1
|
Terry M, Nguyen MP, Tang V, Guney E, Bharani KL, Dahiya S, Choutka O, Borys E, Reis G, Blevins L, Aghi MK, Kunwar S, DeGroot J, Raleigh DR, Pekmezci M, Bollen AW, Cha S, Joseph NM, Perry A. High-Grade Progression, Sarcomatous Transformation, and/or Metastasis of Pituitary Neuroendocrine Neoplasms (PitNENs): The UCSF Experience. Endocr Pathol 2024:10.1007/s12022-024-09829-w. [PMID: 39388031 DOI: 10.1007/s12022-024-09829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Pituitary neuroendocrine tumors (PitNET) that metastasize comprise ~ 0.2% of adenohypophyseal tumors are aggressive and are challenging to treat. However, many non-metastatic tumors are also aggressive. Herein, we review 21 specimens from 13 patients at UCSF with metastatic PitNETs (CSF or systemic, N = 7 patients), high-grade pituitary neuroendocrine neoplasms (HG-PitNEN, N = 4 patients), and/or PitNETs with sarcomatous transformation (PitNET-ST, N = 5 patients). We subtyped cases using the World Health Organization (WHO) and International Agency for Research on Cancer (IARC) criteria for neuroendocrine neoplasms (NENs). Lineage subtypes included acidophil stem cell, null cell, thyrotroph, corticotroph, lactotroph, and gonadotroph tumors. The median Ki-67 labeling index was 25% (range 5-70%). Lack of p16 was seen in 3 cases, with overexpression in 2. Strong diffuse p53 immunopositivity was present in 3 specimens from 2 patients. Loss of Rb expression was seen in 2 cases, with ATRX loss in one. Molecular analysis in 4 tumors variably revealed TERT alterations, homozygous CDKN2A deletion, aneuploidy, and mutations in PTEN, TP53, PDGFRB, and/or PIK3CA. Eight patients (62%) died of disease, 4 were alive at the last follow-up, and 1 was lost to the follow-up. All primary tumors had worrisome features, including aggressive lineage subtype, high mitotic count, and/or high Ki-67 indices. Additional evidence of high-grade progression included immunohistochemical loss of neuroendocrine, transcription factor, and/or hormone markers. We conclude that metastatic PitNET is not the only high-grade form of pituitary NEN. If further confirmed, these histopathologic and/or molecular features could provide advanced warning of biological aggressiveness and be applied towards a future grading scheme.
Collapse
Affiliation(s)
- Merryl Terry
- Department of Pathology, Division of Neuropathology, University of California San Francisco, San Francisco, CA, USA
| | - Minh P Nguyen
- Department of Pathology, Division of Neuropathology, University of California San Francisco, San Francisco, CA, USA
| | - Vivian Tang
- Department of Pathology, Division of Neuropathology, University of California San Francisco, San Francisco, CA, USA
| | - Ekin Guney
- Department of Pathology, Division of Neuropathology, University of California San Francisco, San Francisco, CA, USA
| | | | - Sonika Dahiya
- Department of Pathology, Washington University, St. Louis, MO, USA
| | - Ondrej Choutka
- Department of Neurosurgery, Saint Alphonsus Neuroscience Institute, Boise, ID, USA
| | - Ewa Borys
- Department of Pathology, Loyola University, Chicago, IL, USA
| | - Gerald Reis
- Department of Pathology, Memorial Healthcare System, Hollywood, FL, USA
| | - Lewis Blevins
- Department of Endocrinology, University of California San Francisco, San Francisco, CA, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sandeep Kunwar
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - John DeGroot
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Pathology, Division of Neuropathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Melike Pekmezci
- Department of Pathology, Division of Neuropathology, University of California San Francisco, San Francisco, CA, USA
| | - Andrew W Bollen
- Department of Pathology, Division of Neuropathology, University of California San Francisco, San Francisco, CA, USA
| | - Soonmee Cha
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Nancy M Joseph
- Department of Pathology, Division of Neuropathology, University of California San Francisco, San Francisco, CA, USA
| | - Arie Perry
- Department of Pathology, Division of Neuropathology, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Casar-Borota O, Burman P, Lopes MB. The 2022 WHO classification of tumors of the pituitary gland: An update on aggressive and metastatic pituitary neuroendocrine tumors. Brain Pathol 2024:e13302. [PMID: 39218431 DOI: 10.1111/bpa.13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
The vast majority of pituitary neuroendocrine tumors (PitNETs) are benign and slow growing with a low relapse rate over many years after surgical resection. However, about 40% are locally invasive and may not be surgically cured, and about one percentage demonstrate an aggressive clinical behavior. Exceptionally, these aggressive tumors may metastasize outside the sellar region to the central nervous system and/or systemically. The 2017 (4th Edition) WHO Classification of Pituitary Tumors abandoned the terminology "atypical adenoma" for tumors previously considered to have potential for a more aggressive behavior since its prognostic value was not established. The 2022 (5th Edition) WHO Classification of the Pituitary Tumors emphasizes the concept that morphological features distinguish indolent tumors from locally aggressive ones, however, the proposed histological subtypes are not consistent with the real life clinical characteristics of patients with aggressive tumors/carcinomas. So far, no single clinical, radiological or histological parameter