1
|
Park S, Yang JB, Park YH, Kim YK, Jeoung D, Kim HY, Jung HS. Structural insight into crystal structure of helicase domain of DDX53. Biochem Biophys Res Commun 2023; 677:190-195. [PMID: 37603933 DOI: 10.1016/j.bbrc.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
DEAD box helicase proteins are a family of RNA helicases that participate in various RNA metabolisms such as RNA unwinding, RNA processing, and RNPase activities. A particular DEAD box protein, the DDX53 protein, is primarily expressed in cancer cells and plays a crucial role in tumorigenesis. Numerous studies have revealed that DDX53 interacts with various microRNA and Histone deacetylases. However, its molecular structure and the detailed binding interaction between DDX53 and microRNA or HDAC is still unclear. In this study, we used X-ray crystallography to investigate the 3D structure of the hlicase C-terminal domain of DDX53, and successfully determined its crystal structure at a resolution of 1.97 Å. Subsequently, a functional analysis of RNA was conducted by examining the binding properties thereof with DDX53 by transmission electron microscopy and computing-based molecular docking simulation. The defined 3D model of DDX53 not only provides a structural basis for the fundamental understanding of DDX53 but is also expected to contribute to the field of anti-cancer drug discovery such as structure-based drug discovery and computer-aided drug design.
Collapse
Affiliation(s)
- Suncheol Park
- Research Center for Bioconvergence Analysis, Division of Analytical Science Research, Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Republic of Korea
| | - Jeong Bin Yang
- Division of Chemistry & Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Yoon Ho Park
- Division of Chemistry & Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Young Kwan Kim
- Panolos Bioscience Inc., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Dooil Jeoung
- Division of Chemistry & Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Hye-Yeon Kim
- Research Center for Bioconvergence Analysis, Division of Analytical Science Research, Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Republic of Korea.
| | - Hyun Suk Jung
- Division of Chemistry & Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Yeon M, Lee H, Yeo J, Jeong MS, Jung HS, Lee H, Shim K, Jo H, Jeon D, Koh J, Jeoung D. Cancer/testis antigen CAGE mediates osimertinib resistance in non-small cell lung cancer cells and predicts poor prognosis in patients with pulmonary adenocarcinoma. Sci Rep 2023; 13:15748. [PMID: 37735252 PMCID: PMC10514060 DOI: 10.1038/s41598-023-43124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2023] [Indexed: 09/23/2023] Open
Abstract
CAGE, a cancer/testis antigen, was originally isolated from the sera of patients with gastric cancers. Previously, we have shown the role of CAGE in resistance to chemotherapy and target therapy. The aim of this study was to investigate the role of CAGE in osimertinib resistance and determine the prognostic value of CAGE in patients with pulmonary adenocarcinomas. The clinicopathological correlation with CAGE and autophagy flux in patients was examined using immunohistochemistry and in situ hybridization. The possible role of autophagy in osimertinib resistance was analyzed using immune blot, immune fluorescence staining and immunohistochemistry. This study found that immunohistochemical staining (IHC) showed CAGE expression in more than 50% of patients with pulmonary adenocarcinomas (pADCs). CAGE expression was increased in pADCs after the acquisition of EGFR-TKIs resistance. High expression of CAGE was correlated with shorter overall survival and progression free survival in patients with pADCs. Thus, CAGE mediates osimertinib resistance and predicts poor prognosis in patients with pADCs. Osimertinib-resistant non-small cell lung cancer cells (PC-9/OSI) were established and mechanistic studies of CAGE-mediated osimertinib resistance were performed. PC-9/OSI cells showed increased autophagic flux and CAGE expression compared with parental sensitive PC-9 cells. PC-9/OSI cells showed higher tumorigenic, metastatic, and angiogenic potential compared with parental PC-9 cells. CAGE CRISPR-Cas9 cell lines showed decreased autophagic flux, invasion, migration potential, and tumorigenic potential compared with PC-9/OSI cells in vitro and in vivo. CAGE plays a crucial role in the cancer progression by modulating autophagy and can predict the poor prognosis of patients with pulmonary adenocarcinomas. Our findings propose CAGE as a potential therapeutic target for developing anticancer drugs that can overcome osimertinib resistance.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | | | - Jeongseon Yeo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
- Paean Biotech Company, Seoul, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | | | - Kyeonghee Shim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hyein Jo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | | | - Jaemoon Koh
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Korea.
