1
|
Day RB, Hickman JA, Xu Z, Katerndahl CD, Ferraro F, Ramakrishnan SM, Erdmann-Gilmore P, Sprung RW, Mi Y, Townsend RR, Miller CA, Ley TJ. Proteogenomic analysis reveals cytoplasmic sequestration of RUNX1 by the acute myeloid leukemia-initiating CBFB::MYH11 oncofusion protein. J Clin Invest 2023; 134:e176311. [PMID: 38061017 PMCID: PMC10866659 DOI: 10.1172/jci176311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
Several canonical translocations produce oncofusion genes that can initiate acute myeloid leukemia (AML). Although each translocation is associated with unique features, the mechanisms responsible remain unclear. While proteins interacting with each oncofusion are known to be relevant for how they act, these interactions have not yet been systematically defined. To address this issue in an unbiased fashion, we fused a promiscuous biotin ligase (TurboID) in-frame with 3 favorable-risk AML oncofusion cDNAs (PML::RARA, RUNX1::RUNX1T1, and CBFB::MYH11) and identified their interacting proteins in primary murine hematopoietic cells. The PML::RARA- and RUNX1::RUNX1T1-TurboID fusion proteins labeled common and unique nuclear repressor complexes, implying their nuclear localization. However, CBFB::MYH11-TurboID-interacting proteins were largely cytoplasmic, probably because of an interaction of the MYH11 domain with several cytoplasmic myosin-related proteins. Using a variety of methods, we showed that the CBFB domain of CBFB::MYH11 sequesters RUNX1 in cytoplasmic aggregates; these findings were confirmed in primary human AML cells. Paradoxically, CBFB::MYH11 expression was associated with increased RUNX1/2 expression, suggesting the presence of a sensor for reduced functional RUNX1 protein, and a feedback loop that may attempt to compensate by increasing RUNX1/2 transcription. These findings may have broad implications for AML pathogenesis.
Collapse
Affiliation(s)
- Ryan B. Day
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Julia A. Hickman
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Ziheng Xu
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Casey D.S. Katerndahl
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Francesca Ferraro
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | | | - Petra Erdmann-Gilmore
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert W. Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiling Mi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - R. Reid Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher A. Miller
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Timothy J. Ley
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| |
Collapse
|
2
|
Peroni E, Randi ML, Rosato A, Cagnin S. Acute myeloid leukemia: from NGS, through scRNA-seq, to CAR-T. dissect cancer heterogeneity and tailor the treatment. J Exp Clin Cancer Res 2023; 42:259. [PMID: 37803464 PMCID: PMC10557350 DOI: 10.1186/s13046-023-02841-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignant blood cancer with marked cellular heterogeneity due to altered maturation and differentiation of myeloid blasts, the possible causes of which are transcriptional or epigenetic alterations, impaired apoptosis, and excessive cell proliferation. This neoplasm has a high rate of resistance to anticancer therapies and thus a high risk of relapse and mortality because of both the biological diversity of the patient and intratumoral heterogeneity due to the acquisition of new somatic changes. For more than 40 years, the old gold standard "one size fits all" treatment approach included intensive chemotherapy treatment with anthracyclines and cytarabine.The manuscript first traces the evolution of the understanding of the pathology from the 1970s to the present. The enormous strides made in its categorization prove to be crucial for risk stratification, enabling an increasingly personalized diagnosis and treatment approach.Subsequently, we highlight how, over the past 15 years, technological advances enabling single cell RNA sequencing and T-cell modification based on the genomic tools are affecting the classification and treatment of AML. At the dawn of the new millennium, the advent of high-throughput next-generation sequencing technologies has enabled the profiling of patients evidencing different facets of the same disease, stratifying risk, and identifying new possible therapeutic targets that have subsequently been validated. Currently, the possibility of investigating tumor heterogeneity at the single cell level, profiling the tumor at the time of diagnosis or after treatments exist. This would allow the identification of underrepresented cellular subclones or clones resistant to therapeutic approaches and thus responsible for post-treatment relapse that would otherwise be difficult to detect with bulk investigations on the tumor biopsy. Single-cell investigation will then allow even greater personalization of therapy to the genetic and transcriptional profile of the tumor, saving valuable time and dangerous side effects. The era of personalized medicine will take a huge step forward through the disclosure of each individual piece of the complex puzzle that is cancer pathology, to implement a "tailored" therapeutic approach based also on engineered CAR-T cells.