can determine the risk of growth or malignant progression. Novel promising molecular prognostic markers, such as mutations in ATRX, TP53, SF3B1, and epigenetic DNA modifications, will need to be verified in larger tumor cohorts. In this review, we provide a critical analysis of the WHO guidelines for prognostic stratification and diagnosis of aggressive and metastatic PitNETs. In addition, we discuss the new WHO recommendations for changing ICD-O and ICD-11 codes for PitNET tumor behavior from a neoplasm either "benign" or "unspecified, borderline, or uncertain behavior" to "malignant" neoplasm regardless of the clinical presentation, histopathological subtype, and tumor location. We encourage multidisciplinary initiatives for integrated clinical, histological and molecular classification, which would enable early recognition of these challenging tumors and initiation of more appropriate and aggressive treatments, ultimately improving the outcome.
Collapse
Affiliation(s)
- Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Pia Burman
- Department of Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - M Beatriz Lopes
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Pękul M, Szczepaniak M, Kober P, Rusetska N, Mossakowska BJ, Baluszek S, Kowalik A, Maksymowicz M, Zieliński G, Kunicki J, Witek P, Bujko M. Relevance of mutations in protein deubiquitinases genes and TP53 in corticotroph pituitary tumors. Front Endocrinol (Lausanne) 2024; 15:1302667. [PMID: 38487343 PMCID: PMC10937451 DOI: 10.3389/fendo.2024.1302667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Corticotroph pituitary neuroendocrine tumors (PitNETs) develop from ACTH-producing cells. They commonly cause Cushing's disease (CD), however, some remain clinically silent. Recurrent USP8, USP48, BRAF and TP53 mutations occur in corticotroph PitNETs. The aim of our study was to determine frequency and relevance of these mutations in a possibly large series of corticotroph PitNETs. Methods Study included 147 patients (100 CD and 47 silent tumors) that were screened for hot-spot mutations in USP8, USP48 and BRAF with Sanger sequencing, while 128 of these patients were screened for TP53 mutations with next generation sequencing and immunohistochemistry. Results USP8 mutations were found in 41% CD and 8,5% silent tumors, while USP48 mutations were found in 6% CD patients only. Both were more prevalent in women. They were related to higher rate of biochemical remission, non-invasive tumor growth, its smaller size and densely granulated histology, suggesting that these mutation may be favorable clinical features. Multivariate survival analyses did not confirm possible prognostic value of mutation in protein deubiquitinases. No BRAF mutations were found. Four TP53 mutations were identified (2 in CD, 2 in silent tumors) in tumors with size >10mm including 3 invasive ones. They were found in Crooke's cell and sparsely granulated tumors. Tumors with missense TP53 mutations had higher TP53 immunoreactivity score than wild-type tumors. Tumor with frameshift TP53 variant had low protein expression. TP53 mutation was a poor prognostic factor in CD according to uni- and multivariate survival analyses in spite of low mutations frequency. Conclusions We confirmed high prevalence of USP8 mutations and low incidence of USP48 and TP53 mutations. Changes in protein deubiquitinases genes appear to be favorable prognostic factors in CD. TP53 mutations are rare, occur in both functioning and silent tumors and are related to poor clinical outcome in CD.
Collapse
Affiliation(s)
- Monika Pękul
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Rusetska
- Department of Experimental Immunology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Beata J Mossakowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Szymon Baluszek
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holy Cross Cancer Center, Kielce, Poland
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Maria Maksymowicz
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Grzegorz Zieliński
- Department of Neurosurgery, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Przemysław Witek
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
4
|
De Leo A, Ruscelli M, Maloberti T, Coluccelli S, Repaci A, de Biase D, Tallini G. Molecular pathology of endocrine gland tumors: genetic alterations and clinicopathologic relevance. Virchows Arch 2024; 484:289-319. [PMID: 38108848 PMCID: PMC10948534 DOI: 10.1007/s00428-023-03713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/19/2023]
Abstract
Tumors of the endocrine glands are common. Knowledge of their molecular pathology has greatly advanced in the recent past. This review covers the main molecular alterations of tumors of the anterior pituitary, thyroid and parathyroid glands, adrenal cortex, and adrenal medulla and paraganglia. All endocrine gland tumors enjoy a robust correlation between genotype and phenotype. High-throughput molecular analysis demonstrates that endocrine gland tumors can be grouped into molecular groups that are relevant from both pathologic and clinical point of views. In this review, genetic alterations have been discussed and tabulated with respect to their molecular pathogenetic role and clinicopathologic implications, addressing the use of molecular biomarkers for the purpose of diagnosis and prognosis and predicting response to molecular therapy. Hereditary conditions that play a key role in determining predisposition to many types of endocrine tumors are also discussed.