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
3
|
Ciardulli MC, Mariconda A, Sirignano M, Lamparelli EP, Longo R, Scala P, D'Auria R, Santoro A, Guadagno L, Della Porta G, Longo P. Activity and Selectivity of Novel Chemical Metallic Complexes with Potential Anticancer Effects on Melanoma Cells. Molecules 2023; 28:4851. [PMID: 37375406 DOI: 10.3390/molecules28124851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Human malignant melanoma cells from lymph node metastatic site (MeWo) were selected for testing several synthesized and purified silver(I) and gold(I) complexes stabilized by unsymmetrically substituted N-heterocyclic carbene (NHC) ligands, called L20 (N-methyl, N'-[2-hydroxy ethylphenyl]imidazol-2-ylide) and M1 (4,5-dichloro, N-methyl, N'-[2-hydroxy ethylphenyl]imidazol-2-ylide), having halogenide (Cl- or I-) or aminoacyl (Gly=N-(tert-Butoxycarbonyl)glycinate or Phe=(S)-N-(tert-Butoxycarbonyl)phenylalaninate) counterion. For AgL20, AuL20, AgM1 and AuM1, the Half-Maximal Inhibitory Concentration (IC50) values were measured, and all complexes seemed to reduce cell viability more effectively than Cisplatin, selected as control. The complex named AuM1 was the most active just after 8 h of treatment at 5 μM, identified as effective growth inhibition concentration. AuM1 also showed a linear dose and time-dependent effect. Moreover, AuM1 and AgM1 modified the phosphorylation levels of proteins associated with DNA lesions (H2AX) and cell cycle progression (ERK). Further screening of complex aminoacyl derivatives indicated that the most powerful were those indicated with the acronyms: GlyAg, PheAg, AgL20Gly, AgM1Gly, AuM1Gly, AgL20Phe, AgM1Phe, AuM1Phe. Indeed, the presence of Boc-Glycine (Gly) and Boc-L-Phenylalanine (Phe) showed an improved efficacy of Ag main complexes, as well as that of AuM1 derivatives. Selectivity was further checked on a non-cancerous cell line, a spontaneously transformed aneuploid immortal keratinocyte from adult human skin (HaCaT). In such a case, AuM1 and PheAg complexes resulted as the most selective allowing HaCaT viability at 70 and 40%, respectively, after 48 h of treatment at 5 μM. The same complexes tested on 3D MeWo static culture induced partial spheroid disaggregation after 24 h of culture, with almost half of the cells dead.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marco Sirignano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Raffaella D'Auria
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
4
|
Nin DS, Deng LW. Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer. Cells 2023; 12:cells12060926. [PMID: 36980267 PMCID: PMC10047177 DOI: 10.3390/cells12060926] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Tumour-specific antigens have been an area of interest in cancer therapy since their discovery in the middle of the 20th century. In the era of immune-based cancer therapeutics, redirecting our immune cells to target these tumour-specific antigens has become even more relevant. Cancer-testis antigens (CTAs) are a class of antigens with an expression specific to the testis and cancer cells. CTAs have also been demonstrated to be expressed in a wide variety of cancers. Due to their frequency and specificity of expression in a multitude of cancers, CTAs have been particularly attractive as cancer-specific therapeutic targets. There is now a rapid expansion of CTAs being identified and many studies have been conducted to correlate CTA expression with cancer and therapy-resistant phenotypes. Furthermore, there is an increasing number of clinical trials involving using some of these CTAs as molecular targets in pharmacological and immune-targeted therapeutics for various cancers. This review will summarise the current knowledge of the biology of known CTAs in tumorigenesis and the regulation of CTA genes. CTAs as molecular targets and the therapeutic implications of these CTA-targeted anticancer strategies will also be discussed.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
5
|
Jo H, Shim K, Kim HU, Jung HS, Jeoung D. HDAC2 as a Target for developing Anti-cancer Drugs. Comput Struct Biotechnol J 2023; 21:2048-2057. [PMID: 36968022 PMCID: PMC10030825 DOI: 10.1016/j.csbj.2023.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Histone deacetylases (HDACs) deacetylate histones H3 and H4. An imbalance between histone acetylation and deacetylation can lead to various diseases. HDAC2 is present in the nucleus. It plays a critical role in modifying chromatin structures and regulates the expression of various genes by functioning as a transcriptional regulator. The roles of HDAC2 in tumorigenesis and anti-cancer drug resistance are discussed in this review. Several reports suggested that HDAC2 is a prognostic marker of various cancers. The roles of microRNAs (miRNAs) that directly regulate the expression of HDAC2 in tumorigenesis are also discussed in this review. This review also presents HDAC2 as a valuable target for developing anti-cancer drugs.
