actis Medical, LLC, Powell, OH, United States
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Wagner P, Levine EA, Kim AC, Shen P, Fleming ND, Westin SN, Berry LK, Karakousis GC, Tanyi JL, Olson MT, Madajewski B, Ostrander B, Krishnan K, Balch CM, Bartlett DL. Detection of Residual Peritoneal Metastases Following Cytoreductive Surgery Using Pegsitacianine, a pH-Sensitive Imaging Agent: Final Results from a Phase II Study. Ann Surg Oncol 2024; 31:4726-4734. [PMID: 38622456 DOI: 10.1245/s10434-024-15165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/25/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND For patients with peritoneal carcinomatosis, extent of disease and completeness of cytoreductive surgery (CRS) are major prognostic factors for long-term survival. Assessment of these factors could be improved using imaging agents. Pegsitacianine is a pH-sensitive polymeric micelle conjugated to the fluorophore indocyanine green. The micelle disassembles in acidic microenvironments, such as tumors, resulting in localized fluorescence unmasking. We assessed the utility of pegsitacianine in detecting residual disease following CRS. PATIENTS AND METHODS NCT04950166 was a phase II, non-randomized, open-label, multicenter US study. Patients eligible for CRS were administered an intravenous dose of pegsitacianine at 1 mg/kg 24-72 h before surgery. Following CRS, the peritoneal cavity was reexamined under near-infrared (NIR) illumination to evaluate for fluorescent tissue. Fluorescent tissue identified was excised and evaluated by histopathology. The primary outcome was the rate of clinically significant events (CSE), defined as detection of histologically confirmed residual disease excised with pegsitacianine or a revision in the assessment of completeness of CRS. Secondary outcomes included acceptable safety and pegsitacianine performance. RESULTS A total of 53 patients were screened, 50 enrolled, and 40 were evaluable for CSE across six primary tumor types. Residual disease was detected with pegsitacianine in 20 of 40 (50%) patients. Pegsitacianine showed high sensitivity and was well tolerated with no serious adverse events (SAEs). Transient treatment-related, non-anaphylactic infusion reactions occurred in 28% of patients. CONCLUSIONS Pegsitacianine was well tolerated and facilitated the recognition of occult residual disease following CRS. The high rate of residual disease detected suggests that the use of pegsitacianine augmented surgeon assessment and performance during CRS.
Collapse
Affiliation(s)
- Patrick Wagner
- Department of Surgical Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | - Edward A Levine
- Department of Surgical Oncology, Atrium Health Wake Forest Baptist, Wake Forest University, Winston-Salem, NC, USA
| | - Alex C Kim
- Division of Surgical Oncology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Perry Shen
- Department of Surgical Oncology, Atrium Health Wake Forest Baptist, Wake Forest University, Winston-Salem, NC, USA
| | - Nicole D Fleming
- Department of Gynecologic Oncology and Reproductive Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Laurel K Berry
- Department of Gynecologic Oncology, Atrium Health Wake Forest Baptist, Wake Forest University, Winston-Salem, NC, USA
| | - Giorgos C Karakousis
- Division of Endocrine and Oncologic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Janos L Tanyi
- Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | - Charles M Balch
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - David L Bartlett
- Department of Surgical Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Rauf SA, Ahmed R, Hussain T, Saad M, Shah HH, Jamalvi SA, Yogeeta F, Devi M, Subash A, Gul M, Ahmed S, Haque MA. Fluorescence in neurosurgery: its therapeutic and diagnostic significance - a comprehensive review. Ann Med Surg (Lond) 2024; 86:4255-4261. [PMID: 38989178 PMCID: PMC11230751 DOI: 10.1097/ms9.0000000000002218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024] Open
Abstract
This review provides a comprehensive overview of the therapeutic and diagnostic implications of fluorescence imaging in neurosurgery. Fluorescence imaging has become a valuable intraoperative visualization and guidance tool, facilitating precise surgical interventions. The therapeutic role of fluorescence is examined, including its application in photodynamic therapy and tumor-targeted therapy. It also explores its diagnostic capabilities in tumor detection, margin assessment, and blood-brain barrier evaluation. Drawing from clinical and preclinical studies, the review underscores the growing evidence supporting the efficacy of fluorescence imaging in neurosurgical practice. Furthermore, it discusses current limitations and future directions, emphasizing the potential for emerging technologies to enhance the utility and accessibility of fluorescence imaging, ultimately improving patient outcomes in neurosurgery.
Collapse
Affiliation(s)
| | | | - Tooba Hussain
- Dow University of Health Sciences, Karachi, Pakistan
| | | | | | | | | | | | - Arun Subash
- Dow University of Health Sciences, Karachi, Pakistan
| | - Maryam Gul
- Dow University of Health Sciences, Karachi, Pakistan
| | - Shaheer Ahmed
- Dow University of Health Sciences, Karachi, Pakistan
| | - Md Ariful Haque
- Department of Public Health, Atish Dipankar University of Science and Technology
- Voice of Doctors Research School, Dhaka, Bangladesh
- Department of Orthopaedic Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
20
|
Gazzi T, Lesina M, Wang Q, Berninger A, Radetzki S, Demir IE, Kohlmann L, Meiser W, Wilke S, von Kries JP, Algül H, Hu HY, Nazare M. DOTA-Based Plectin-1 Targeted Contrast Agent Enables Detection of Pancreatic Cancer in Human Tissue. Angew Chem Int Ed Engl 2024; 63:e202318485. [PMID: 38608197 DOI: 10.1002/anie.202318485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal malignancy with extremely poor patient survival rates. A key reason for the poor prognosis is the lack of effective diagnostic tools to detect the disease at curable, premetastatic stages. Tumor surgical resection is PDAC's first-line treatment, however distinguishing between cancerous and healthy tissue with current imaging tools remains a challenge. In this work, we report a DOTA-based fluorescent probe targeting plectin-1 for imaging PDAC with high specificity. To enable heterogeneous functionalization of the DOTA-core with multiple targeting peptide units and the fluorophore, a novel, fully clickable synthetic route that proceeds in one pot was developed. Extensive validation of the probe set the stage for PDAC detection in mice and human tissue. Altogether, these findings may pave the way for improved clinical understanding and early detection of PDAC progression as well as more accurate resection criteria.
Collapse
Affiliation(s)
- Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany
| | - Marina Lesina
- Comprehensive Cancer Center München, Chair for Tumor Metabolism, Comprehensive Cancer Center München, Chair for Tumor Metabolism, School of Medicine and Health, Technical University of Munich, 81675, München, Germany
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 100050, Beijing, China
| | - Alexandra Berninger
- Comprehensive Cancer Center München, Chair for Tumor Metabolism, Comprehensive Cancer Center München, Chair for Tumor Metabolism, School of Medicine and Health, Technical University of Munich, 81675, München, Germany
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany
| | - Ihsan Ekin Demir
- Else Kröner Clinician Scientist Professor for Translational Pancreatic Surgery, Department of Surgery, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
| | - Larissa Kohlmann
- Comprehensive Cancer Center München, Chair for Tumor Metabolism, Comprehensive Cancer Center München, Chair for Tumor Metabolism, School of Medicine and Health, Technical University of Munich, 81675, München, Germany
| | - Waldemar Meiser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany
| | - Sebastian Wilke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany
| | | | - Hana Algül
- Comprehensive Cancer Center München, Chair for Tumor Metabolism, Comprehensive Cancer Center München, Chair for Tumor Metabolism, School of Medicine and Health, Technical University of Munich, 81675, München, Germany
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 100050, Beijing, China
| | - Marc Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany
| |
Collapse
|
21
|
Shaffrey EC, Moura SP, Seitz AJ, Jupitz S, Seets T, Kawahara T, Uselmann A, Lin C, Poore SO. Use of Ambient Light Compatible Fluorescence-Guided Surgical Technology for Objective Assessment of Flap Perfusion in Autologous Breast Reconstruction. J Reconstr Microsurg 2024. [PMID: 38838710 DOI: 10.1055/s-0044-1787267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Decreased autologous flap vascular perfusion can lead to secondary procedures. Fluorescence angiography during surgery reduces the probability of repeat surgery but suffers from interpretation variability. Recently, the OnLume Avata System was developed, which evaluates real-time vascular perfusion in ambient light. This study aims to predict complications in autologous breast reconstruction using measures of relative intensity (RI) and relative area (RA). METHODS Patients undergoing autologous breast reconstruction underwent intraoperative tissue perfusion assessment using the OnLume Avata System. Post-hoc image annotation was completed by labeling areas of the flap interpreted to be "Well Perfused," "Questionably Perfused," and "Under Perfused." RIs and RAs were calculated for the marked areas. Primary complications of interest were overall complication rate, fat and mastectomy skin flap necrosis, and surgical revision. Logistic regression was applied to determine the odds of developing a complication based on RI and RA for each image. RESULTS A total of 25 patients (45 flaps) were included. In total, 17 patients (68%) developed at least one complication. Patients who developed any complication (p = 0.02) or underwent a surgical revision for complications (p = 0.02) had statistically lower RI of under-perfused portions of the flap. Patients with greater areas of under-perfused flap had a significantly higher risk of developing fat necrosis (odds ratio [OR]: 5.71, p = 0.03) and required a revision operation (OR: 1.10, p = 0.01). CONCLUSION Image-based interpretation using the OnLume Avata System correlated with the risk of developing postoperative complications that standard fluorescence imaging systems may not appreciate. This information can benefit surgeons to improve perfusion assessment and intraoperative decision-making.