Collapse
Affiliation(s)
- Antonio De Leo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Martina Ruscelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
| | - Thais Maloberti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Sara Coluccelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Andrea Repaci
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Dario de Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40126, Bologna, Italy
| | - Giovanni Tallini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy.
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy.
| |
Collapse
|
5
|
Burman P, Casar-Borota O, Perez-Rivas LG, Dekkers OM. Aggressive Pituitary Tumors and Pituitary Carcinomas: From Pathology to Treatment. J Clin Endocrinol Metab 2023; 108:1585-1601. [PMID: 36856733 PMCID: PMC10271233 DOI: 10.1210/clinem/dgad098] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Aggressive pituitary tumors (APTs) and pituitary carcinomas (PCs) are heterogeneous with regard to clinical presentation, proliferative markers, clinical course, and response to therapy. Half of them show an aggressive course only many years after the first apparently benign presentation. APTs and PCs share several properties, but a Ki67 index greater than or equal to 10% and extensive p53 expression are more prevalent in PCs. Mutations in TP53 and ATRX are the most common genetic alterations; their detection might be of value for early identification of aggressiveness. Treatment requires a multimodal approach including surgery, radiotherapy, and drugs. Temozolomide is the recommended first-line chemotherapy, with response rates of about 40%. Immune checkpoint inhibitors have emerged as second-line treatment in PCs, with currently no evidence for a superior effect of dual therapy compared to monotherapy with PD-1 blockers. Bevacizumab has resulted in partial response (PR) in few patients; tyrosine kinase inhibitors and everolimus have generally not been useful. The effect of peptide receptor radionuclide therapy is limited as well. Management of APT/PC is challenging and should be discussed within an expert team with consideration of clinical and pathological findings, age, and general condition of the patient. Considering that APT/PCs are rare, new therapies should preferably be evaluated in shared standardized protocols. Prognostic and predictive markers to guide treatment decisions are needed and are the scope of ongoing research.
Collapse
Affiliation(s)
- Pia Burman
- Department of Endocrinology, Skåne University Hospital, Lund
University, 205 02 Malmö, Sweden
| | - Olivera Casar-Borota
- Department of Immunology, Genetics, and Pathology; Uppsala
University, 751 85 Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University
Hospital, 751 85 Uppsala, Sweden
| | - Luis Gustavo Perez-Rivas
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München,
Ludwig-Maximilians-Universität München, 80804
Munich, Germany
| | - Olaf M Dekkers
- Department of Internal Medicine (Section of Endocrinology & Clinical
Epidemiology), Leiden University Medical Centre, 2333 ZA
Leiden, The Netherlands
| |
Collapse
|
6
|
Updates in neuroendocrine neoplasms: From mechanisms to the clinic. ANNALES D'ENDOCRINOLOGIE 2023; 84:291-297. [PMID: 36690074 DOI: 10.1016/j.ando.2022.12.424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/04/2022] [Indexed: 01/22/2023]
Abstract
Scientific advances constantly improve our understanding of the mechanisms underlying tumorigenesis, allowing us now to analyze cancer in a more precise manner and to identify at an earlier stage the tumors that have greater risk of aggressive behavior. Understanding neuroendocrine neoplasms at molecular level has enabled increasingly targeted treatments, with safety and efficacy validated in large randomized trials. Moreover, the first studies of targeted therapies after molecular profiling of neuroendocrine neoplasms have shown encouraging results, allowing us to foresee ever more personalized medical treatments in the future. This literature review aims to summarize recent advances in the study of neuroendocrine neoplasms and to show how identification of new mechanisms underlying tumorigenesis can be of benefit in clinical practice.
Collapse
|
7
|
An Overview of Pituitary Neuroendocrine Tumors (PitNET) and Algorithmic Approach to Diagnosis. Adv Anat Pathol 2023; 30:79-83. [PMID: 36069849 DOI: 10.1097/pap.0000000000000367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diagnostic algorithm and nomenclature of pituitary neuroendocrine tumors have evolved over the past decade, beginning with simpler categorical schemes focused on histomorphologic features and moving to a more sophisticated lineage-specific categorization. This contemporary overview highlights a multimodal approach to pituitary neuroendocrine tumors with a focus on changes in nomenclature, classification, and subclassification; including, brief comments on treatment, and new guidelines for genetic screening, particularly for young patients with such neoplasms.