Collapse
|
6
|
Roles of RNA Methylations in Cancer Progression, Autophagy, and Anticancer Drug Resistance. Int J Mol Sci 2023; 24:ijms24044225. [PMID: 36835633 PMCID: PMC9959100 DOI: 10.3390/ijms24044225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
RNA methylations play critical roles in RNA processes, including RNA splicing, nuclear export, nonsense-mediated RNA decay, and translation. Regulators of RNA methylations have been shown to be differentially expressed between tumor tissues/cancer cells and adjacent tissues/normal cells. N6-methyladenosine (m6A) is the most prevalent internal modification of RNAs in eukaryotes. m6A regulators include m6A writers, m6A demethylases, and m6A binding proteins. Since m6A regulators play important roles in regulating the expression of oncogenes and tumor suppressor genes, targeting m6A regulators can be a strategy for developing anticancer drugs. Anticancer drugs targeting m6A regulators are in clinical trials. m6A regulator-targeting drugs could enhance the anticancer effects of current chemotherapy drugs. This review summarizes the roles of m6A regulators in cancer initiation and progression, autophagy, and anticancer drug resistance. The review also discusses the relationship between autophagy and anticancer drug resistance, the effect of high levels of m6A on autophagy and the potential values of m6A regulators as diagnostic markers and anticancer therapeutic targets.
Collapse
|
7
|
The Potential of Senescence as a Target for Developing Anticancer Therapy. Int J Mol Sci 2023; 24:ijms24043436. [PMID: 36834846 PMCID: PMC9961771 DOI: 10.3390/ijms24043436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Senescence occurs in response to various stimuli. Senescence has attracted attention because of its potential use in anticancer therapy as it plays a tumor-suppressive role. It also promotes tumorigeneses and therapeutic resistance. Since senescence can induce therapeutic resistance, targeting senescence may help to overcome therapeutic resistance. This review provides the mechanisms of senescence induction and the roles of the senescence-associated secretory phenotype (SASP) in various life processes, including therapeutic resistance and tumorigenesis. The SASP exerts pro-tumorigenic or antitumorigenic effects in a context-dependent manner. This review also discusses the roles of autophagy, histone deacetylases (HDACs), and microRNAs in senescence. Many reports have suggested that targeting HDACs or miRNAs could induce senescence, which, in turn, could enhance the effects of current anticancer drugs. This review presents the view that senescence induction is a powerful method of inhibiting cancer cell proliferation.
Collapse
|
8
|
Jo H, Shim K, Jeoung D. Targeting HDAC6 to Overcome Autophagy-Promoted Anti-Cancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23179592. [PMID: 36076996 PMCID: PMC9455701 DOI: 10.3390/ijms23179592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylases (HDACs) regulate gene expression through the epigenetic modification of chromatin structure. HDAC6, unlike many other HDACs, is present in the cytoplasm. Its deacetylates non-histone proteins and plays diverse roles in cancer cell initiation, proliferation, autophagy, and anti-cancer drug resistance. The development of HDAC6-specific inhibitors has been relatively successful. Mechanisms of HDAC6-promoted anti-cancer drug resistance, cancer cell proliferation, and autophagy are discussed. The relationship between autophagy and anti-cancer drug resistance is discussed. The effects of combination therapy, which includes HDAC6 inhibitors, on the sensitivity of cancer cells to chemotherapeutics and immune checkpoint blockade are presented. A summary of clinical trials involving HDAC6-specific inhibitors is also presented. This review presents HDAC6 as a valuable target for developing anti-cancer drugs.
Collapse
|
9
|
Jo H, Shim K, Jeoung D. Potential of the miR-200 Family as a Target for Developing Anti-Cancer Therapeutics. Int J Mol Sci 2022; 23:ijms23115881. [PMID: 35682560 PMCID: PMC9180509 DOI: 10.3390/ijms23115881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18–24 nucleotides) that play significant roles in cell proliferation, development, invasion, cancer development, cancer progression, and anti-cancer drug resistance. miRNAs target multiple genes and play diverse roles. miRNAs can bind to the 3′UTR of target genes and inhibit translation or promote the degradation of target genes. miR-200 family miRNAs mostly act as tumor suppressors and are commonly decreased in cancer. The miR-200 family has been reported as a valuable diagnostic and prognostic marker. This review discusses the clinical value of the miR-200 family, focusing on the role of the miR-200 family in the development of cancer and anti-cancer drug resistance. This review also provides an overview of the factors that regulate the expression of the miR-200 family, targets of miR-200 family miRNAs, and the mechanism of anti-cancer drug resistance regulated by the miR-200 family.