Collapse
Affiliation(s)
- Ellen C Shaffrey
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Steven P Moura
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Boston University Chobanian and Avedisian School of Medicine, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts
| | - Allison J Seitz
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Sydney Jupitz
- Onlume Surgical, Research Division, Madison, Wisconsin
| | - Trevor Seets
- Onlume Surgical, Research Division, Madison, Wisconsin
| | | | - Adam Uselmann
- Onlume Surgical, Research Division, Madison, Wisconsin
| | - Christie Lin
- Onlume Surgical, Research Division, Madison, Wisconsin
| | - Samuel O Poore
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
22
|
Ray GS, Streeter SS, Bateman LM, Elliott JT, Henderson ER. Real-time identification of life-threatening necrotizing soft-tissue infections using indocyanine green fluorescence imaging. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:066003. [PMID: 38745983 PMCID: PMC11092151 DOI: 10.1117/1.jbo.29.6.066003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Significance Necrotizing soft-tissue infections (NSTIs) are life-threatening infections with a cumulative case fatality rate of 21%. The initial presentation of an NSTI is non-specific, frequently leading to misdiagnosis and delays in care. No current strategies yield an accurate, real-time diagnosis of an NSTI. Aim A first-in-kind, observational, clinical pilot study tested the hypothesis that measurable fluorescence signal voids occur in NSTI-affected tissues following intravenous administration and imaging of perfusion-based indocyanine green (ICG) fluorescence. This hypothesis is based on the established knowledge that NSTI is associated with local microvascular thrombosis. Approach Adult patients presenting to the Emergency Department of a tertiary care medical center at high risk for NSTI were prospectively enrolled and imaged with a commercial fluorescence imager. Single-frame fluorescence snapshot and first-pass perfusion kinetic parameters-ingress slope (IS), time-to-peak (TTP) intensity, and maximum fluorescence intensity (IMAX)-were quantified using a dynamic contrast-enhanced fluorescence imaging technique. Clinical variables (comorbidities, blood laboratory values), fluorescence parameters, and fluorescence signal-to-background ratios (SBRs) were compared to final infection diagnosis. Results Fourteen patients were enrolled and imaged (six NSTI, six cellulitis, one diabetes mellitus-associated gangrene, and one osteomyelitis). Clinical variables demonstrated no statistically significant differences between NSTI and non-NSTI patient groups (p -value ≥ 0.22 ). All NSTI cases exhibited prominent fluorescence signal voids in affected tissues, including tissue features not visible to the naked eye. All cellulitis cases exhibited a hyperemic response with increased fluorescence and no distinct signal voids. Median lesion-to-background tissue SBRs based on snapshot, IS, TTP, and IMAX parameter maps ranged from 3.2 to 9.1, 2.2 to 33.8, 1.0 to 7.5, and 1.5 to 12.7, respectively, for the NSTI patient group. All fluorescence parameters except TTP demonstrated statistically significant differences between NSTI and cellulitis patient groups (p -value < 0.05 ). Conclusions Real-time, accurate discrimination of NSTIs compared with non-necrotizing infections may be possible with perfusion-based ICG fluorescence imaging.
Collapse
Affiliation(s)
- Gabrielle S. Ray
- Dartmouth Health, Department of Orthopaedics, Lebanon, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Samuel S. Streeter
- Dartmouth Health, Department of Orthopaedics, Lebanon, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Logan M. Bateman
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Jonathan Thomas Elliott
- Dartmouth Health, Department of Orthopaedics, Lebanon, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Eric R. Henderson
- Dartmouth Health, Department of Orthopaedics, Lebanon, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - NEFARIOUS Study Group
- Dartmouth Health, Department of Orthopaedics, Lebanon, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| |
Collapse
|
23
|
Loverro M, Bizzarri N, Capomacchia FM, Watrowski R, Querleu D, Gioè A, Naldini A, Santullo F, Foschi N, Fagotti A, Scambia G, Fanfani F. Indocyanine green fluorescence applied to gynecologic oncology: beyond sentinel lymph node. Int J Surg 2024; 110:3641-3653. [PMID: 38489558 PMCID: PMC11175818 DOI: 10.1097/js9.0000000000001318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Indocyanine green (ICG), a well-known molecule employed in medicine for over five decades, has emerged as a versatile dye widely embraced across various surgical disciplines. In gynecologic oncology, its prevalent use revolves around the detection of sentinel lymph nodes. However, the true potential of ICG extends beyond this singular application, owing to its pragmatic utility, cost-effectiveness, and safety profile. Furthermore, ICG has been introduced in the theranostic landscape, marking a significant juncture in the evolution of its clinical utility. This narrative review aims to describe the expanding horizons of ICG fluorescence in gynecologic oncology, beyond the sentinel lymph node biopsy. The manifold applications reported within this manuscript include: 1) lymphography; 2) angiography; 3) nerve visualization; 4) ICG-driven resections; and 5) theranostic. The extensive exploration across these numerous applications, some of which are still in the preclinical phase, serves as a hypothesis generator, aiming to stimulate the development of clinical studies capable of expanding the use of this drug in our field, enhancing the care of gynecological cancer patients.
Collapse
Affiliation(s)
- Matteo Loverro
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
| | - Nicolò Bizzarri
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
| | | | - Rafał Watrowski
- Department of Gynecology and Obsterics, Helios Hospital Müllheim, Teaching Hospital of the University of Freiburg, 79379 Müllheim
- Faculty of Medicine, Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Denis Querleu
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
| | - Alessandro Gioè
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
| | - Angelica Naldini
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
| | - Francesco Santullo
- Operational Unit of Peritoneum and Retroperitoneum Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli
| | - Nazario Foschi
- Urology Division, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Anna Fagotti
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
- Università Cattolica del Sacro Cuore
| | - Giovanni Scambia
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
- Università Cattolica del Sacro Cuore
| | - Francesco Fanfani
- UOC Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS
- Università Cattolica del Sacro Cuore
| |
Collapse
|
24
|
Pavlović Saftić D, Krošl Knežević I, de Lera Garrido F, Tolosa J, Majhen D, Piantanida I, García Martínez JC. Trimeric and Tetrameric Cationic Styryl Dyes as Novel Fluorescence and CD Probes for ds-DNA and ds-RNA. Int J Mol Sci 2024; 25:5724. [PMID: 38891911 PMCID: PMC11171523 DOI: 10.3390/ijms25115724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The wide use of mono- or bis-styryl fluorophores in biomedical applications prompted the presented design and study of a series of trimeric and tetrameric homo-analogues, styryl moieties arranged around a central aromatic core. The interactions with the most common biorelevant targets, ds-DNA and ds-RNA, were studied by a set of spectrophotometric methods (UV-VIS, fluorescence, circular dichroism, thermal denaturation). All studied dyes showed strong light absorption in the 350-420 nm range and strongly Stokes-shifted (+100-160 nm) emission with quantum yields (Φf) up to 0.57, whereby the mentioned properties were finely tuned by the type of the terminal cationic substituent and number of styryl components (tetramers being red-shifted in respect to trimers). All studied dyes strongly interacted with ds-DNA and ds-RNA with 1-10 nM-1 affinity, with dye emission being strongly quenched. The tetrameric analogues did not show any particular selectivity between ds-DNA or ds-RNA due to large size and consequent partial, non-selective insertion into DNA/RNA grooves. However, smaller trimeric styryl series showed size-dependent selective stabilization of ds-DNA vs. ds-RNA against thermal denaturation and highly selective or even specific recognition of several particular ds-DNA or ds-RNA structures by induced circular dichroism (ICD) bands. The chiral (ICD) selectivity was controlled by the size of a terminal cationic substituent. All dyes entered efficiently live human cells with negligible cytotoxic activity. Further prospects in the transfer of ICD-based selectivity into fluorescence-chiral methods (FDCD and CPL) is proposed, along with the development of new analogues with red-shifted absorbance properties.
