1
|
Andrade DLLS, Pintarelli GB, Rosa JV, Paro IB, Pagano PJT, Silva JCN, Suzuki DOH. Musa acuminata as electroporation model. Bioelectrochemistry 2023; 154:108549. [PMID: 37639773 DOI: 10.1016/j.bioelechem.2023.108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Electrochemotherapy (ECT) and Irreversible electroporation (IRE) are cancer treatments based on electric field distribution in tissues. Solanum tuberosum (potato tissue) phantom is known to mimic changes in the electrical conductivity that occur in animal tissues during electroporation (EP). Electric field distribution is assessed through enzymatic staining. However, the 24-h wait for this assessment could slow agile response scenarios. We developed and validated the Musa acuminata (cavendish banana) conductivity model, which quickly evaluates EP by tissue staining. We investigated the frequency response of the tissue using impedance spectroscopy analysis, conductivity changes, and enzymatic staining. We optimized three usual EP models: adapted Gompertz, smoothed Heaviside, and the sigmoid or logistic function. We found dielectric parameters in banana tissue similar to those in potato (electrical conductivity of 0.035 S/m and relative permittivity of 4.1×104). The coefficients of determination R2 were 99.94% (Gompertz), 99.85% (Heaviside), and 99.58% (sigmoid). The sigmoid and Heaviside functions described the calibration and validation electric currents with 95% confidence. We observed the electroporated areas in bananas 3h30m after EP. Staining was significant after 450 V/cm. The conductivity model of Musa acuminata suits treatment planning, hardware development, and training scenarios. Banana phantom supports the 3Rs practice and is a reliable alternative for potato in EP studies.
Collapse
Affiliation(s)
- Daniella L L S Andrade
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme B Pintarelli
- Department of Control and Automation Engineering, Federal University of Santa Catarina, Blumenau, SC, Brazil
| | - Juliana V Rosa
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Isabela B Paro
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Pedro J T Pagano
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Julia C N Silva
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Daniela O H Suzuki
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
2
|
Fu Y, Sun J, Wang Y, Li W. Glucose oxidase and metal catalysts combined tumor synergistic therapy: mechanism, advance and nanodelivery system. J Nanobiotechnology 2023; 21:400. [PMID: 37907972 PMCID: PMC10617118 DOI: 10.1186/s12951-023-02158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer has always posed a significant threat to human health, prompting extensive research into new treatment strategies due to the limitations of traditional therapies. Starvation therapy (ST) has garnered considerable attention by targeting the primary energy source, glucose, utilized by cancer cells for proliferation. Glucose oxidase (GOx), a catalyst facilitating glucose consumption, has emerged as a critical therapeutic agent for ST. However, mono ST alone struggles to completely suppress tumor growth, necessitating the development of synergistic therapy approaches. Metal catalysts possess enzyme-like functions and can serve as carriers, capable of combining with GOx to achieve diverse tumor treatments. However, ensuring enzyme activity preservation in normal tissue and activation specifically within tumors presents a crucial challenge. Nanodelivery systems offer the potential to enhance therapy effectiveness by improving the stability of therapeutic agents and enabling controlled release. This review primarily focuses on recent advances in the mechanism of GOx combined with metal catalysts for synergistic tumor therapy. Furthermore, it discusses various nanoparticles (NPs) constructs designed for synergistic therapy in different carrier categories. Finally, this review provides a summary of GOx-metal catalyst-based NPs (G-M) and offers insights into the challenges associated with G-M therapy, delivery design, and oxygen (O2) supply.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jialin Sun
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Biological Science and Technology Department, Heilongjiang Minzu College, Harbin, Heilongjiang Province, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| |
Collapse
|
3
|