Collapse
|
10
|
Yang P, Qiao Y, Meng M, Zhou Q. Cancer/Testis Antigens as Biomarker and Target for the Diagnosis, Prognosis, and Therapy of Lung Cancer. Front Oncol 2022; 12:864159. [PMID: 35574342 PMCID: PMC9092596 DOI: 10.3389/fonc.2022.864159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/17/2022] [Indexed: 11/15/2022] Open
Abstract
Lung cancer is the leading type of malignant tumour among cancer-caused death worldwide, and the 5-year survival rate of lung cancer patients is only 18%. Various oncogenes are abnormally overexpressed in lung cancer, including cancer/testis antigens (CTAs), which are restrictively expressed in the male testis but are hardly expressed in other normal tissues, if at all. CTAs are aberrantly overexpressed in various types of cancer, with more than 60 CTAs abnormally overexpressed in lung cancer. Overexpression of oncogenic CTAs drives the initiation, metastasis and progression of lung cancer, and is closely associated with poor prognosis in cancer patients. Several CTAs, such as XAGE, SPAG9 and AKAP4, have been considered as biomarkers for the diagnosis and prognostic prediction of lung cancer. More interestingly, due to the high immunogenicity and specificity of CTAs in cancer, several CTAs, including CT45, BCAP31 and ACTL8, have been targeted for developing novel therapeutics against cancer. CTA-based vaccines, chimeric antigen receptor-modified T cells (CAR-T) and small molecules have been used in lung cancer treatment in pre-clinical and early clinical trials, with encouraging results being obtained. However, there are still many hurdles to be overcome before these therapeutics can be routinely used in clinical lung cancer therapy. This review summarises the recent rapid progress in oncogenic CTAs, focusing on CTAs as biomarkers for lung cancer diagnosis and prognostic prediction, and as targets for novel anti-cancer drug discovery and lung cancer therapy. We also identify challenges and opportunities in CTA-based cancer diagnosis and treatment. Finally, we provide perspectives on the mechanisms of oncogenic CTAs in lung cancer development, and we also suggest CTAs as a new platform for lung cancer diagnosis, prognostic prediction, and novel anti-cancer drug discovery.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Chen G, Wang M, Ruan Z, Zhu L, Tang C. Mesenchymal stem cell-derived exosomal miR-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy. Life Sci 2021; 280:119742. [PMID: 34166712 DOI: 10.1016/j.lfs.2021.119742] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
AIMS Myocardial ischemia-reperfusion (I/R) injury is considered as a major obstacle of myocardial perfusion to save acute myocardial infarction, and causes a serious threat to human health. An extensive body of evidence has unveiled that mesenchymal stem cells (MSCs) as adult stem cells play a vital role in the field of damaged myocardial regeneration and repair. However, the biological role of MSCs derived-exosomes in the protection of myocardial I/R injury has not been elucidated. MAIN METHODS In this study, we isolated and characterized MSCs from the bone marrow of rats femur and tibia. H9c2 cells were administrated to established the cellular hypoxia-reoxygenation (H/R) model, and co-cultured with MSCs and MSCs-derived exosomes. KEY FINDINGS Functional experiments revealed that MSCs and MSCs-derived exosomes inhibited H/R-induced cell apoptosis and cell autophagy. Interestingly, rapamycin as an activator of autophagy reversed the positive effects of MSCs-derived exosomes, while 3-methyladenine (3-MA) as autophagy inhibitor further promoted the effects of MSCs-derived exosomes, indicating MSCs exerted its function on H/R injury by mediating autophagy. Subsequently, we found that CHK2-Beclin2 pathway participated in H/R-induced autophagy. Mechanistically, miR-143-3p directly targeted CHK2 and negatively regulated CHK2 expression. Moreover, repression of exosomal miR-143-3p promoted H/R-induced autophagy via CHK2-Beclin2 pathway. Consistent with the results of in vitro experiments, in vivo experiments confirmed that exosomal miR-143-3p effectively reduced cell apoptosis by regulating autophagy via CHK2-Beclin2 pathway. SIGNIFICANCE Collectively, our results indicated that MSCs-derived exosomal miR-143-3p might represent a promising option for the treatment of I/R injury.
Collapse
Affiliation(s)
- Gecai Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu Province 210009, China; Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, China.
| | - Meixiang Wang
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, China
| | - Zhongbao Ruan
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, China
| | - Li Zhu
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu Province 210009, China.