Collapse
Affiliation(s)
- Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padova, 35128, Italy.
| | - Maria Luigia Randi
- First Medical Clinic, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padova, 35128, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Padova, 35131, Italy
- CIR-Myo Myology Center, University of Padova, Padova, 35131, Italy
| |
Collapse
|
3
|
AlJabban A, Alalsaidissa J. Prevalence of Gene Rearrangement by Multiplex PCR in De Novo Acute Myeloid Leukemia in Adult Iraqi Patients. J Blood Med 2023; 14:445-453. [PMID: 37588276 PMCID: PMC10426445 DOI: 10.2147/jbm.s416825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction Gene rearrangements of acute myeloid leukemia (AML) play a significant role in categorizing patients and provide valuable information about prognosis and treatment choices. However, in Iraq, the prevalence and prognostic significance of gene rearrangements in AML have not been previously examined. Methods This study utilized a multiplex reverse transcription real-time PCR (RT-qPCR) system to identify gene rearrangements in a group of 115 adult patients from Iraq who had been diagnosed with De Novo AML. The diagnosis of AML was confirmed through blood film and flow cytometry. The ethical committee of the College of Medicine at the University of Baghdad provided approval for this research study. Results In this study, 66.1% of the patients diagnosed with acute myeloid leukemia (AML) exhibited distinct genetic abnormalities. Among these abnormalities, the most frequent was the rearrangement involving the KMT2A gene, observed in 19.9% of the patients. The risk stratification analysis revealed that 40% of the patients were classified as having a favorable risk, 4.3% as intermediate risk, and 25.2% as adverse risk. A subtype of AML known as core-binding factor (CBF) AML was identified in 21.7% of the cases, with 84% of these patients achieving complete remission. The NPM-RARA gene rearrangement, found in 43% of acute promyelocytic leukemia (APL) cases, was associated with a 71% complete remission rate. Among patients with KMT2A rearrangement, which accounted for 19.9% of all AML cases, the MLL-AF10 rearrangement was the most common, although only one patient with KMT2A rearrangement achieved complete remission. Furthermore, the analysis of demographic data revealed a significant association between increased risk and advanced age, presence of comorbidities, and FAB classification (M0 subtype). Conclusion The prevalence of genetic rearrangements in Iraqi De Novo AML patients is higher than the global trend, highlighting the importance of genetic characterization in risk assessment and treatment decisions.
Collapse
Affiliation(s)
- Ali AlJabban
- Department of Pathology, College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Jaffar Alalsaidissa
- Department of Pathology, College of Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
4
|
Tu S, Li M, Fan H, Shi Z, Li X, Song K. Obstruction of the biliary tract as a rare presentation of acute myeloid leukemia: A case report. Oncol Lett 2023; 26:300. [PMID: 37323816 PMCID: PMC10265371 DOI: 10.3892/ol.2023.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/20/2023] [Indexed: 06/17/2023] Open
Abstract
To investigate the clinical characteristics of acute myeloid leukemia (AML) with biliary obstruction as the first manifestation and explore the treatment options. A retrospective analysis was performed on a case of AML with biliary obstruction as the first manifestation admitted to the First Affiliated Hospital of Jishou University (Jishou, China). The relevant laboratory examination, imaging, pathological results and treatment strategies were analyzed. The patient was a 44-year-old male with an initial manifestation of biliary obstruction. Combined with the results of laboratory tests and bone marrow aspiration, the patient was diagnosed with AML and was treated with an IA regimen (idarubicin 8 mg d1-3, cytarabine 0.2 d1-5). After 2 courses of treatment, complete response was achieved, the liver function returned to normal and the biliary obstruction disappeared. The initial symptoms of AML are varied, and always combine with multi-system organ damage. Early diagnosis and active treatment of primary diseases are the keys to improving the prognosis of these patients.