Collapse
Affiliation(s)
- Dijana Pavlović Saftić
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.P.S.); (I.K.K.)
| | - Ivona Krošl Knežević
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.P.S.); (I.K.K.)
| | - Fernando de Lera Garrido
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Pharmacy, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (F.d.L.G.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Juan Tolosa
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Pharmacy, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (F.d.L.G.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.P.S.); (I.K.K.)
| | - Joaquín Calixto García Martínez
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Pharmacy, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (F.d.L.G.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| |
Collapse
|
25
|
Chapeau D, Beekman S, Handula M, Murce E, de Ridder C, Stuurman D, Seimbille Y. eTFC-01: a dual-labeled chelate-bridged tracer for SSTR2-positive tumors. EJNMMI Radiopharm Chem 2024; 9:44. [PMID: 38775990 PMCID: PMC11111636 DOI: 10.1186/s41181-024-00272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Integrating radioactive and optical imaging techniques can facilitate the prognosis and surgical guidance for cancer patients. Using a single dual-labeled tracer ensures consistency in both imaging modalities. However, developing such molecule is challenging due to the need to preserve the biochemical properties of the tracer while introducing bulky labeling moieties. In our study, we designed a trifunctional chelate that facilitates the coupling of the targeting vector and fluorescent dye at opposite sites to avoid undesired steric hindrance effects. The synthesis of the trifunctional chelate N3-Py-DOTAGA-(tBu)3 (7) involved a five-step synthetic route, followed by conjugation to the linear peptidyl-resin 8 through solid-phase synthesis. After deprotection and cyclization, the near-infrared fluorescent dye sulfo-Cy.5 was introduced using copper free click chemistry, resulting in eTFC-01. Subsequently, eTFC-01 was labeled with [111In]InCl3. In vitro assessments of eTFC-01 binding, uptake, and internalization were conducted in SSTR2-transfected U2OS cells. Ex-vivo biodistribution and fluorescence imaging were performed in H69-tumor bearing mice. RESULTS eTFC-01 demonstrated a two-fold higher IC50 value for SSTR2 compared to the gold standard DOTA-TATE. Labeling of eTFC-01 with [111In]InCl3 gave a high radiochemical yield and purity. The uptake of [111In]In-eTFC-01 in U2OS.SSTR2 cells was two-fold lower than the uptake of [111In]In-DOTA-TATE, consistent with the binding affinity. Tumor uptake in H69-xenografted mice was lower for [111In]In-eTFC-01 at all-time points compared to [111In]In-DOTA-TATE. Prolonged blood circulation led to increased accumulation of [111In]In-eTFC-01 in highly vascularized tissues, such as lungs, skin, and heart. Fluorescence measurements in different organs correlated with the radioactive signal distribution. CONCLUSION The successful synthesis and coupling of the trifunctional chelate to the peptide and fluorescent dye support the potential of this synthetic approach to generate dual labeled tracers. While promising in vitro, the in vivo results obtained with [111In]In-eTFC-01 suggest the need for adjustments to enhance tracer distribution.
Collapse
Affiliation(s)
- Dylan Chapeau
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Savanne Beekman
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Maryana Handula
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Erika Murce
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Corrina de Ridder
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Debra Stuurman
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Yann Seimbille
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
- TRIUMF, Life Sciences Division, Vancouver, Canada.
| |
Collapse
|
26
|
Hajfathalian M, Mossburg KJ, Radaic A, Woo KE, Jonnalagadda P, Kapila Y, Bollyky PL, Cormode DP. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1959. [PMID: 38711134 PMCID: PMC11114100 DOI: 10.1002/wnan.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology. The engineering of targeting abilities through surface modifications involving ligands, antibodies, peptides, and other agents potentiates their effects. Recent years have witnessed the development of innovative structures with diverse compositions, expanding their applications in biomedicine. These applications encompass targeted imaging, surface-enhanced Raman spectroscopy, near-infrared II imaging, catalytic therapy, photothermal therapy, and cancer treatment. This review seeks to provide the nanomedicine community with a thorough and informative overview of the evolving landscape of complex metal nanoparticle research, with a specific emphasis on their roles in imaging, cancer therapy, infectious diseases, and biofilm treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Katherine J. Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Allan Radaic
- School of Dentistry, University of California Los Angeles
| | - Katherine E. Woo
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Pallavi Jonnalagadda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Kapila
- School of Dentistry, University of California Los Angeles
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - David P. Cormode
- Department of Radiology, Department of Bioengineering, University of Pennsylvania
| |
Collapse
|
27
|
Mazevet M, Oberli C, Marinelli S, Zaed I, Bauer S, Kaelin-Lang A, Marchi F, Gardenghi R, Reinert M, Cardia A. Automated online safety margin (GLIOVIS) for glioma surgery model. Front Oncol 2024; 14:1361022. [PMID: 38741783 PMCID: PMC11089175 DOI: 10.3389/fonc.2024.1361022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Purpose Glioblastoma is the most common type of primary brain malignancy and has a poor prognosis. The standard treatment strategy is based on maximal safe surgical resection followed by radiotherapy and chemotherapy. Surgical resection can be optimized by using 5-delta-aminolevulinic acid (5-ALA)-induced fluorescence, which is the current mainstay. Although 5-ALA-induced fluorescence has gained general acceptance, it is also limited by inter-observer variability and non-standardized fluorescence parameters. We present a new software for processing images analysis to better recognize the tumor infiltration margins using an intraoperative immediate safety map of 5-ALA-induced fluorescence. We tested this in a brain model using a commercial surgical exoscope. Methods A dedicated software GLIOVIS (ACQuF-II, Advanced Colorimetry-based Quantification of Fluorescence) was designed for processing analysis of images taken on the Intraoperative Orbital Camera Olympus Orbeye (IOC) to determine the relative quantification of Protoporphyrin IX (5-ALA metabolite) fluorescence. The software allows to superpose the new fluorescence intensity map and the safety margins over the original images. The software was tested on gel-based brain models. Results Two surrogate models were developed: PpIX agarose gel-integrated in gelatin-based brain model at different scales (1:25 and 1:1). The images taken with the IOC were then processed using GLIOVIS. The intensity map and safety margins could be obtained for all available models. Conclusions GLIOVIS for 5-ALA-guided surgery image processing was validated on various gelatin-based brain models. Different levels of fluorescence could be qualitatively digitalized using this technique. These results need to be further confirmed and corroborated in vivo and validated clinically in order to define a new standard of care for glioblastoma resection.
Collapse
Affiliation(s)
- Marianne Mazevet
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland
| | - Christian Oberli
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland
| | - Sebastiano Marinelli
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland
| | - Ismail Zaed
- Department of Neurosurgery, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Stefanie Bauer
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Alain Kaelin-Lang
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Francesco Marchi
- Department of Neurosurgery, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Roberto Gardenghi
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland
| | - Michael Reinert
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Neurosurgery, Hirslanden Neurological and Spinal Surgery Center, St. Anna Clinic, Lucerne, Switzerland
- Department of Neurosurgery, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|
28
|
Banerjee A, Babu R, Jayaraman D, Chilukuri S. Preoperative three-dimensional modelling and virtual reality planning aids nephron sparing surgery in a child with bilateral Wilms tumour. BMJ Case Rep 2024; 17:e260600. [PMID: 38642931 PMCID: PMC11033631 DOI: 10.1136/bcr-2024-260600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024] Open
Abstract
Bilateral Wilms tumour (BWT) is a surgically challenging condition. Virtual reality (VR) reconstruction aids surgeons to foresee the anatomy ahead of Nephron Sparing Surgery (NSS). Three-dimensional (3D) visualisation improves the anatomical orientation of surgeons performing NSS. We herewith report a case of BWT where VR planning and 3D printing were used to aid NSS. Conventional imaging is often found to be inadequate while assessing the tumour-organ-vascular anatomy. Advances like VR and 3D printing help surgeons plan better for complex surgeries like bilateral NSS. Next-generation extended reality tools will likely aid robotic-assisted precision NSS and improve patient outcomes.