| |
Collapse
|
12
|
Luo B, Mao G, Ma H, Chen S. The role of seven autoantibodies in lung cancer diagnosis. J Thorac Dis 2021; 13:3660-3668. [PMID: 34277058 PMCID: PMC8264704 DOI: 10.21037/jtd-21-835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/08/2021] [Indexed: 11/06/2022]
Abstract
Background To investigate the expression and diagnostic value of seven autoantibodies (P53, PGP9.5, SOX2, GAGE7, GBU4-5, MAGE, and CACE) in lung cancer patients. Methods A total of 370 patients were admitted to the Thoracic Surgery of the First Affiliated Hospital of Suzhou University from 2017 to 2019, including 305 patients with lung cancer and 65 patients with benign lesions. The concentrations of the seven autoantibodies were determined by enzyme linked immunosorbent assay (ELISA).The expression levels of each antibody were compared between the two groups, and the levels of each antibody between lung cancer patients with different pathological types were also compared. We aimed to analyze the diagnostic efficiency of single antibody detection combined with seven antibodies, and also to explore whether there were differences among the positive rates of each antibody in sex, age, smoking history, pathological classification, and clinical stages in the lung cancer group. Results The expression levels of seven autoantibodies in the lung cancer group were higher than those in the benign lesion group. In the lung cancer group, the expression levels of the seven autoantibodies did not vary statistically among different pathological types. The area under the curve of combined detection of the seven antibodies reached 0.735, and the Y-index reached 0.35, which was higher than that of single antibody detection. P53 exhibited the highest sensitivity and lowest specificity; meanwhile, PGP9.5, SOX2, GAGE7, GBU4-5, and MAGEA1 exhibited low sensitivity and high specificity. The sensitivity and specificity of the CAGE were approximately 60%, respectively. There was no statistical difference in the positive rate of each antibody in age, smoking history, and clinical stage. The positive rate of MAGEA1 and CAGE was statistically different in sex, and the positive rate of MAGEA1 was statistically different in pathological classification. Conclusions The seven autoantibodies of lung cancer can potentially be used as an auxiliary examination method for the early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Bin Luo
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guocai Mao
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Ma
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shaomu Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Yeon M, Kim Y, Pathak D, Kwon E, Kim DY, Jeong MS, Jung HS, Jeoung D. The CAGE-MiR-181b-5p-S1PR1 Axis Regulates Anticancer Drug Resistance and Autophagy in Gastric Cancer Cells. Front Cell Dev Biol 2021; 9:666387. [PMID: 34113619 PMCID: PMC8185229 DOI: 10.3389/fcell.2021.666387] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023] Open
Abstract
Cancer-associated gene (CAGE), a cancer/testis antigen, has been known to promote anticancer drug resistance. Since the underlying mechanisms of CAGE-promoted anticancer drug resistance are poorly understood, we established Anticancer drug-resistant gastric cancer cells (AGSR) to better elucidate possible mechanisms. AGSR showed an increased expression level of CAGE and autophagic flux compared with anticancer drug-sensitive parental gastric cancer cells (AGS cells). AGSR cells showed higher invasion potential, growth rate, tumor spheroid formation, and angiogenic potential than AGS cells. CAGE exerted effects on the response to anticancer drugs and autophagic flux. CAGE was shown to bind to Beclin1, a mediator of autophagy. Overexpression of CAGE increased autophagic flux and invasion potential but inhibited the cleavage of PARP in response to anticancer drugs in CAGE CRISPR–Cas9 cell lines. TargetScan analysis was utilized to predict the binding of miR-302b-5p to the promoter sequences of CAGE, and the results show that miR-302b-5p directly regulated CAGE expression as illustrated by luciferase activity. MiR-302b-5p regulated autophagic flux and the response to anticancer drugs. CAGE was shown to bind the promoter sequences of miR-302b-5p. The culture medium of AGSR cells increased CAGE expression and autophagic flux in AGS cells. ImmunoEM showed CAGE was present in the exosomes of AGSR cells; exosomes of AGSR cells and human recombinant CAGE protein increased CAGE expression, autophagic flux, and resistance to anticancer drugs in AGS cells. MicroRNA array revealed miR-181b-5p as a potential negative regulator of CAGE. MiR-181b-5p inhibitor increased the expression of CAGE and autophagic flux in addition to preventing anticancer drugs from cleaving poly(ADP-ribose) polymerase (PARP) in AGS cells. TargetScan analysis predicted sphingosine 1-phosphate receptor 1 (SIPR1) as a potential target for miR-181b-5p. CAGE showed binding to the promoter sequences of S1PR1. The downregulation or inhibition of S1PR1 led to decreased autophagic flux but enhanced the sensitivity to anticancer drugs in AGSR cells. This study presents a novel role of the CAGE–miR-181b-5p–S1PR1 axis in anticancer drug resistance and autophagy.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Deepak Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea.,Chuncheon Center, Korea Basic Science Institute, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
14
|