Collapse
Affiliation(s)
- Shengke Tu
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Min Li
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Hongjie Fan
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan 416000, P.R. China
| | - Ziwei Shi
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Xiaolan Li
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Kui Song
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
5
|
Pessoa FMCDP, Machado CB, Barreto IV, Sampaio GF, Oliveira DDS, Ribeiro RM, Lopes GS, de Moraes MEA, de Moraes Filho MO, de Souza LEB, Khayat AS, Moreira-Nunes CA. Association between Immunophenotypic Parameters and Molecular Alterations in Acute Myeloid Leukemia. Biomedicines 2023; 11:1098. [PMID: 37189716 PMCID: PMC10135936 DOI: 10.3390/biomedicines11041098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy that occurs due to alterations such as genetic mutations, chromosomal translocations, or changes in molecular levels. These alterations can accumulate in stem cells and hematopoietic progenitors, leading to the development of AML, which has a prevalence of 80% of acute leukemias in the adult population. Recurrent cytogenetic abnormalities, in addition to mediating leukemogenesis onset, participate in its evolution and can be used as established diagnostic and prognostic markers. Most of these mutations confer resistance to the traditionally used treatments and, therefore, the aberrant protein products are also considered therapeutic targets. The surface antigens of a cell are characterized through immunophenotyping, which has the ability to identify and differentiate the degrees of maturation and the lineage of the target cell, whether benign or malignant. With this, we seek to establish a relationship according to the molecular aberrations and immunophenotypic alterations that cells with AML present.
Collapse
Affiliation(s)
- Flávia Melo Cunha de Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Caio Bezerra Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Igor Valentim Barreto
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Giulia Freire Sampaio
- Unichristus University Center, Faculty of Biomedicine, Fortaleza 60430-275, CE, Brazil
| | | | | | - Germison Silva Lopes
- Department of Hematology, César Cals General Hospital, Fortaleza 60015-152, CE, Brazil
| | - Maria Elisabete Amaral de Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Manoel Odorico de Moraes Filho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Lucas Eduardo Botelho de Souza
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo 14040-900, SP, Brazil
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Unichristus University Center, Faculty of Biomedicine, Fortaleza 60430-275, CE, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| |
Collapse
|
6
|
Reckzeh K, Estruch M, Ali M, Søgaard Helbo A, Mosbech A, Jae Won K, Rücker F, Döhner K, Theilgaard-Mönch K. TET2 deficiency cooperates with CBFB-MYH11 to induce acute myeloid leukaemia and represents an early leukaemogenic event. Br J Haematol 2022; 197:201-206. [PMID: 35128634 DOI: 10.1111/bjh.18027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Kristian Reckzeh
- The Finsen Laboratory, Rigshospitalet/National Univ. Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Montserrat Estruch
- The Finsen Laboratory, Rigshospitalet/National Univ. Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mina Ali
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kyoung Jae Won
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frank Rücker
- Department of Internal Medicine III, University Hospital of Ulm, University of Ulm, Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, University of Ulm, Ulm, Germany
| | - Kim Theilgaard-Mönch
- The Finsen Laboratory, Rigshospitalet/National Univ. Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Hematology, Rigshospitalet/National Univ. Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Abstract
The core binding factor composed of CBFβ and RUNX subunits plays a critical role in most hematopoietic lineages and is deregulated in acute myeloid leukemia (AML). The fusion oncogene CBFβ-SMMHC expressed in AML with the chromosome inversion inv(16)(p13q22) acts as a driver oncogene in hematopoietic stem cells and induces AML. This review focuses on novel insights regarding the molecular mechanisms involved in CBFβ-SMMHC-driven leukemogenesis and recent advances in therapeutic approaches to target CBFβ-SMMHC in inv(16) AML.