Lv Y, Liu H, Feng Z, Zhang J, Chen G, Yao C. The Enlargement of Ablation Area by Electrolytic Irreversible Electroporation (E-IRE) Using Pulsed Field with Bias DC Field. Ann Biomed Eng 2022; 50:1964-1973. [PMID: 35852648 DOI: 10.1007/s10439-022-03017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/07/2022] [Indexed: 12/30/2022]
Abstract
Irreversible electroporation (IRE) by high-strength electric pulses is a biomedical technique that has been effectively used for minimally invasive tumor therapy while maintaining the functionality of adjacent important tissues, such as blood vessels and nerves. In general, pulse delivery using needle electrodes can create a reversible electroporation region beyond both the ablation area and the vicinity of the needle electrodes, limiting enlargement of the ablation area. Electrochemical therapy (EChT) can also be used to ablate a tumor near electrodes by electrolysis using a direct field with a constant current or voltage (DC field). Recently, reversible electroporated cells have been shown to be susceptible to electrolysis at relatively low doses. Reversible electroporation can also be combined with electrolysis for tissue ablation. Therefore, the objective of this study is to use electrolysis to remove the reversible electroporation area and thereby enlarge the ablation area in potato slices in vitro using a pulsed field with a bias DC field (constant voltage). We call this protocol electrolytic irreversible electroporation (E-IRE). The area over which the electrolytic effect induced a pH change was also measured. The results show that decreasing the pulse frequency using IRE alone is found to enlarge the ablation area. The ablation area generated by E-IRE is significantly larger than that generated by using IRE or EChT alone. The ablation area generated by E-IRE at 1 Hz is 109.5% larger than that generated by IRE, showing that the reversible electroporation region is transformed into an ablation region by electrolysis. The area with a pH change produced by E-IRE is larger than that produced by EChT alone. Decreasing the pulse frequency in the E-IRE protocol can further enlarge the ablation area. The results of this study are a preliminary indication that the E-IRE protocol can effectively enlarge the ablation area and enhance the efficacy of traditional IRE for use in ablating large tumors.
Collapse
Affiliation(s)
- Yanpeng Lv
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Heqing Liu
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhikui Feng
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianhua Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Genyong Chen
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenguo Yao
- School of Electrical Engineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
4
|
Andrade DLLS, Guedert R, Pintarelli GB, Rangel MMM, Oliveira KD, Quadros PG, Suzuki DOH. Electrochemotherapy treatment safety under parallel needle deflection. Sci Rep 2022; 12:2766. [PMID: 35177779 PMCID: PMC8854592 DOI: 10.1038/s41598-022-06747-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Electrochemotherapy is a selective electrical-based cancer treatment. A thriving treatment depends on the local electric field generated by pairs of electrodes. Electrode damage as deflection can directly affect this treatment pillar, the distribution of the electric field. Mechanical deformations such as tip misshaping and needle deflection are reported with needle electrode reusing in veterinary electrochemotherapy. We performed in vitro and in silico experiments to evaluate potential problems with ESOPE type II electrode deflection and potential treatment pitfalls. We also investigated the extent to which the electric currents of the electroporation model can describe deflection failure by comparing in vitro with the in silico model of potato tuber (Solanum tuberosum). The in silico model was also performed with the tumor electroporation model, which is more conductive than the vegetal model. We do not recommend using deflected electrodes. We have found that a deflection of ± 2 mm is unsafe for treatment. Inward deflection can cause dangerous electrical current levels when treating a tumor and cannot be described with the in silico vegetal model. Outward deflection can cause blind spots in the electric field.
Collapse
Affiliation(s)
- Daniella L L S Andrade
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Raul Guedert
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Guilherme B Pintarelli
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | | | | | | | - Daniela O H Suzuki
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.