Collapse
|
8
|
Alzoubi H, Minasi S, Gianno F, Antonelli M, Belardinilli F, Giangaspero F, Jaffrain-Rea ML, Buttarelli FR. Alternative Lengthening of Telomeres (ALT) and Telomerase Reverse Transcriptase Promoter Methylation in Recurrent Adult and Primary Pediatric Pituitary Neuroendocrine Tumors. Endocr Pathol 2022; 33:494-505. [PMID: 34993885 DOI: 10.1007/s12022-021-09702-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 12/14/2022]
Abstract
Neoplastic cells acquire the ability to proliferate endlessly by maintaining telomeres via telomerase, or alternative lengthening of telomeres (ALT). The role of telomere maintenance in pituitary neuroendocrine tumors (PitNETs) has yet to be thoroughly investigated. We analyzed surgical samples of 24 adult recurrent PitNETs (including onset and relapses for 14 of them) and 12 pediatric primary PitNETs. The presence of ALT was assessed using telomere-specific fluorescence in situ hybridization, methylation of telomerase reverse transcriptase promoter (TERTp) by methylation-specific PCR, and ATRX expression by immunohistochemistry. Among the adult recurrent PitNETs, we identified 3/24 (12.5%) ALT-positive cases. ALT was present from the onset and maintained in subsequent relapses, suggesting that this mechanism occurs early in tumorigenesis and is stable during progression. ATRX loss was only seen in one ALT-positive case. Noteworthy, ALT was observed in 3 out of 5 aggressive PitNETs, including two aggressive corticotroph tumors, eventually leading to patient's death. ALT-negative tumors (87.5%) were classified according to their low (29.2%), medium (50%), and high (8.3%) telomere fluorescence intensity, with no significant differences emerging in their molecular, clinical, or pathological characteristics. TERTp methylation was found in 6/24 cases (25%), with a total concordance in methylation status between onset and recurrences, suggesting that this mechanism remains stable throughout disease progression. TERTp methylation did not influence telomere length. In the pediatric cohort of PitNETs, TERTp methylation was also observed in 4/12 cases (33.3%), but no case of ALT activation was observed. In conclusion, ALT is triggered at onset and maintained during tumor progression in a subset of adult PitNETs, suggesting that it could be used for clinical purposes, as a potential predictor of aggressive behavior.
Collapse
Affiliation(s)
- Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Simone Minasi
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Marie-Lise Jaffrain-Rea
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Francesca Romana Buttarelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
9
|
Lasolle H, Vasiljevic A, Jouanneau E, Ilie MD, Raverot G. Aggressive corticotroph tumors and carcinomas. J Neuroendocrinol 2022; 34:e13169. [PMID: 35979732 PMCID: PMC9542524 DOI: 10.1111/jne.13169] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
Pituitary tumors are generally benign, although in rare cases aggressive pituitary tumors (APTs) and carcinomas present important diagnostic and therapeutic challenges and are associated with a high mortality rate. Almost half of these APTs and carcinomas are corticotroph tumors, suggesting a specific prognosis. Clinical, pathological and molecular prognostic markers are limited and do not allow early management of these tumors. Temozolomide remains the first-line treatment once a diagnosis of aggressive pituitary tumor or carcinoma has been made. Novel alternative treatments exist, including immune checkpoint inhibitors, which can be used in the case of temozolomide treatment failure. The aim of this review is to present the clinical, pathological and molecular characteristics of aggressive corticotroph tumors and carcinomas, and to describe the results obtained with currently available treatments.