Fan H, Ding L, Yang Y. lncRNA SNHG16 promotes the occurrence of osteoarthritis by sponging miR‑373‑3p. Mol Med Rep 2020; 23:117. [PMID: 33300061 PMCID: PMC7751458 DOI: 10.3892/mmr.2020.11756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a common age‑related joint disorder, for which no effective disease‑modifying drugs are currently available. Long non‑coding RNAs (lncRNAs) are involved in the occurrence of OA. lncRNA small nucleolar RNA host gene 16 (SNHG16) has been reported to regulate inflammation; however, the exact biological function of SNHG16 in OA and its underlying mechanism of action remain unclear. In this study, gene and protein expression levels were detected using reverse transcription‑quantitative PCR and western blotting, respectively. Cell apoptosis was analyzed using flow cytometry and ELISA was performed to detect TNF‑α levels. The interactions between lncRNA SNHG16 and microRNA (miR)‑373‑3p were examined using the dual‑luciferase reporter assay. lncRNA SNHG16 was upregulated in OA tissue compared with normal joint tissue. The expression levels of collagen II were significantly reduced in OA tissue compared with normal tissue. Similarly, aggrecan expression levels were significantly reduced in IL‑1β‑treated CHON‑001 cells compared with the controls. In addition, the protein expression levels of MMP13 were significantly increased in OA tissues and IL‑1β‑treated CHON‑001 cells compared with the controls. SNHG16 knockdown significantly increased the expression levels of aggrecan, and decreased the expression levels of MMP13, cleaved caspase‑3 and p21 in IL‑1β‑treated CHON‑001 cells. In addition, IL‑1β induced CHON‑001 cell apoptosis, while SNHG16 knockdown decreased IL‑1β‑induced apoptosis. Furthermore, the luciferase activity assay suggested that SNHG16 negatively regulated miR‑373‑3p in OA. Finally, the results suggested that the proinflammatory effect of IL‑1β on CHON‑001 cells was significantly reduced by SNHG16 knockdown. In conclusion, lncRNA SNHG16 knockdown significantly limited the progression of OA by sponging miR‑373‑3p in vitro, which suggested that SNHG16 may serve as a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Haiyan Fan
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Liangjia Ding
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Yun Yang
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| |
Collapse
|
15
|
Effects of miR-373 Inhibition on Glioblastoma Growth by Reducing Limk1 In Vitro. J Immunol Res 2020; 2020:7671502. [PMID: 33062725 PMCID: PMC7539108 DOI: 10.1155/2020/7671502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with shorter median overall survival time. It is urgent to find novel methods to enhance the therapeutic efficiency clinically. miR-373 is related to the biological development process of cancers, but there are no reports whether modulation on miR-373 could affect GBM development or modify the efficiency of chemo- or radiotherapy yet. Our current study found that the higher level of miR-373 was observed in U-251 cells. Inhibition on miR-373 could reduce the U-251 cell number by 65% and PCNA expression obviously. In addition, inhibition on miR-373 sensitized U-251 cells to chemo- or radiotherapy. The cell cycle of U-251 cells could be modulated by miR-373 knockdown, which could enhance the p21 expression and reduce the cdc2 level. Anti-miR-373 could increase the Bax/Bcl-2 ratio of U-251 cells and induce cell apoptosis significantly. These above effects of miR-373 could be reversed by Limk1 overexpression. Thus, our experimental data confirmed the fact that miR-373 could be a new therapeutic target to enhance the efficiency of chemo- or radiotherapy for clinical GBM patients.
Collapse
|
16
|
Feng J, Lu SS, Xiao T, Huang W, Yi H, Zhu W, Fan S, Feng XP, Li JY, Yu ZZ, Gao S, Nie GH, Tang YY, Xiao ZQ. ANXA1 Binds and Stabilizes EphA2 to Promote Nasopharyngeal Carcinoma Growth and Metastasis. Cancer Res 2020; 80:4386-4398. [PMID: 32737118 DOI: 10.1158/0008-5472.can-20-0560] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022]
Abstract
Overexpression of ANXA1 and EphA2 has been linked to various cancers and both proteins have attracted considerable attention for the development of new anticancer drugs. Here we report that ANXA1 competes with Cbl for binding EphA2 and increases its stability by inhibiting Cbl-mediated EphA2 ubiquitination and degradation in nasopharyngeal carcinoma (NPC). Binding of ANXA1 to EphA2 promoted NPC cell growth and metastasis in vitro and in vivo by elevating EphA2 levels and increasing activity of EphA2 oncogenic signaling (pS897-EphA2). Expression of ANXA1 and EphA2 was positively correlated and both were significantly higher in NPC tissues than in the normal nasopharyngeal epithelial tissues. Patients with high expression of both proteins presented poorer disease-free survival and overall survival relative to patients with high expression of one protein alone. Furthermore, amino acid residues 20-30aa and 28-30aa of the ANXA1 N-terminus bound EphA2. An 11 amino acid-long ANXA1-derived peptide (EYVQTVKSSKG) was developed on the basis of this N-terminal region, which disrupted the connection of ANXA1 with EphA2, successfully downregulating EphA2 expression and dramatically suppressing NPC cell oncogenicity in vitro and in mice. These findings suggest that ANXA1 promotes NPC growth and metastasis via binding and stabilization of EphA2 and present a strategy for targeting EphA2 degradation and treating NPC with a peptide. This therapeutic strategy may also be extended to other cancers with high expression of both proteins. SIGNIFICANCE: These findings show that EphA2 is a potential target for NPC therapeutics and an ANXA1-derived peptide suppresses NPC growth and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4386/F1.large.jpg.