Collapse
Affiliation(s)
- Avijit Banerjee
- Urology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Ramesh Babu
- Pediatric Urology, Sri Ramachandra University Medical College, Chennai, India
| | - Dhaarani Jayaraman
- Paediatric Hematology and Oncology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | | |
Collapse
|
29
|
Fujita K, Urano Y. Activity-Based Fluorescence Diagnostics for Cancer. Chem Rev 2024; 124:4021-4078. [PMID: 38518254 DOI: 10.1021/acs.chemrev.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Fluorescence imaging is one of the most promising approaches to achieve intraoperative assessment of the tumor/normal tissue margins during cancer surgery. This is critical to improve the patients' prognosis, and therefore various molecular fluorescence imaging probes have been developed for the identification of cancer lesions during surgery. Among them, "activatable" fluorescence probes that react with cancer-specific biomarker enzymes to generate fluorescence signals have great potential for high-contrast cancer imaging due to their low background fluorescence and high signal amplification by enzymatic turnover. Over the past two decades, activatable fluorescence probes employing various fluorescence control mechanisms have been developed worldwide for this purpose. Furthermore, new biomarker enzymatic activities for specific types of cancers have been identified, enabling visualization of various types of cancers with high sensitivity and specificity. This Review focuses on recent advances in the design, function and characteristics of activatable fluorescence probes that target cancer-specific enzymatic activities for cancer imaging and also discusses future prospects in the field of activity-based diagnostics for cancer.
Collapse
|
30
|
AghaAmiri S, Estrella JS, Vargas SH, Hurd MW, Ghosh SC, Azhdarinia A, Ikoma N. Translational Potential of a Contrast Agent for FGS Applications in pNETs. Mol Imaging Biol 2024; 26:191-194. [PMID: 38267640 PMCID: PMC10973013 DOI: 10.1007/s11307-024-01894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Affiliation(s)
- Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Jeannelyn S Estrella
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Mark W Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sukhen C Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Chen Y, Ma Y, Shi K, Chen H, Han X, Wei C, Lyu Y, Huang Y, Yu R, Song Y, Song Q, Jiang J, Feng J, Lin Y, Chen J, Chen H, Zheng G, Gao X, Jiang G. Self-Disassembling and Oxygen-Generating Porphyrin-Lipoprotein Nanoparticle for Targeted Glioblastoma Resection and Enhanced Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307454. [PMID: 38299428 DOI: 10.1002/adma.202307454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/15/2023] [Indexed: 02/02/2024]
Abstract
The dismal prognosis for glioblastoma multiform (GBM) patients is primarily attributed to the highly invasive tumor residual that remained after surgical intervention. The development of precise intraoperative imaging and postoperative residual removal techniques will facilitate the gross total elimination of GBM. Here, a self-disassembling porphyrin lipoprotein-coated calcium peroxide nanoparticles (PLCNP) is developed to target GBM via macropinocytosis, allowing for fluorescence-guided surgery of GBM and improving photodynamic treatment (PDT) of GBM residual by alleviating hypoxia. By reducing self-quenching and enhancing lysosome escape efficiency, the incorporation of calcium peroxide (CaO2) cores in PLCNP amplifies the fluorescence intensity of porphyrin-lipid. Furthermore, the CaO2 core has diminished tumor hypoxia and improves the PDT efficacy of PLCNP, enabling low-dose PDT and reversing tumor progression induced by hypoxia aggravation following PDT. Taken together, this self-disassembling and oxygen-generating porphyrin-lipoprotein nanoparticle may serve as a promising all-in-one nanotheranostic platform for guiding precise GBM excision and empowering post-operative PDT, providing a clinically applicable strategy to combat GBM in a safe and effective manner.
Collapse
Affiliation(s)
- Yaoxing Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yuxiao Ma
- Brain Injury Centre, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Kexin Shi
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Huan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiao Han
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Chenxuan Wei
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yingqi Lyu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Renhe Yu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yun Song
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jiyao Jiang
- Brain Injury Centre, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Junfeng Feng
- Brain Injury Centre, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Yingying Lin
- Brain Injury Centre, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201210, China
| | - Gang Zheng
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
32
|
Shimizu T, Tanaka S, Kitagawa Y, Sakaguchi Y, Kamiya M, Takayanagi S, Takami H, Urano Y, Saito N. Advancement of fluorescent aminopeptidase probes for rapid cancer detection-current uses and neurosurgical applications. Front Surg 2024; 11:1298709. [PMID: 38516394 PMCID: PMC10954885 DOI: 10.3389/fsurg.2024.1298709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Surgical resection is considered for most brain tumors to obtain tissue diagnosis and to eradicate or debulk the tumor. Glioma, the most common primary malignant brain tumor, generally has a poor prognosis despite the multidisciplinary treatments with radical resection and chemoradiotherapy. Surgical resection of glioma is often complicated by the obscure border between the tumor and the adjacent brain tissues and by the tumor's infiltration into the eloquent brain. 5-aminolevulinic acid is frequently used for tumor visualization, as it exhibits high fluorescence in high-grade glioma. Here, we provide an overview of the fluorescent probes currently used for brain tumors, as well as those under development for other cancers, including HMRG-based probes, 2MeSiR-based probes, and other aminopeptidase probes. We describe our recently developed HMRG-based probes in brain tumors, such as PR-HMRG, combined with the existing diagnosis approach. These probes are remarkably effective for cancer cell recognition. Thus, they can be potentially integrated into surgical treatment for intraoperative detection of cancers.
Collapse
Affiliation(s)
- Takenori Shimizu
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Kitagawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yusuke Sakaguchi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mako Kamiya
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuteru Urano
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Giuliani S, Paraboschi I, McNair A, Smith M, Rankin KS, Elson DS, Paleri V, Leff D, Stasiuk G, Anderson J. Monoclonal Antibodies for Targeted Fluorescence-Guided Surgery: A Review of Applicability across Multiple Solid Tumors. Cancers (Basel) 2024; 16:1045. [PMID: 38473402 DOI: 10.3390/cancers16051045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
This study aims to review the status of the clinical use of monoclonal antibodies (mAbs) that have completed or are in ongoing clinical trials for targeted fluorescence-guided surgery (T-FGS) for the intraoperative identification of the tumor margins of extra-hematological solid tumors. For each of them, the targeted antigen, the mAb generic/commercial name and format, and clinical indications are presented, together with utility, doses, and the timing of administration. Based on the current scientific evidence in humans, the top three mAbs that could be prepared in a GMP-compliant bank ready to be delivered for surgical purposes are proposed to speed up the translation to the operating room and produce a few readily available "off-the-shelf" injectable fluorescent probes for safer and more effective solid tumor resection.
Collapse
Affiliation(s)
- Stefano Giuliani
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK
| | - Irene Paraboschi
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milan, Italy
| | - Angus McNair
- National Institute for Health Research Bristol Biomedical Research Centre, Bristol Centre for Surgical Research, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
- Department of Gastrointestinal Surgery, North Bristol NHS Trust, Bristol BS10 5NB, UK
| | - Myles Smith
- The Sarcoma, Melanoma and Rare Tumours Unit, The Royal Marsden Hospital, Institute Cancer of Research, London SW3 6JJ, UK
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- North of England Bone and Soft Tissue Tumour Service, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Vinidh Paleri
- Head and Neck Unit, The Royal Marsden Hospitals, London SW3 6JJ, UK
| | - Daniel Leff
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Graeme Stasiuk
- Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
34
|
Kedrzycki MS, Chon HTW, Leiloglou M, Chalau V, Leff DR, Elson DS. Fluorescence guided surgery imaging systems for breast cancer identification: a systematic review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:030901. [PMID: 38440101 PMCID: PMC10911048 DOI: 10.1117/1.jbo.29.3.030901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 03/06/2024]
Abstract
Significance Breast-conserving surgery (BCS) is limited by high rates of positive margins and re-operative interventions. Fluorescence-guided surgery seeks to detect the entire lesion in real time, thus guiding the surgeons to remove all the tumor at the index procedure. Aim Our aim was to identify the optimal combination of a camera system and fluorophore for fluorescence-guided BCS. Approach A systematic review of medical databases using the terms "fluorescence," "breast cancer," "surgery," and "fluorescence imaging" was performed. Cameras were compared using the ratio between the fluorescent signal from the tumor compared to background fluorescence, as well as diagnostic accuracy measures, such as sensitivity, specificity, and positive predictive value. Results Twenty-one studies identified 14 camera systems using nine different fluorophores. Twelve cameras worked in the infrared spectrum. Ten studies reported on the difference in strength of the fluorescence signal between cancer and normal tissue, with results ranging from 1.72 to 4.7. In addition, nine studies reported on whether any tumor remained in the resection cavity (5.4% to 32.5%). To date, only three studies used the fluorescent signal for guidance during real BCS. Diagnostic accuracy ranged from 63% to 98% sensitivity, 32% to 97% specificity, and 75% to 100% positive predictive value. Conclusion In this systematic review, all the studies reported a clinically significant difference in signal between the tumor and normal tissue using various camera/fluorophore combinations. However, given the heterogeneity in protocols, including camera setup, fluorophore studied, data acquisition, and reporting structure, it was impossible to determine the optimal camera and fluorophore combination for use in BCS. It would be beneficial to develop a standardized reporting structure using similar metrics to provide necessary data for a comparison between camera systems.