Collapse
Affiliation(s)
- Hélène Lasolle
- Inserm U1052, CNRS UMR5286Cancer Research Center of LyonLyonFrance
- Lyon 1 UniversityVilleurbanneFrance
- Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO“Groupement Hospitalier Est” Hospices Civils de LyonBronFrance
| | - Alexandre Vasiljevic
- Inserm U1052, CNRS UMR5286Cancer Research Center of LyonLyonFrance
- Lyon 1 UniversityVilleurbanneFrance
- Pathology Department, Reference Center for Rare Pituitary Diseases HYPO“Groupement Hospitalier Est” Hospices Civils de LyonBronFrance
| | - Emmanuel Jouanneau
- Inserm U1052, CNRS UMR5286Cancer Research Center of LyonLyonFrance
- Lyon 1 UniversityVilleurbanneFrance
- Neurosurgery Department, Reference Center for Rare Pituitary Diseases HYPO“Groupement Hospitalier Est” Hospices Civils de LyonBronFrance
| | - Mirela Diana Ilie
- Inserm U1052, CNRS UMR5286Cancer Research Center of LyonLyonFrance
- Lyon 1 UniversityVilleurbanneFrance
- Endocrinology Department“C.I. Parhon” National Institute of EndocrinologyBucharestRomania
| | - Gérald Raverot
- Inserm U1052, CNRS UMR5286Cancer Research Center of LyonLyonFrance
- Lyon 1 UniversityVilleurbanneFrance
- Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO“Groupement Hospitalier Est” Hospices Civils de LyonBronFrance
| |
Collapse
|
10
|
Simon J, Theodoropoulou M. Genetics of Cushing's disease. J Neuroendocrinol 2022; 34:e13148. [PMID: 35596671 DOI: 10.1111/jne.13148] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Corticotroph tumours are primarily sporadic monoclonal neoplasms and only rarely found in genetic syndromes. Recurrent mutations in the ubiquitin specific protease 8 (USP8) gene are found in around half of cases. Mutations in other genes such as USP48 and NR3C1 are less frequent, found in less than ~20% of cases. TP53 and ATXR mutations are reported in up to one out of four cases, when focusing in USP8 wild type or aggressive corticotroph tumours and carcinomas. At present, USP8 mutations are the primary driver alterations in sporadic corticotroph tumours, TP53 and ATXR mutations may indicate transition to more aggressive tumour phenotype. Next generation sequencing efforts have identified additional genomic alterations, whose role and importance in corticotroph tumorigenesis remains to be elucidated.
Collapse
Affiliation(s)
- Julia Simon
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
11
|
Sumislawski P, Rotermund R, Klose S, Lautenbach A, Wefers AK, Soltwedel C, Mohammadi B, Jacobsen F, Mawrin C, Flitsch J, Saeger W. ACTH-secreting pituitary carcinoma with TP53, NF1, ATRX and PTEN mutations Case report and review of the literature. Endocrine 2022; 76:228-236. [PMID: 35171439 PMCID: PMC8986667 DOI: 10.1007/s12020-021-02954-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Piotr Sumislawski
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr.52, 20246, Hamburg, Germany
| | - Roman Rotermund
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr.52, 20246, Hamburg, Germany
| | - Silke Klose
- Department of Internal Medicine/Endocrinology, Otto von Guericke Universität Magdeburg, Magdeburg, Germany
| | - Anne Lautenbach
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Celina Soltwedel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr, Hamburg, Germany
| | - Christian Mawrin
- Institute of Neuropathology, University of Magdeburg, Magdeburg, Germany
| | - Jörg Flitsch
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr.52, 20246, Hamburg, Germany
| | - Wolfgang Saeger
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
12
|
Vekaria S, Chen F, Zan E, William C, Sen C, Lebowitz R, Zagzag D, Warren FA, Brandler TC, Agrawal N. Growth hormone secreting pituitary carcinomas: Case report and review of literature. Growth Horm IGF Res 2021; 60-61:101430. [PMID: 34607164 DOI: 10.1016/j.ghir.2021.101430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Pituitary carcinoma is a rare tumor, defined as a tumor of adenohypophyseal cells with systemic or craniospinal metastasis. We present a case of a growth hormone (GH)-secreting pituitary carcinoma with a review of literature to better characterize this disease. DESIGN Case report and literature review of 25 cases of GH-secreting pituitary carcinomas RESULTS: The age of diagnosis of GH-secreting carcinomas ranged 24-69 years old with a mean age of 44.4 with 52% of cases present in females. Mean latency period between diagnosis of acromegaly and transition to pituitary carcinoma was 11.4 years with mean survival being 3.4 years. CONCLUSION Growth hormone (GH)-secreting pituitary carcinomas are rare and hard to distinguish from aggressive pituitary adenomas. From review of literature, treatment options include debulking surgery, radiotherapy, or chemotherapy with dismal outcomes. There are no diagnostic markers or features which can predict metastatic progression of these tumors. Future studies with genomic landscapes and relevant tumor markers are needed to identify pituitary tumors most likely to metastasize.