Collapse
Affiliation(s)
- Juan Feng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao-Yang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guo-Hui Nie
- Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yao-Yun Tang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Xiao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China. .,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Kwon Y, Kim M, Kim Y, Jung HS, Jeoung D. Exosomal MicroRNAs as Mediators of Cellular Interactions Between Cancer Cells and Macrophages. Front Immunol 2020; 11:1167. [PMID: 32595638 PMCID: PMC7300210 DOI: 10.3389/fimmu.2020.01167] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironment consists of cancer cells and various stromal cells such as endothelial cells, cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), neutrophils, macrophages, and other innate and adaptive immune cells. Of these innate immune cells, macrophages are an extremely heterogeneous population, and display both pro-inflammatory and anti-inflammatory functions. While M1 macrophages (classically activated macrophages) display anti-tumoral and pro-inflammatory functions, M2 macrophages display pro-tumoral and anti-inflammatory functions. Cellular interactions and molecular factors in the tumor microenvironment affect the polarization of macrophages. We review molecules and immune cells that influence the polarization status of macrophages. Tumor-associated macrophages (TAMs) generally express M2 phenotype, and mediate many processes that include tumor initiation, angiogenesis, and metastasis. A high number of TAMs has been associated with the poor prognosis of cancers. MicroRNAs (miRNAs) have been known to regulate cellular interactions that involve cancer cells and macrophages. Tumor-derived exosomes play critical roles in inducing the M1 or M2-like polarization of macrophages. The roles of exosomal miRNAs from tumor cells in the polarization of macrophages are also discussed and the targets of these miRNAs are presented. We review the effects of exosomal miRNAs from TAMs on cancer cell invasion, growth, and anti-cancer drug resistance. The relevance of exosomal microRNAs (miRNAs) as targets for the development of anti-cancer drugs is discussed. We review recent progress in the development of miRNA therapeutics aimed at elevating or decreasing levels of miRNAs.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Misun Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
18
|
Zhu H, Zhu H, Tian M, Wang D, He J, Xu T. DNA Methylation and Hydroxymethylation in Cervical Cancer: Diagnosis, Prognosis and Treatment. Front Genet 2020; 11:347. [PMID: 32328088 PMCID: PMC7160865 DOI: 10.3389/fgene.2020.00347] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Recent discoveries have led to the development of novel ideas and techniques that have helped elucidate the correlation between epigenetics and tumor biology. Nowadays, the field of tumor genetics has evolved to include a new type of regulation by epigenetics. An increasing number of studies have demonstrated the importance of DNA methylation and hydroxymethylation in specific genes in the progression of cervical cancer. Determining the methylation and hydroxymethylation profiles of these genes will help in the early prevention and diagnosis, monitoring recurrence, prognosis, and treatment of patients with cervical cancer. In this review, we focus on the significance of aberrant DNA methylation and hydroxymethylation in cervical cancer and the use of these epigenetic signatures in clinical settings.
Collapse
Affiliation(s)
- Hongming Zhu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Miao Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dongying Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Jiaxing He
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Yeon M, Lee S, Lee JE, Jung HS, Kim Y, Jeoung D. CAGE-miR-140-5p-Wnt1 Axis Regulates Autophagic Flux, Tumorigenic Potential of Mouse Colon Cancer Cells and Cellular Interactions Mediated by Exosomes. Front Oncol 2019; 9:1240. [PMID: 31799196 PMCID: PMC6868029 DOI: 10.3389/fonc.2019.01240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Although the cancer/testis antigen CAGE has been implicated in tumorigenesis, the molecular mechanisms of CAGE-promoted tumorigenesis remain largely unknown. CT26Flag−CAGE cells, CT26 (mouse colon cancer cells) cells stably expressing CAGE, were established to investigate CAGE-promoted tumorigenesis. Down-regulation of CAGE led to decreased autophagic flux in CT26Flag−CAGE cells. CAGE interacted with Beclin1, a mediator of autophagy. The CT26Flag−CAGE cells showed enhanced autophagosome formation and displayed greater tumor spheroid-forming potential than CT26 cells. MicroRNA array analysis revealed that CAGE decreased the expression of various microRNAs, including miR-140-5p, in CT26 cells. CAGE was shown to bind to the promoter sequences of miR-140-5p. MiR-140-5p inhibition increased the tumorigenic potential of and autophagic flux in CT26 cells. A miR-140-5p mimic exerted negative effects on the tumorigenic potential of CT26Flag−CAGE cells and autophagic flux in CT26Flag−CAGE cells. MiR-140-5p was predicted to bind to the 3′-UTR of Wnt1. CT26Flag−CAGE cells showed higher expression of Wnt1 than CT26 cells. Down-regulation of Wnt1 decreased