Collapse
|
8
|
Saeed BR, Manta L, Raffel S, Pyl PT, Buss EC, Wang W, Eckstein V, Jauch A, Trumpp A, Huber W, Ho AD, Lutz C. Analysis of nonleukemic cellular subcompartments reconstructs clonal evolution of acute myeloid leukemia and identifies therapy-resistant preleukemic clones. Int J Cancer 2021; 148:2825-2838. [PMID: 33411954 DOI: 10.1002/ijc.33461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/16/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
Abstract
To acquire a better understanding of clonal evolution of acute myeloid leukemia (AML) and to identify the clone(s) responsible for disease recurrence, we have comparatively studied leukemia-specific mutations by whole-exome-sequencing (WES) of both the leukemia and the nonleukemia compartments derived from the bone marrow of AML patients. The T-lymphocytes, B-lymphocytes and the functionally normal hematopoietic stem cells (HSC), that is, CD34+ /CD38- /ALDH+ cells for AML with rare-ALDH+ blasts (<1.9% ALDH+ cells) were defined as the nonleukemia compartments. WES identified 62 point-mutations in the leukemia compartment derived from 12 AML-patients at the time of diagnosis and 73 mutations in 3 matched relapse cases. Most patients (8/12) showed 4 to 6 point-mutations per sample at diagnosis. Other than the mutations in the recurrently mutated genes such as DNMT3A, NRAS and KIT, we were able to identify novel point-mutations that have not yet been described in AML. Some leukemia-specific mutations and cytogenetic abnormalities including DNMT3A(R882H), EZH2(I146T) and inversion(16) were also detectable in the respective T-lymphocytes, B-lymphocytes and HSC in 5/12 patients, suggesting that preleukemia HSC might represent the source of leukemogenesis for these cases. The leukemic evolution was reconstructed for five cases with detectable preleukemia clones, which were tracked in follow-up and relapse samples. Four of the five patients with detectable preleukemic mutations developed relapse. The presence of leukemia-specific mutations in these nonleukemia compartments, especially after chemotherapy or after allogeneic stem cell transplantation, is highly relevant, as these could be responsible for relapse. This discovery may facilitate the identification of novel targets for long-term cure.
Collapse
Affiliation(s)
- Borhan R Saeed
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Linda Manta
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Simon Raffel
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Theodor Pyl
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Division of Surgery, Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Eike C Buss
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Wenwen Wang
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Volker Eckstein
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Andreas Trumpp
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Anthony D Ho
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Christoph Lutz
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Praxis for Hematology and Oncology Koblenz, Koblenz, Germany
| |
Collapse
|
9
|
Luo F, Yu S, Jin LH. The Posterior Signaling Center Is an Important Microenvironment for Homeostasis of the Drosophila Lymph Gland. Front Cell Dev Biol 2020; 8:382. [PMID: 32509789 PMCID: PMC7253591 DOI: 10.3389/fcell.2020.00382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/28/2020] [Indexed: 01/02/2023] Open
Abstract
Hematopoiesis is a necessary process for development and immune defense in Drosophila from the embryonic period to adulthood. There are two main stages in this process: the first stage occurs in the head mesoderm during the embryonic stage, and the second occurs in a specialized hematopoietic organ along the dorsal vessel, the lymph gland, during the larval stage. The lymph gland consists of paired lobes, each of which has distinct regions: the cortical zone (CZ), which contains mature hemocytes; the medullary zone (MZ), which contains hematopoietic progenitors; and the posterior signaling center (PSC), which specifically expresses the early B-cell factor (EBF) transcription factor Collier (Col) and the HOX factor Antennapedia (Antp) to form a microenvironment similar to that of the mammalian bone marrow hematopoietic stem cell niche. The PSC plays a key role in regulating hematopoietic progenitor differentiation. Moreover, the PSC contributes to the cellular immune response to wasp parasitism triggered by elevated ROS levels. Two recent studies have revealed that hematopoietic progenitor maintenance is directly regulated by Col expressed in the MZ and is independent of the PSC, challenging the traditional model. In this review, we summarize the regulatory networks of PSC cell proliferation, the controversy regarding PSC-mediated regulation of hematopoietic progenitor differentiation, and the wasp egg infection response. In addition, we discuss why the PSC is an ideal model for investigating mammalian hematopoietic stem cell niches and leukemia.