Collapse
Affiliation(s)
- Shivani Vekaria
- Department of Endocrinology, Diabetes & Metabolism, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY, USA
| | - Fei Chen
- Department of Pathology, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY, USA
| | - Elcin Zan
- Department of Radiology, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY, USA
| | - Christopher William
- Department of Pathology, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY, USA
| | - Chandra Sen
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY, USA
| | - Richard Lebowitz
- Department of Otolaryngology- Head and Neck Surgery, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY, USA
| | - David Zagzag
- Department of Pathology, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY, USA; Department of Neurosurgery, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY, USA
| | - Floyd A Warren
- Department of Ophthalmology, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY, USA; Department of Neurology, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY, USA
| | - Tamar C Brandler
- Department of Pathology, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY, USA
| | - Nidhi Agrawal
- Department of Endocrinology, Diabetes & Metabolism, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY, USA.
| |
Collapse
|
13
|
Casar-Borota O, Boldt H, Engström B, Andersen MS, Baussart B, Bengtsson D, Berinder K, Ekman B, Feldt-Rasmussen U, Höybye C, Jørgensen JOL, Kolnes AJ, Korbonits M, Rasmussen ÅK, Lindsay JR, Loughrey PB, Maiter D, Manojlovic-Gacic E, Pahnke J, Poliani PL, Popovic V, Ragnarsson O, Schalin-Jäntti C, Scheie D, Tóth M, Villa C, Wirenfeldt M, Kunicki J, Burman P. Corticotroph Aggressive Pituitary Tumors and Carcinomas Frequently Harbor ATRX Mutations. J Clin Endocrinol Metab 2021; 106:1183-1194. [PMID: 33106857 PMCID: PMC7993578 DOI: 10.1210/clinem/dgaa749] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Aggressive pituitary tumors (APTs) are characterized by unusually rapid growth and lack of response to standard treatment. About 1% to 2% develop metastases being classified as pituitary carcinomas (PCs). For unknown reasons, the corticotroph tumors are overrepresented among APTs and PCs. Mutations in the alpha thalassemia/mental retardation syndrome X-linked (ATRX) gene, regulating chromatin remodeling and telomere maintenance, have been implicated in the development of several cancer types, including neuroendocrine tumors. OBJECTIVE To study ATRX protein expression and mutational status of the ATRX gene in APTs and PCs. DESIGN We investigated ATRX protein expression by using immunohistochemistry in 30 APTs and 18 PCs, mostly of Pit-1 and T-Pit cell lineage. In tumors lacking ATRX immunolabeling, mutational status of the ATRX gene was explored. RESULTS Nine of the 48 tumors (19%) demonstrated lack of ATRX immunolabelling with a higher proportion in patients with PCs (5/18; 28%) than in those with APTs (4/30;13%). Lack of ATRX was most common in the corticotroph tumors, 7/22 (32%), versus tumors of the Pit-1 lineage, 2/24 (8%). Loss-of-function ATRX mutations were found in all 9 ATRX immunonegative cases: nonsense mutations (n = 4), frameshift deletions (n = 4), and large deletions affecting 22-28 of the 36 exons (n = 3). More than 1 ATRX gene defect was identified in 2 PCs. CONCLUSION ATRX mutations occur in a subset of APTs and are more common in corticotroph tumors. The findings provide a rationale for performing ATRX immunohistochemistry to identify patients at risk of developing aggressive and potentially metastatic pituitary tumors.
Collapse
Affiliation(s)
- Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
- Correspondence and Reprint Requests: Olivera Casar-Borota, MD, PhD, Department of Immunology, Genetics and Pathology, Uppsala University and Department of Clinical Pathology, Uppsala University Hospital, Dag Hammarskjölds väg 20, 75851 Uppsala, Sweden. E-mail:
| | - Henning Bünsow Boldt
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Britt Edén Engström
- Department of Medical Sciences, Endocrinology and Mineral Metabolism, Uppsala University, Uppsala, Sweden
- Department of Endocrinology and Diabetology, Uppsala University Hospital, Uppsala, Sweden
| | - Marianne Skovsager Andersen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | | | - Daniel Bengtsson
- Department of Internal Medicine, Kalmar, Region of Kalmar County, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Katarina Berinder
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Bertil Ekman
- Department of Endocrinology, University Hospital, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology and Metabolism, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health Research Sciences, Copenhagen University, Copenhagen, Denmark
| | - Charlotte Höybye
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Jens Otto L Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Jensen Kolnes
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts, UK
- The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Åse Krogh Rasmussen
- Department of Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark
| | - John R Lindsay
- Mater Infirmorum Hospital, Belfast Health & Social Care Trust (BHSCT), UK
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast Health & Social Care Trust, UK
| | - Paul Benjamin Loughrey