autophagic flux. Luciferase activity assays showed the direct regulation of wnt1 by miR-140-5p. Tumor tissue derived from the CT26Flag−CAGE cells revealed higher expressions of factors associated with activated mast cells and tumor-associated macrophages than tumor tissue derived from CT26 cells. Culture medium from the CT26Flag−CAGE cells increased autophagic flux in CT26 cells, mast cells and macrophages. Culture medium from the CT26Flag−CAGE cells increased CD163 and autophagic flux in CT26 cells, mast cells, and macrophages in a Wnt1-dependent manner. Exosomes from CT26Flag−CAGE cells increased autophagc flux in CT26 cells, mast cells, and macrophages. Exosomes from CT26Flag−CAGE cells increased the tumorigenic potential of CT26 cells. Wnt1 was shown to be present within the exosomes. Recombinant Wnt1 protein increased autophagic flux in CT26, mast cells, and macrophages. Recombinant wnt1 protein mediated interactions between the CT26 cells, mast cells, and macrophages. Our results showed novel roles for the CAGE-miR-140-5p-Wnt1 axis in autophagic flux and cellular interactions mediated by exosomes.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| | - Seungheon Lee
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| | - Joo-Eun Lee
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| | - Youngmi Kim
- College of Medicine, Institute of New Frontier Research, Hallym University, Chuncheon-si, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| |
Collapse
|
20
|
Kwon Y, Kim M, Jung HS, Kim Y, Jeoung D. Targeting Autophagy for Overcoming Resistance to Anti-EGFR Treatments. Cancers (Basel) 2019; 11:cancers11091374. [PMID: 31527477 PMCID: PMC6769649 DOI: 10.3390/cancers11091374] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) plays critical roles in cell proliferation, tumorigenesis, and anti-cancer drug resistance. Overexpression and somatic mutations of EGFR result in enhanced cancer cell survival. Therefore, EGFR can be a target for the development of anti-cancer therapy. Patients with cancers, including non-small cell lung cancers (NSCLC), have been shown to response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) and anti-EGFR antibodies. However, resistance to these anti-EGFR treatments has developed. Autophagy has emerged as a potential mechanism involved in the acquired resistance to anti-EGFR treatments. Anti-EGFR treatments can induce autophagy and result in resistance to anti-EGFR treatments. Autophagy is a programmed catabolic process stimulated by various stimuli. It promotes cellular survival under these stress conditions. Under normal conditions, EGFR-activated phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling inhibits autophagy while EGFR/rat sarcoma viral oncogene homolog (RAS)/mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) signaling promotes autophagy. Thus, targeting autophagy may overcome resistance to anti-EGFR treatments. Inhibitors targeting autophagy and EGFR signaling have been under development. In this review, we discuss crosstalk between EGFR signaling and autophagy. We also assess whether autophagy inhibition, along with anti-EGFR treatments, might represent a promising approach to overcome resistance to anti-EGFR treatments in various cancers. In addition, we discuss new developments concerning anti-autophagy therapeutics for overcoming resistance to anti-EGFR treatments in various cancers.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Misun Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chunchon 24251, Korea.
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| |
Collapse
|
21
|
Jin P, Jiang J, Xie N, Zhou L, Huang Z, Zhang L, Qin S, Fu S, Peng L, Gao W, Li B, Lei Y, Nice EC, Li C, Shao J, Xie K. MCT1 relieves osimertinib-induced CRC suppression by promoting autophagy through the LKB1/AMPK signaling. Cell Death Dis 2019; 10:615. [PMID: 31409796 PMCID: PMC6692318 DOI: 10.1038/s41419-019-1844-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Development of novel chemotherapeutics is still required to enable successful treatment and improve survival for CRC patients. Here, we found that osimertinib (OSI) exhibits potent anti-CRC effects by inducing apoptosis, independent of its selective inhibitory activity targeting the EGFR T790M mutation. Intriguingly, OSI treatment triggers autophagic flux in CRC cells. Inhibition of autophagy markedly augments OSI-induced apoptosis and growth inhibition in CRC cells, suggesting a protective role of autophagy in response to OSI treatment. Mechanistically, OSI upregulates the expression of monocarboxylate transporter 1 (MCT1) and subsequently activates LKB1/AMPK signaling, leading to autophagy induction in CRC cells. Notably, OSI significantly exaggerates the sensitivity of CRC cells to the first-line drugs 5-fluorouracil or oxaliplatin. Taken together, our study unravels a novel mechanism of OSI-mediated protective autophagy involving MCT1/LKB1/AMPK signaling, and suggests the use of OSI as a potential agent for clinical CRC treatment.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Shuyue Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jichun Shao
- Department of Urology, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China.
| | - Ke Xie
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China.
| |
Collapse
|