Collapse
Affiliation(s)
| | | | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
10
|
Mitchell K, Steidl U. Targeting Immunophenotypic Markers on Leukemic Stem Cells: How Lessons from Current Approaches and Advances in the Leukemia Stem Cell (LSC) Model Can Inform Better Strategies for Treating Acute Myeloid Leukemia (AML). Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036251. [PMID: 31451539 DOI: 10.1101/cshperspect.a036251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapies targeting cell-surface antigens in acute myeloid leukemia (AML) have been tested over the past 20 years with limited improvement in overall survival. Recent advances in the understanding of AML pathogenesis support therapeutic targeting of leukemia stem cells as the most promising avenue toward a cure. In this review, we provide an overview of the evolving leukemia stem cell (LSC) model, including evidence of the cell of origin, cellular and molecular disease architecture, and source of relapse in AML. In addition, we explore limitations of current targeted strategies utilized in AML and describe the various immunophenotypic antigens that have been proposed as LSC-directed therapeutic targets. We draw lessons from current approaches as well as from the (pre)-LSC model to suggest criteria that immunophenotypic targets should meet for more specific and effective elimination of disease-initiating clones, highlighting in detail a few targets that we suggest fit these criteria most completely.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Medicine (Oncology), Division of Hemato-Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, New York 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
11
|
Ruiz-Arenas C, Cáceres A, Moreno V, González JR. Common polymorphic inversions at 17q21.31 and 8p23.1 associate with cancer prognosis. Hum Genomics 2019; 13:57. [PMID: 31753042 PMCID: PMC6873427 DOI: 10.1186/s40246-019-0242-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chromosomal inversions are structural genetic variants where a chromosome segment changes its orientation. While sporadic de novo inversions are known genetic risk factors for cancer susceptibility, it is unknown if common polymorphic inversions are also associated with the prognosis of common tumors, as they have been linked to other complex diseases. We studied the association of two well-characterized human inversions at 17q21.31 and 8p23.1 with the prognosis of lung, liver, breast, colorectal, and stomach cancers. RESULTS Using data from The Cancer Genome Atlas (TCGA), we observed that inv8p23.1 was associated with overall survival in breast cancer and that inv17q21.31 was associated with overall survival in stomach cancer. In the meta-analysis of two independent studies, inv17q21.31 heterozygosity was significantly associated with colorectal disease-free survival. We found that the association was mediated by the de-methylation of cg08283464 and cg03999934, also linked to lower disease-free survival. CONCLUSIONS Our results suggest that chromosomal inversions are important genetic factors of tumor prognosis, likely affecting changes in methylation patterns.
Collapse
Affiliation(s)
- Carlos Ruiz-Arenas
- Barcelona Institute for Global Health, ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Alejandro Cáceres
- Barcelona Institute for Global Health, ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Victor Moreno
- Programa de Prevención y Control del Cáncer, Instituto Catalán de Oncología, L'Hospitalet, Barcelona, Spain
| | - Juan R González
- Barcelona Institute for Global Health, ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| |
Collapse
|
12
|
Saida S, Zhen T, Kim E, Yu K, Lopez G, McReynolds LJ, Liu PP. Gata2 deficiency delays leukemogenesis while contributing to aggressive leukemia phenotype in Cbfb-MYH11 knockin mice. Leukemia 2019; 34:759-770. [PMID: 31624376 PMCID: PMC7056539 DOI: 10.1038/s41375-019-0605-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022]
Abstract
Inversion of chromosome 16 (inv(16)) generates a fusion gene CBFB-MYH11, which is a driver mutation for acute myeloid leukemia (AML). Gene expression profiling suggests that Gata2, a hematopoietic transcription factor, is a top upregulated gene in preleukemic Cbfb-MYH11 knockin mice and is expressed in human inv(16) AML. On the other hand, we have also identified recurrent monoallelic deletions of GATA2 in relapsed human CBF-AML patients. To clarify the role of Gata2 in leukemogenesis by Cbfb-MYH11, we generated conditional Cbfb-MYH11 knockin mice with Gata2 heterozygous knockout. Gata2 heterozygous knockout reduced abnormal myeloid progenitors, which are capable of inducing leukemia in the Cbfb-MYH11 mice. Consequently, Cbfb-MYH11 mice with Gata2 heterozygous knockout developed leukemia with longer latencies than those with intact Gata2. Interestingly, leukemic cells with Gata2 heterozygous knockout gained higher number of mutations and showed more aggressive phenotype in both primary and transplanted mice. Moreover, leukemic cells with Gata2 heterozygous knockout showed higher repopulating capacity in competitive transplantation experiments. In summary, reduction of Gata2 activity affects mutational dynamics of leukemia with delayed leukemia onset in Cbfb-MYH11 knockin mice, but paradoxically results in a more aggressive leukemia phenotype, which may be correlated with leukemia relapse or poor prognosis in human patients.
Collapse
Affiliation(s)
- Satoshi Saida
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA.,Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tao Zhen
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Erika Kim
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Kai Yu
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Guadalupe Lopez
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Paul P Liu
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|