Collapse
Affiliation(s)
- Martha S. Kedrzycki
- Institute of Global Health Innovation, Imperial College London, Hamlyn Centre, London, United Kingdom
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
- Imperial College Healthcare NHS Trust, Department of Breast Surgery, London, United Kingdom
| | - Hazel T. W. Chon
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| | - Maria Leiloglou
- Institute of Global Health Innovation, Imperial College London, Hamlyn Centre, London, United Kingdom
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| | - Vadzim Chalau
- Institute of Global Health Innovation, Imperial College London, Hamlyn Centre, London, United Kingdom
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| | - Daniel R. Leff
- Institute of Global Health Innovation, Imperial College London, Hamlyn Centre, London, United Kingdom
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
- Imperial College Healthcare NHS Trust, Department of Breast Surgery, London, United Kingdom
| | - Daniel S. Elson
- Institute of Global Health Innovation, Imperial College London, Hamlyn Centre, London, United Kingdom
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| |
Collapse
|
35
|
Roschelle M, Rabbani R, Papageorgiou E, Zhang H, Cooperberg M, Stohr BA, Niknejad A, Anwar M. Multicolor fluorescence microscopy for surgical guidance using a chip-scale imager with a low-NA fiber optic plate and a multi-bandpass interference filter. BIOMEDICAL OPTICS EXPRESS 2024; 15:1761-1776. [PMID: 38495694 PMCID: PMC10942699 DOI: 10.1364/boe.509235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/19/2024]
Abstract
In curative-intent cancer surgery, intraoperative fluorescence imaging of both diseased and healthy tissue can help to ensure the successful removal of all gross and microscopic diseases with minimal damage to neighboring critical structures, such as nerves. Current fluorescence-guided surgery (FGS) systems, however, rely on bulky and rigid optics that incur performance-limiting trade-offs between sensitivity and maneuverability. Moreover, many FGS systems are incapable of multiplexed imaging. As a result, clinical FGS is currently limited to millimeter-scale detection of a single fluorescent target. Here, we present a scalable, lens-less fluorescence imaging chip, VISION, capable of sensitive and multiplexed detection within a compact form factor. Central to VISION is a novel optical frontend design combining a low-numerical-aperture fiber optic plate (LNA-FOP) and a multi-bandpass interference filter, which is affixed to a custom CMOS image sensor. The LNA-FOP acts as a planar collimator to improve resolution and compensate for the angle-sensitivity of the interference filter, enabling high-resolution and multiplexed fluorescence imaging without lenses. We show VISION is capable of detecting tumor foci of less than 100 cells at near video framerates and, as proof of principle, can simultaneously visualize both tumors and nerves in ex vivo prostate tissue.
Collapse
Affiliation(s)
- Micah Roschelle
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Rozhan Rabbani
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Efthymios Papageorgiou
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Hui Zhang
- Department of Radiation Oncology, University of California, San Francisco, California 94158, USA
| | - Matthew Cooperberg
- Department of Urology, University of California, San Francisco, California 94158, USA
| | - Bradley A Stohr
- Department of Pathology, University of California, San Francisco, California 94158, USA
| | - Ali Niknejad
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Mekhail Anwar
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
- Department of Radiation Oncology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
36
|
Wongso H, Kurniawan A, Setiadi Y, Kusumaningrum CE, Widyasari EM, Wibawa TH, Mahendra I, Febrian MB, Sriyani ME, Halimah I, Daruwati I, Gunawan R, Achmad A, Nugraha DH, Lesmana R, Nugraha AS. Translocator Protein 18 kDa (TSPO): A Promising Molecular Target for Image-Guided Surgery of Solid Cancers. Adv Pharm Bull 2024; 14:86-104. [PMID: 38585455 PMCID: PMC10997928 DOI: 10.34172/apb.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/26/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
The translocator protein 18-kDa (TSPO) is a mitochondrial membrane protein that is previously identified as the peripheral benzodiazepine receptor (PBR). Furthermore, it plays a significant role in a diverse range of biochemical processes, including steroidogenesis, mitochondrial cholesterol transport, cell survival and death, cell proliferation, and carcinogenesis. Several investigations also reported its roles in various types of cancers, including colorectal, brain, breast, prostate, and lung cancers, as well as melanoma. According to a previous study, the expression of TSPO was upregulated in cancer cells, which corresponds to an aggressive phenotype and/or poor prognosis. Consequently, the potential for crafting diagnostic and prognostic tools with a focus on TSPO holds great potential. In this context, several radioligands designed to target this protein have been identified, and some of the candidates have advanced to clinical trials. In recent years, the use of hybrid probes with radioactive and fluorescence molecules for image-guided surgery has exhibited promising results in animal and human studies. This indicates that the approach can serve as a valuable surgical navigator during cancer surgery. The current hybrid probes are built from various molecular platforms, including small molecules, nanoparticles, and antibodies. Although several TSPO-targeted imaging probes have been developed, their development for image-guided surgery of cancers is still limited. Therefore, this review aims to highlight recent findings on the involvement of TSPO in carcinogenesis, as well as provide a new perspective on the potential application of TSPO-targeted hybrid probes for image-guided surgery.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Yanuar Setiadi
- Research Center for Environmental and Clean Technology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Puspiptek, Banten 15314, Indonesia
| | - Crhisterra E. Kusumaningrum
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Eva M. Widyasari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Teguh H.A. Wibawa
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Muhamad B. Febrian
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Maula E. Sriyani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Iim Halimah
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Isti Daruwati
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Rudi Gunawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Arifudin Achmad
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161
- Oncology and Stem Cells Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161
| | | | - Ronny Lesmana
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Ari S. Nugraha
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember 68121, Indonesia
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
37
|
Roschelle M, Rabbani R, Papageorgiou E, Zhang H, Cooperberg M, Stohr BA, Niknejad A, Anwar M. Multicolor fluorescence microscopy for surgical guidance using a chip-scale imager with a low-NA fiber optic plate and a multi-bandpass interference filter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562247. [PMID: 37904924 PMCID: PMC10614810 DOI: 10.1101/2023.10.16.562247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
In curative-intent cancer surgery, intraoperative fluorescence imaging of both diseased and healthy tissue can help to ensure successful removal of all gross and microscopic disease with minimal damage to neighboring critical structures, such as nerves. Current fluorescence-guided surgery (FGS) systems, however, rely on bulky and rigid optics that incur performance-limiting trade-offs between sensitivity and maneuverability. Moreover, many FGS systems are incapable of multiplexed imaging. As a result, clinical FGS is currently limited to millimeter-scale detection of a single fluorescent target. Here we present a scalable, lens-less fluorescence imaging chip, VISION, capable of sensitive and multiplexed detection within a compact form factor. Central to VISION is a novel optical frontend design combining a low-numerical-aperture fiber optic plate (LNA-FOP) and a multi-bandpass interference filter, which is affixed to a custom CMOS image sensor. The LNA-FOP acts as a planar collimator to improve resolution and compensate for the angle-sensitivity of the interference filter, enabling high-resolution and multiplexed fluorescence imaging without lenses. We show VISION is capable of detecting tumor foci of less than 100 cells at near video framerates and, as proof of principle, can simultaneously visualize both tumor and nerves in ex vivo prostate tissue.
Collapse
|
38
|
Brollo PP, Bresadola V. Enhancing visualization and guidance in general surgery: a comprehensive and narrative review of the current cutting-edge technologies and future perspectives. J Gastrointest Surg 2024; 28:179-185. [PMID: 38445941 DOI: 10.1016/j.gassur.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 03/07/2024]
Abstract
BACKGROUND In the last decade, there has been a great effort in developing new technologies to enhance surgical visualization and guidance. This comprehensive and narrative review aimed to provide a wide and extensive overview of the current state of the art on this topic and their near-future perspectives linked to the development of artificial intelligence (AI), by focusing on the most recent and relevant literature. METHODS A comprehensive and narrative review of the literature was performed by searching specific terms on PubMed/MEDLINE, Scopus, and Embase databases, assessing the current state of the art on this topic. RESULTS Fluorescence-guided surgery, contrast-enhanced ultrasound (CEUS), ultra-high frequency ultrasound (UHFUS), photoacoustic imaging (PAI), and augmented reality (AR) are boosting the field of image-guided techniques as the rapid development of AI in surgery is promising a more automated decision-making and surgical movements in the operating room. CONCLUSION Fluorescence-guided surgery, CEUS, UHFUS, PAI, and AR are becoming crucial to give surgeons a new level of information during the intervention, with the right timing and sequence, and represent the future of surgery. As many more controlled studies are needed to validate the employment of these technologies, the next generation of surgeons must become more familiar with the basics of AI to better incorporate new tools into the daily surgical practice of the future.