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast Health & Social Care Trust, UK
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast, UK
| | - Dominique Maiter
- Department of Endocrinology and Nutrition, UCL Cliniques universitaires Saint-Luc, 1200 Brussels, Belgium
| | | | - Jens Pahnke
- University of Oslo (UiO) and Oslo University Hospital (OUS), Department of Pathology, Translational Neurodegeneration Research and Neuropathology Lab, Oslo, Norway
- LIED, University of Lübeck, Lübeck, Germany
- Department of Pharmacology, Medical Faculty, University of Latvia, Riga, Latvia
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | | | - Oskar Ragnarsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Camilla Schalin-Jäntti
- Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - David Scheie
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Miklós Tóth
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Chiara Villa
- Department of Pathological Cytology and Anatomy, Foch Hospital, Suresnes, France
- INSERM U1016, Institut Cochin, Paris, France; Université Paris Descartes-Université de Paris, Paris, France
- Department of Endocrinology, Sart Tilman B35, 4000 Liège, Belgium
| | - Martin Wirenfeldt
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Pia Burman
- Department of Endocrinology, Skåne University Hospital, Malmö, Lund University, Sweden
| |
Collapse
|
14
|
Asa SL, Mete O, Ezzat S. Genomics and Epigenomics of Pituitary Tumors: What Do Pathologists Need to Know? Endocr Pathol 2021; 32:3-16. [PMID: 33433883 DOI: 10.1007/s12022-021-09663-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Molecular pathology has advanced our understanding of many tumors and offers opportunities to identify novel therapies. In the pituitary, the field has uncovered several genetic mutations that predispose to pituitary neuroendocrine tumor (PitNET) development, including MEN1, CDKN1B, PRKRIα, AIP, GPR101, and other more rare events; however, these genes are only rarely mutated in sporadic PitNETs. Recurrent genetic events in sporadic PitNETs include GNAS mutations in a subset of somatotroph tumors and ubiquitin-specific peptidase mutations (e.g., USP8, USP48) in some corticotroph tumors; to date, neither of these has resulted in altered management, and instead, the prognosis and management of PitNETs still rely more on cell type and subtype as well as local growth that determines surgical resectability. In contrast, craniopharyngiomas have either CTNNB1 or BRAFV600E mutations that correlate with adamantinomatous or papillary morphology, respectively; the latter offers the opportunity for targeted therapy. DICER1 mutations are found in patients with pituitary blastoma. Epigenetic changes are implicated in the pathogenesis of the more common sporadic pituitary neoplasms including the majority of PitNETs and tumors of pituicytes.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
- Department of Pathology, University Health Network, Toronto, ON, Canada.
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shereen Ezzat
- Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Telomere length alterations and ATRX/DAXX loss in pituitary adenomas. Mod Pathol 2020; 33:1475-1481. [PMID: 32203094 PMCID: PMC8867890 DOI: 10.1038/s41379-020-0523-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 01/03/2023]
Abstract
Telomeres are nucleoprotein complexes located at the termini of eukaryotic chromosomes that prevent exonucleolytic degradation and end-to-end chromosomal fusions. Cancers often have critically shortened, dysfunctional telomeres contributing to genomic instability. Telomere shortening has been reported in a wide range of precancerous lesions and invasive carcinomas. However, the role of telomere alterations, including the presence of alternative lengthening of telomeres (ALT), has not been studied in pituitary adenomas. Telomere length and the presence of ALT were assessed directly at the single cell level using a telomere-specific fluorescence in situ hybridization assay in tissue microarrays. Tumors were characterized as either ALT-positive or having short, normal, or long telomere lengths and then these categories were compared with clinicopathological characteristics. ATRX and DAXX expression was studied through immunohistochemistry. We characterized a discovery set of 106 pituitary adenomas including both functional and nonfunctional subsets (88 primary, 18 recurrent). Telomere lengths were estimated and we observed 64 (59.4%) cases with short, 39 (36.8%) cases with normal, and 0 (0%) cases with long telomeres. We did not observe significant differences in the clinicopathological characteristics of the group with abnormally shortened telomeres compared to the group with normal telomeres. However, three pituitary adenomas were identified as ALT-positive of which two were recurrent tumors. Two of these three ALT-positive cases had alterations in either of the chromatin remodeling proteins, ATRX and DAXX, which are routinely altered in other ALT-positive tumor subtypes. In a second cohort of 32 recurrent pituitary adenomas from 22 patients, we found that the tumors from 36% of patients (n = 8) were ALT-positive. This study demonstrates that short telomere lengths are prevalent in pituitary adenomas and that ALT-positive pituitary adenomas are enriched in recurrent disease.