| |
Collapse
|
5
|
Goris NAV, Rodríguez JLG, González MM, Borges BO, Morales DF, Calzado EM, Castañeda ARS, Torres LM, Montijano JI, González VGS, Pérez DJ, Posada OO, Martínez JA, Delgado AG, Martínez KG, Mon ML, Monzón KL, Ciria HMC, Cabrales LEB. Efficacy of direct current generated by multiple-electrode arrays on F3II mammary carcinoma: experiment and mathematical modeling. J Transl Med 2020; 18:190. [PMID: 32381006 PMCID: PMC7206687 DOI: 10.1186/s12967-020-02352-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/25/2020] [Indexed: 11/29/2022] Open
Abstract
Background The modified Gompertz equation has been proposed to fit experimental data for direct current treated tumors when multiple-straight needle electrodes are individually inserted into the base perpendicular to the tumor long axis. The aim of this work is to evaluate the efficacy of direct current generated by multiple-electrode arrays on F3II mammary carcinoma that grow in the male and female BALB/c/Cenp mice, when multiple-straight needle electrodes and multiple-pairs of electrodes are inserted in the tumor. Methods A longitudinal and retrospective preclinical study was carried out. Male and female BALB/c/Cenp mice, the modified Gompertz equation, intensities (2, 6 and 10 mA) and exposure times (10 and 20 min) of direct current, and three geometries of multiple-electrodes (one formed by collinear electrodes and two by pair-electrodes) were used. Tumor volume and mice weight were measured. In addition, the mean tumor doubling time, tumor regression percentage, tumor growth delay, direct current overall effectiveness and mice survival were calculated. Results The greatest growth retardation, mean doubling time, regression percentage and growth delay of the primary F3II mammary carcinoma in male and female mice were observed when the geometry of multiple-pairs of electrodes was arranged in the tumor at 45, 135, 225 and 325o and the longest exposure time. In addition, highest direct current overall effectiveness (above 66%) was observed for this EChT scheme. Conclusions It is concluded that electrochemical therapy may be potentially addressed to highly aggressive and metastic primary F3II murine mammary carcinoma and the modified Gompertz equation may be used to fit data of this direct current treated carcinoma. Additionally, electrochemical therapy effectiveness depends on the exposure time, geometry of multiple-electrodes and ratio between the direct current intensity applied and the polarization current induced in the tumor.
Collapse
Affiliation(s)
- Narciso Antonio Villar Goris
- Universidad Autónoma de Santo Domingo, Santo Domingo, República Dominicana.,Universidad Católica del Cibao, La Vega, República Dominicana.,Departamento de Investigación e Innovación, Centro Nacional de Electromagnetismo Aplicado, Dirección de Ciencia e Innovación , Universidad de Oriente, Ave. Las Américas s/n, Santiago de Cuba, 90400, Cuba
| | - Jorge Luis García Rodríguez
- Departamento de Investigación e Innovación, Centro Nacional de Electromagnetismo Aplicado, Dirección de Ciencia e Innovación , Universidad de Oriente, Ave. Las Américas s/n, Santiago de Cuba, 90400, Cuba
| | - Maraelys Morales González
- Departamento de Farmacia, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
| | | | | | - Enaide Maine Calzado
- Departamento de Telecomunicaciones, Facultad de Ingeniería Eléctrica, Universidad de Oriente, Santiago de Cuba, Cuba
| | | | - Leonardo Mesa Torres
- Departamento de Investigación e Innovación, Centro Nacional de Electromagnetismo Aplicado, Dirección de Ciencia e Innovación , Universidad de Oriente, Ave. Las Américas s/n, Santiago de Cuba, 90400, Cuba
| | - Juan Ignacio Montijano
- Instituto Universitario de Investigación de Matemáticas y Aplicaciones, Universidad de Zaragoza, Saragossa, Spain
| | | | - Daniel Jay Pérez
- Centro Nacional para la Producción de Animales de Laboratorio, La Habana, Cuba
| | - Oscar Ortiz Posada
- Centro Nacional para la Producción de Animales de Laboratorio, La Habana, Cuba
| | | | | | | | | | | | - Héctor Manuel Camué Ciria
- Departamento de Investigación e Innovación, Centro Nacional de Electromagnetismo Aplicado, Dirección de Ciencia e Innovación , Universidad de Oriente, Ave. Las Américas s/n, Santiago de Cuba, 90400, Cuba
| | - Luis Enrique Bergues Cabrales
- Departamento de Investigación e Innovación, Centro Nacional de Electromagnetismo Aplicado, Dirección de Ciencia e Innovación , Universidad de Oriente, Ave. Las Américas s/n, Santiago de Cuba, 90400, Cuba.
| |
Collapse
|