Collapse
Affiliation(s)
- Pier Paolo Brollo
- Department of Medicine, General Surgery Department and Simulation Center, Academic Hospital of Udine, University of Udine, Udine, Italy; General Surgical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico Centro di Riferimento Oncologico di Aviano (Istituto Nazionale Tumori), Aviano, Italy.
| | - Vittorio Bresadola
- Department of Medicine, General Surgery Department and Simulation Center, Academic Hospital of Udine, University of Udine, Udine, Italy
| |
Collapse
|
39
|
Kravchenko Y, Sikora K, Wireko AA, Lyndin M. Fluorescence visualization for cancer DETECTION: EXPERIENCE and perspectives. Heliyon 2024; 10:e24390. [PMID: 38293525 PMCID: PMC10827512 DOI: 10.1016/j.heliyon.2024.e24390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The current review focuses on the latest advances in the improvement and application of fluorescence imaging technology. Near-infrared (NIR) fluorescence imaging is a promising new technique that uses non-specific fluorescent agents and targeted fluorescent tracers combined with a dedicated camera to better navigate and visualize tumors. Fluorescence-guided surgery (FGS) is used to perform various tasks, helping the surgeon to distinguish lymphatic vessels and nodes from surrounding tissues easily and quickly assess the perfusion of the planned resection area, including intraoperative visualization of metastases. The results of the insertion of fluorescence visualization as an auxiliary method to cancer detection and high-risk metastatic lesions in clinical practice have demonstrated enthusiastic results and huge potential. However, intraoperative fluorescence visualization must not be considered as a main diagnostic or treatment method but as an aid to the surgeon. Thus, fluorescence study does not dispense the diagnostic gold standards of benign or malignant tumors (conventional examination, biopsy, ultrasonography and computed tomography, etc.) and can be done usually during intraoperative treatment. Moreover, as fluorescence surgery and fluorescence diagnostic techniques continue to improve, it is likely that they will evolve towards targeted fluorescence imaging probes that will increasingly target a specific type of cancer cell. The most important point remains the search for highly selective messengers of fluorescent labels, which make it possible to identify tumor cells exclusively in the affected organs and indicate to surgeons the boundaries of their spread and metastasis.
Collapse
Affiliation(s)
- Yaroslav Kravchenko
- Sumy State University, Sumy, Ukraine
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan, Poland
| | | | | | - Mykola Lyndin
- Sumy State University, Sumy, Ukraine
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, 45147, Germany
| |
Collapse
|
40
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
41
|
Mc Larney B, Sonay A, Apfelbaum E, Mostafa N, Monette S, Goerzen D, Aguirre N, Isaac E, Phung N, Skubal M, Kim M, Ogirala A, Veach D, Heller D, Grimm J. A pan-cancer agent for screening, resection and wound monitoring via NIR and SWIR imaging. RESEARCH SQUARE 2024:rs.3.rs-3879635. [PMID: 38343820 PMCID: PMC10854300 DOI: 10.21203/rs.3.rs-3879635/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Fluorescence guided surgery (FGS) facilitates real time tumor delineation and is being rapidly established clinically. FGS efficacy is tied to the utilized dye and provided tumor contrast over healthy tissue. Apoptosis, a cancer hallmark, is a desirable target for tumor delineation. Here, we preclinically in vitro and in vivo, validate an apoptosis sensitive commercial carbocyanine dye (CJ215), with absorption and emission spectra suitable for near infrared (NIR, 650-900nm) and shortwave infrared (SWIR, 900-1700nm) fluorescence imaging (NIRFI, SWIRFI). High contrast SWIRFI for solid tumor delineation is demonstrated in multiple murine and human models including breast, prostate, colon, fibrosarcoma and intraperitoneal colorectal metastasis. Organ necropsy and imaging highlighted renal clearance of CJ215. SWIRFI and CJ215 delineated all tumors under ambient lighting with a tumor-to-muscle ratio up to 100 and tumor-to-liver ratio up to 18, from 24 to 168 h post intravenous injection with minimal uptake in healthy organs. Additionally, SWIRFI and CJ215 achieved non-contact quantifiable wound monitoring through commercial bandages. CJ215 provides tumor screening, guided resection, and wound healing assessment compatible with existing and emerging clinical solutions.
Collapse
Affiliation(s)
| | - Ali Sonay
- Memorial Sloan Kettering Cancer Center
| | | | | | | | | | | | | | | | | | - Mijin Kim
- Memorial Sloan Kettering Cancer Center
| | | | | | | | - Jan Grimm
- Memorial Sloan Kettering Cancer Center
| |
Collapse
|
42
|
Saad M, Grimaldo-Garcia S, Sweeney A, Mallidi S, Hasan T. Dual-Function Antibody Conjugate-Enabled Photoimmunotherapy Complements Fluorescence and Photoacoustic Imaging of Head and Neck Cancer Spheroids. Bioconjug Chem 2024; 35:51-63. [PMID: 38128912 PMCID: PMC10797594 DOI: 10.1021/acs.bioconjchem.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
Several molecular-targeted imaging and therapeutic agents are in clinical trials for image-guided surgery and photoimmunotherapy (PIT) for head and neck cancers. In this context, we have previously reported the development, characterization, and specificity of a dual-function antibody conjugate (DFAC) for multimodal imaging and photoimmunotherapy (PIT) of EGFR-overexpressing cancer cells. The DFAC reported previously and used in the present study comprises an EGFR-targeted antibody, cetuximab, conjugated to benzoporphyrin derivative (BPD) for fluorescence imaging and PIT and a Si-centered naphthalocyanine dye for photoacoustic imaging. We report here the evaluation and performance of DFAC in detecting microscopic cancer spheroids by fluorescence and photoacoustic imaging along with their treatment by PIT. We demonstrate that while fluorescence imaging can detect spheroids with volumes greater than 0.049 mm3, photoacoustic imaging-based detection was possible even for the smallest spheroids (0.01 mm3) developed in the study. When subjected to PIT, the spheroids showed a dose-dependent response, with smaller spheroids (0.01 and 0.018 mm3) showing a complete response with no recurrence when treated with 100 J/cm2. Together our results demonstrate the complementary imaging and treatment capacity of DFAC. This potentially enables fluorescence imaging to assess the presence of tumor on a macroscopic scale, followed by photoacoustic imaging for delineating tumor margins guiding surgical resection and elimination of any residual microscopic disease by PIT, in a single intraoperative setting.