Collapse
|
16
|
Lamb LS, Sim HW, McCormack AI. Exploring the Role of Novel Medical Therapies for Aggressive Pituitary Tumors: A Review of the Literature-"Are We There Yet?". Cancers (Basel) 2020; 12:cancers12020308. [PMID: 32012988 PMCID: PMC7072681 DOI: 10.3390/cancers12020308] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Aggressive pituitary tumors account for up to 10% of pituitary tumors and are characterized by resistance to medical treatment and multiple recurrences despite standard therapies, including surgery, radiotherapy, and chemotherapy. They are associated with increased morbidity and mortality, particularly pituitary carcinomas, which have mortality rates of up to 66% at 1 year after diagnosis. Novel targeted therapies under investigation include mammalian target of rapamycin (mTOR), tyrosine kinase, and vascular endothelial growth factor (VEGF) inhibitors. More recently, immune checkpoint inhibitors have been proposed as a potential treatment option for pituitary tumors. An increased understanding of the molecular pathogenesis of aggressive pituitary tumors is required to identify potential biomarkers and therapeutic targets. This review discusses novel approaches to the management of aggressive pituitary tumors and the role of molecular profiling.
Collapse
Affiliation(s)
- Lydia S. Lamb
- Department of Endocrinology, St Vincent’s Hospital, Sydney, NSW 2010, Australia;
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;
| | - Hao-Wen Sim
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
| | - Ann I. McCormack
- Department of Endocrinology, St Vincent’s Hospital, Sydney, NSW 2010, Australia;
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- Correspondence: ; Tel.: +61-2-9295-8489
| |
Collapse
|
17
|
The Genetics of Pituitary Adenomas. J Clin Med 2019; 9:jcm9010030. [PMID: 31877737 PMCID: PMC7019860 DOI: 10.3390/jcm9010030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022] Open
Abstract
The genetic landscape of pituitary adenomas (PAs) is diverse and many of the identified cases remain of unclear pathogenetic mechanism. Germline genetic defects account for a small percentage of all patients and may present in the context of relevant family history. Defects in AIP (mutated in Familial Isolated Pituitary Adenoma syndrome or FIPA), MEN1 (coding for menin, mutated in Multiple Endocrine Neoplasia type 1 or MEN 1), PRKAR1A (mutated in Carney complex), GPR101 (involved in X-Linked Acrogigantism or X-LAG), and SDHx (mutated in the so called "3 P association" of PAs with pheochromocytomas and paragangliomas or 3PAs) account for the most common familial syndromes associated with PAs. Tumor genetic defects in USP8, GNAS, USP48 and BRAF are some of the commonly encountered tissue-specific changes and may explain a larger percentage of the developed tumors. Somatic (at the tumor level) genomic changes, copy number variations (CNVs), epigenetic modifications, and differential expression of miRNAs, add to the variable genetic background of PAs.
Collapse
|
18
|
Alshaikh OM, Asa SL, Mete O, Ezzat S. An Institutional Experience of Tumor Progression to Pituitary Carcinoma in a 15-Year Cohort of 1055 Consecutive Pituitary Neuroendocrine Tumors. Endocr Pathol 2019; 30:118-127. [PMID: 30706322 DOI: 10.1007/s12022-019-9568-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pituitary carcinoma is a rare disease, defined by the presence of cerebrospinal or distant metastasis of a pituitary neuroendocrine tumor (PitNET). To review our institutional experience of pituitary carcinoma, we searched the database of the UHN Endocrine Oncology Site group and the University Health Network pathology laboratory information system from 2001 to 2016. Among 1055 PitNETs from 1169 transsphenoidal resections, we identified 4 cases of pituitary carcinoma, indicating that pituitary carcinoma represents around 0.4% of PitNETs. All four patients were women. The age at initial presentation ranged from 23 to 54 years. Two patients had Cushing disease with corticotroph tumors; one was initially a densely granulated corticotroph tumor that evolved to become sparsely granulated, while the other was a Crooke cell tumor. One patient had a functioning sparsely granulated lactotroph tumor and one had a clinically silent poorly differentiated PIT1 lineage tumor. Apart from a relatively high Ki67 labeling index (≥ 10%) in three tumors, there were no cytomorphologic features at the time of initial presentation that could predict subsequent metastatic behavior. The time from diagnosis of the pituitary neuroendocrine tumor to the diagnosis of malignancy was 3 to 14 years. Therapies included somatostatin analogs, external beam radiotherapy, chemotherapies including capecitabine/temozolomide, everolimus, sunitinib, bevacizumab, and peptide receptor radionuclide therapy (PRRT). One patient died of disease 18 years after initial diagnosis, underscoring the protracted course of this ultimately fatal neuroendocrine malignancy.
Collapse
Affiliation(s)
- Omalkhaire M Alshaikh
- Department of Medicine, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sylvia L Asa
- Department of Pathology, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shereen Ezzat
- Department of Medicine, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 7-327, Toronto, Ontario, M5G 2M9, Canada.
| |
Collapse
|