Collapse
Affiliation(s)
- Mohammad
A. Saad
- Massachusetts
General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114, United States
| | | | - Allison Sweeney
- Department
of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, Massachusetts 02155, United States
| | - Srivalleesha Mallidi
- Massachusetts
General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114, United States
- Department
of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, Massachusetts 02155, United States
| | - Tayyaba Hasan
- Massachusetts
General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114, United States
- Division
of Health Sciences and Technology, Harvard
University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Zhou K, Zhou S, Du L, Liu E, Dong H, Ma F, Sun Y, Li Y. Safety and effectiveness of indocyanine green fluorescence imaging-guided laparoscopic hepatectomy for hepatic tumor: a systematic review and meta-analysis. Front Oncol 2024; 13:1309593. [PMID: 38234399 PMCID: PMC10791760 DOI: 10.3389/fonc.2023.1309593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Previous clinical investigations have reported inconsistent findings regarding the feasibility of utilizing indocyanine green fluorescence imaging (ICGFI) in laparoscopic liver tumor removal. This meta-analysis aims to comprehensively evaluate the safety and effectiveness of ICGFI in laparoscopic hepatectomy (LH). Methods A systematic search of pertinent clinical studies published before January 30th, 2023 was conducted in databases including PubMed, Embase, Cochrane, and Web of Science. The search strategy encompassed key terms such as "indocyanine green fluorescence," "ICG fluorescence," "laparoscopic hepatectomy," "hepatectomies," "liver Neoplasms," "hepatic cancer," and "liver tumor." Additionally, we scrutinized the reference lists of included articles to identify supplementary studies. we assessed the quality of the incorporated studies and extracted clinical data. Meta-analysis was performed using STATA v.17.0 software. Either a fixed-effects or a random-effects model was employed to compute combined effect sizes, accompanied by 95% confidence intervals (CIs), based on varying levels of heterogeneity. Results This meta-analysis encompassed eleven retrospective cohort studies, involving 959 patients in total. Our findings revealed that, in comparison to conventional laparoscopic hepatectomy, patients receiving ICGFI-guided LH exhibited a higher R0 resection rate (OR: 3.96, 95% CI: 1.28, 12.25, I2 = 0.00%, P = 0.778) and a diminished incidence of intraoperative blood transfusion (OR: 0.42, 95% CI: 0.22, 0.81, I 2 = 51.1%, P = 0.056). Additionally, they experienced shorter postoperative hospital stays (WMD: -1.07, 95% CI: -2.00, -0.14, I 2 = 85.1%, P = 0.000). No statistically significant differences emerged between patients receiving ICGFI-guided LH vs. those undergoing conventional LH in terms of minimal margin width and postoperative complications. Conclusion ICGFI-guided LH demonstrates marked superiority over conventional laparoscopic liver tumor resection in achieving R0 resection and reducing intraoperative blood transfusion rates. This technique appears to hold substantial promise. Nonetheless, further studies are needed to explore potential long-term benefits associated with patients undergoing ICGFI-guided LH. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD 42023398195.
Collapse
Affiliation(s)
- Kan Zhou
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, Shaanxi, China
| | - Shumin Zhou
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lei Du
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, Shaanxi, China
| | - Erpeng Liu
- Clinical Medical College, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Hao Dong
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, Shaanxi, China
| | - Fuping Ma
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, Shaanxi, China
| | - Yali Sun
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, Shaanxi, China
| | - Ying Li
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, Shaanxi, China
| |
Collapse
|
44
|
Alafeef M, Srivastava I, Aditya T, Pan D. Carbon Dots: From Synthesis to Unraveling the Fluorescence Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303937. [PMID: 37715112 DOI: 10.1002/smll.202303937] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Carbon dots (CDs) being a new type of carbon-based nanomaterial have attracted intensive interest from researchers owing to their excellent biophysical properties. CDs are a class of fluorescent carbon nanomaterials that have emerged as a promising alternative to traditional quantum dots and organic dyes in applications including bioimaging, sensing, and optoelectronics. CDs possess unique optical properties, such as tunable emission, facile synthesis, and low toxicity, making them attractive for many applications in biology, medicine, and environmental areas. The synthesis of CDs is achievable by a variety of methods, including bottom-up and top-down approaches, involving the use of different carbon sources and surface functionalization strategies. However, understanding the fluorescence mechanism of CDs remains a challenge. Various mechanistic models have been proposed to explain their origin of luminescence. This review summarizes the recent developments in the synthesis and functionalization of CDs and provides an overview of the current understanding of the fluorescence mechanism.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering Department, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Indrajit Srivastava
- Bioengineering Department, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Teresa Aditya
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Dipanjan Pan
- Bioengineering Department, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| |
Collapse
|
45
|
Kotelnikova PA, Shipunova VO, Deyev SM. Targeted PLGA-Chitosan Nanoparticles for NIR-Triggered Phototherapy and Imaging of HER2-Positive Tumors. Pharmaceutics 2023; 16:9. [PMID: 38276487 PMCID: PMC10819332 DOI: 10.3390/pharmaceutics16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 01/27/2024] Open
Abstract
Targeted medicine uses the distinctive features of cancer cells to find and destroy tumors. We present human epidermal growth factor receptor 2 (HER2)-targeted PLGA-chitosan nanoparticles for cancer therapy and visualization. Loading with two near-infrared (NIR) dyes provides imaging in the NIR transparency window and phototherapy triggered by 808 nm light. Nile Blue (NB) is a biocompatible solvatochromic NIR dye that serves as an imaging agent. Laser irradiation of IR-780 dye leads to a temperature rise and the generation of reactive oxygen species (ROS). Resonance energy transfer between two dyes allows visualization of tumors in a wide range of visible and IR wavelengths. The combination of two NIR dyes enables the use of nanoparticles for diagnostics only or theranostics. Modification of poly(lactic-co-glycolic acid) (PLGA)-chitosan nanoparticles with trastuzumab provides an efficient nanoparticle uptake by tumor cells and promotes more than sixfold specificity towards HER2-positive cells, leading to a synergistic anticancer effect. We demonstrate optical imaging of the HER2-positive mouse mammary tumor and tumor-specific accumulation of PLGA-IR-780-NB nanoparticles in vivo after intravenous administration. We managed to achieve almost complete suppression of the proliferative activity of cells in vitro by irradiation with an 808 nm laser with a power of 0.27 W for 1 min at a concentration at which nanoparticles are nontoxic to cells in the dark.
Collapse
Affiliation(s)
- Polina A. Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Victoria O. Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
46
|
Albalkhi I, Shafqat A, Bin-Alamer O, Abou Al-Shaar AR, Mallela AN, Fernández-de Thomas RJ, Zinn PO, Gerszten PC, Hadjipanayis CG, Abou-Al-Shaar H. Fluorescence-guided resection of intradural spinal tumors: a systematic review and meta-analysis. Neurosurg Rev 2023; 47:10. [PMID: 38085385 DOI: 10.1007/s10143-023-02230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023]
Abstract
Intradural spinal tumors present significant challenges due to involvement of critical motor and sensory tracts. Achieving maximal resection while preserving functional tissue is therefore crucial. Fluorescence-guided surgery aims to improve resection accuracy and is well studied for brain tumors, but its efficacy has not been fully assessed for spinal tumors. This meta-analysis aims to delineate the efficacy of fluorescence guidance in intradural spinal tumor resection. The authors performed a systematic review in four databases. We included studies that have utilized fluorescence agents, 5-aminolevulinic acid (5-ALA) or sodium fluorescein, for the resection of intradural spinal tumors. A meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A total of 12 studies involving 552 patients undergoing fluorescence-guided intradural spinal tumor resection were included. Meningiomas demonstrated a 98% fluorescence rate and were associated with a homogenous florescence pattern; however, astrocytomas had variable fluorescence rate with pooled proportion of 70%. There was no significant difference in gross total resection (GTR) rates between fluorescein and 5-ALA (94% vs 84%, p = .22). Pre-operative contrast enhancement was significantly associated with intraoperative fluorescence with fluorescein. Intramedullary tumors with positive intraoperative fluorescence were significantly associated with higher GTR rates (96% vs 73%, p = .03). Utilizing fluorescence guidance during intradural spinal tumor resection holds promise of improving intraoperative visualization for specific intradural spinal tumors. Meningiomas and ependymomas have the highest fluorescence rates especially with sodium fluorescein; on the other hand, astrocytomas have variable fluorescence rates with no superiority of either agent. Positive fluorescence of intramedullary tumors is associated with a higher degree of resection.
Collapse
Affiliation(s)
- Ibrahem Albalkhi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Othman Bin-Alamer
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Arka N Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Pascal O Zinn
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
47
|
Thapa P, Bhatt S, Mishra D, Mehta DS. Effect of fluorescein dye concentration in oral cancer tissue: Statistical and spectroscopic analysis. Photodiagnosis Photodyn Ther 2023; 44:103889. [PMID: 37949386 DOI: 10.1016/j.pdpdt.2023.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Oral cancer screening with exogenous agents is highly demanding due to high sensitivity, as the early diagnosis plays a vital role in achieving favorable outcomes for oral squamous cell carcinomas (OSCC) by facilitating prompt detection and comprehensive surgical removal. Optical techniques utilizing the local application of fluorescein dye or fluorescence-guided surgery offer potential for early OSCC detection. The use of fluorescein dye in oral cancer is significantly less, and there is a need to inspect the local application of fluorescein dye in oral cancer patients. Concentration-based investigations of the dye with OSCC patients are essential to ensure accurate fluorescence-guided surgery and screening with fluorescein labeling and to mitigate possible adverse effects. Additionally, analyzing the dye distribution within OSCC tissues can provide insights into their heterogeneity, a critical indicator of malignancy. The present study includes a concentration-based statistical and spectroscopic analysis of fluorescein dye in ex-vivo and in-vivo OSCC patients. In the ex-vivo examination of OSCC tissues, five concentrations (18.66 ± 0.06, 9.51 ± 0.02, 6.38 ± 0.01, 4.80 ± 0.004, and 3.85 ± 0.002 millimolar) are employed for optical analysis. The ex-vivo OSCC tissues are analyzed for multiple statistical parameters at all concentrations, and the results are thoroughly described. Additionally, spectroscopic analysis is conducted on all concentrations for a comprehensive evaluation. Following optical analysis of all five concentrations in the ex-vivo study, two concentrations, 6.38 ± 0.01 and 4.80 ± 0.004 millimolar, are identified as suitable for conducting in-vivo investigations of oral cancer. A detailed spectroscopic and statistical study of OSCC tissues in-vivo has been done using these two concentrations.
Collapse
Affiliation(s)
- Pramila Thapa
- Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| | - Sunil Bhatt
- Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| | - Deepika Mishra
- Department of Oral Pathology and Microbiology, Center for Dental Education & Research, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Dalip Singh Mehta
- Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India.
| |
Collapse
|
48
|
Vivier D, Hautière M, Pineau D, Dancer PA, Herbet A, Hugnot JP, Bernhard C, Goncalves V, Truillet C, Boquet D, Denat F. Synthesis and Preclinical Fluorescence Imaging of Dually Functionalized Antibody Conjugates Targeting Endothelin Receptor-Positive Tumors. Bioconjug Chem 2023; 34:2144-2153. [PMID: 37931154 DOI: 10.1021/acs.bioconjchem.3c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
For the past two decades, the emerging role of the endothelin (ET) axis in cancer has been extensively investigated, and its involvement in several mechanisms described as "hallmarks of cancer" has clearly highlighted its potential as a therapeutic target. Despite the growing interest in finding effective anticancer drugs, no breakthrough treatment has successfully made its way to the market. Recently, our team reported the development of a new immuno-positron emission tomography probe targeting the ET A receptor (ETA, one of the ET receptors) that allows the successful detection of ETA+ glioblastoma, paving the way for the elaboration of novel antibody-based strategies. In this study, we describe the synthesis of two PET/NIRF (positron emission tomography/near-infrared fluorescence) dually functionalized imaging agents, directed against ETA or ETB, that could be used to detect ET+ tumors and select patients that will be eligible for fluorescence-guided surgery. Both imaging modalities were brought together using a highly versatile tetrazine platform bearing the IRDye800CW fluorophore and desferrioxamine for 89Zr chelation. This so-called monomolecular multimodal imaging probe was then "clicked", via an inverse-electron-demand Diels-Alder reaction, to antibodies conjugated site-specifically with a trans-cyclooctene group. This approach has led to homogeneous and well-defined constructs that retained their high affinity and high specificity for their respective target, as shown by flow cytometry and NIRF in vivo imaging experiments in nude mice bearing CHO-ETA and CHO-ETB tumors. Ultimately, these bimodal immunoconjugates could be used to improve the outcomes of patients with ET+ tumors.
Collapse
Affiliation(s)
- Delphine Vivier
- Université de Bourgogne, ICMUB UMR CNRS 6302, 21000 Dijon, France
| | - Marie Hautière
- Université Paris-Saclay, CEA, DMTS, SPI, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401 Orsay, France
| | - Donovan Pineau
- Université de Montpellier, IGF, INSERM U 1191-CNRS UMR 5203, 34094 Montpellier, France
| | | | - Amaury Herbet
- Université Paris-Saclay, CEA, DMTS, SPI, 91191 Gif-sur-Yvette, France
| | - Jean-Philippe Hugnot
- Université de Montpellier, IGF, INSERM U 1191-CNRS UMR 5203, 34094 Montpellier, France
| | - Claire Bernhard
- Université de Bourgogne, ICMUB UMR CNRS 6302, 21000 Dijon, France
| | - Victor Goncalves
- Université de Bourgogne, ICMUB UMR CNRS 6302, 21000 Dijon, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401 Orsay, France
| | - Didier Boquet
- Université Paris-Saclay, CEA, DMTS, SPI, 91191 Gif-sur-Yvette, France
| | - Franck Denat
- Université de Bourgogne, ICMUB UMR CNRS 6302, 21000 Dijon, France
| |
Collapse
|
49
|
Yang J, Qu J, Teng X, Zhu W, Xu Y, Yang Y, Qian X. Tumor Microenvironment-Responsive Hydrogel for Direct Extracellular ATP Imaging-Guided Surgical Resection with Clear Boundaries. Adv Healthc Mater 2023; 12:e2301084. [PMID: 37219912 DOI: 10.1002/adhm.202301084] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/20/2023] [Indexed: 05/24/2023]
Abstract
Most solid tumors are clinically treated using surgical resection, and the presence of residual tumor tissues at the surgical margins often determines tumor survival and recurrence. Herein, a hydrogel (Apt-HEX/Cp-BHQ1 Gel, termed AHB Gel) is developed for fluorescence-guided surgical resection. AHB Gel is constructed by tethering a polyacrylamide hydrogel and ATP-responsive aptamers together. It exhibits strong fluorescence under high ATP concentrations corresponding to the TME (100-500 µm) but shows little fluorescence at low ATP concentrations (10-100 nm) such as those in normal tissues. AHB Gel can rapidly (within 3 min) emit fluorescence after exposure to ATP, and the fluorescence signal only occurs at sites exposed to high ATP, resulting in a clear boundary between the ATP-high and ATP-low regions. In vivo, AHB Gel exhibits specific tumor-targeting capacity with no fluorescence response in normal tissue, providing clear tumor boundaries. In addition, AHB Gel has good storage stability, which is conducive to its future clinical application. In summary, AHB Gel is a novel tumor microenvironment-targeted DNA-hybrid hydrogel for ATP-based fluorescence imaging. It can enable the precise imaging of tumor tissues, showing promising application in fluorescence-guided surgeries in the future.
Collapse
Affiliation(s)
- Jingyi Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiahao Qu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xuanming Teng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Weiping Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, P. R. China
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
50
|
Wongso H, Kurniawan A, Forentin AM, Susilo VY, Setiadi Y, Mahendra I, Febrian MB, Rosdianto AM, Setiawan I, Goenawan H, Susianti S, Supratman U, Widyasari EM, Wibawa TH, Sriyani ME, Halimah I, Lesmana R. New hybrid radio-fluorescent probes [ 131I]-BPF-01 and [ 131I]-BPF-02 for visualisation of cancer cells: Synthesis and preliminary in vitro and ex vivo evaluations. Heliyon 2023; 9:e20710. [PMID: 37860547 PMCID: PMC10582398 DOI: 10.1016/j.heliyon.2023.e20710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
We synthesised and biologically evaluated two new hybrid probes [131I]BPF-01 and [131I]BPF-02 which were built from three structural entities: benzothiazole-phenyl, fluorescein isothiocyanate (FITC), and iodine-131. These probes were designed for potential applications in assisting surgical procedures of solid cancers. The cytotoxicity study demonstrated that fluorescent probes BPF-01 (31.23 μg/mL) and BPF-02 (250 μg/mL) were relatively not toxic to normal immortalized human keratinocytes (HaCaT) cells, as indicated by the percentage of cell survival above 50 %. Furthermore, both probes displayed low to moderate anticancer activity against the breast cancer cells (MDA-MB-231) and prostate cancer cells (LNCaP and DU-145). The probe BPF-01 apparently showed an accumulation in the tumour tissues, as suggested by ex vivo fluorescence examinations. In addition, the cellular uptake study suggests that hybrid probe [131I]-BPF-01 was potentially accumulated in the MCF-7 cell line with the highest uptake of 16.11 ± 1.52 % after 2 h of incubation, approximately 50-fold higher than the accumulation of iodine-131 (control). The magnetic bead assay suggests that [131I]-BPF-02 and [131I]-BPF-02 showed a promising capability to interact with translocator protein 18 kDa (TSPO). Moreover, the computational data showed that the binding scores for ligands 7-8, BPF-01 and BPF-02, and [131I]-BPF-01 and [131I]-BPF-02 in the TSPO were considerably high. Accordingly, fluorescent probes BPF-01 and BPF-02, and hybrid probes [131I]BPF-01 and [131I]BPF-02 can be further developed for targeting cancer cells during intraoperative tumour surgery.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Alfian M. Forentin
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Veronika Y. Susilo
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Yanuar Setiadi
- Research Center for Environmental and Clean Technology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Muhamad B. Febrian
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Aziiz M. Rosdianto
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Iwan Setiawan
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Susianti Susianti
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Unang Supratman
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Eva M. Widyasari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Teguh H.A. Wibawa
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Maula E. Sriyani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Iim Halimah
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|