1
|
Zhang J, Zang X, Jiao P, Wu J, Meng W, Zhao L, Lv Z. Alterations of Ceramides, Acylcarnitines, GlyceroLPLs, and Amines in NSCLC Tissues. J Proteome Res 2024; 23:4343-4358. [PMID: 39317643 DOI: 10.1021/acs.jproteome.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Abnormal lipid metabolism plays an important role in cancer development. In this study, nontargeted lipidomic study on 230 tissue specimens from 79 nonsmall cell lung cancer (NSCLC) patients was conducted using ultraperformance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). Downregulation of sphingosine and medium-long-chain ceramides and short-medium-chain acylcarnitine, upregulation of long-chain acylcarnitine C20:0, and enhanced histamine methylation were revealed in NSCLC tissues. Compared with paired noncancerous tissues, adenocarcinoma (AC) tissues had significantly decreased levels of sphingosine, medium-long-chain ceramides (Cer d18:1/12:0 and Cer d16:1/14:0, Cer d18:0/16:0, Cer d18:1/16:0, Cer d18:2/16:0, Cer d18:2/18:0), short-medium-chain (C2-C16) acylcarnitines, LPC 20:0 and LPC 22:1, and significantly increased levels of the long-chain acylcarnitine C20:0, LPC 16:0, LPC P-16:0, LPC 20:1, LPC 20:2, glyceroPC, LPE 16:0, and LPE 18:2. In squamous cell carcinoma (SCC) tissues, sphingosine, Cer d18:2/16:0 and Cer d18:2/18:0, and short-medium-chain acylcarnitines had significantly lower levels, while long-chain acylcarnitines (C20:0, and C22:0 or C22:0 M), LPC 20:1, LPC 20:2, and N1,N12-diacetylspermine had significantly higher levels compared to controls. In AC and SCC tissues, the levels of LPG 18:0, LPG 18:1, and LPS 18:1 were significantly decreased, while the levels of ceramide-1-phosphate (C1P) d18:0/3:0 or LPE P-16:0, N1-acetylspermidine, and 1-methylhistamine were significantly increased than controls. Furthermore, an orthogonal partial least-squares-discriminant analysis (OPLS-DA) model based on a 4-lipid panel was established, showing good discrimination ability between cancerous and noncancerous tissues.
Collapse
Affiliation(s)
- Jie Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Xiaoling Zang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
- Qingdao Marine Science and Technology Center, Qingdao, Shandong 266235, P. R. China
| | - Peng Jiao
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Jiangyu Wu
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Wei Meng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Lizhen Zhao
- College of Physics, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
- Qingdao Marine Science and Technology Center, Qingdao, Shandong 266235, P. R. China
| |
Collapse
|
2
|
Hofman P. Liquid and Tissue Biopsies for Lung Cancer: Algorithms and Perspectives. Cancers (Basel) 2024; 16:3340. [PMID: 39409960 PMCID: PMC11482622 DOI: 10.3390/cancers16193340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The targeted therapies and immunotherapies in thoracic oncology, particularly for NS-NSCLC, are associated with an increase in the number of predictive biomarkers to be assessed in routine clinical practice. These treatments are administered thanks to marketing authorization for use in daily practice or are evaluated during clinical trials. Since the molecular targets to be identified are more and more complex and numerous, it is now mandatory to use NGS. NGS can be developed from both tissue and fluid (mainly blood). The blood tests in oncology, so-called "liquid biopsies" (LB), are performed with plasmatic circulating free DNA (cf-DNA) and are complementary to the molecular testing performed with a TB. LB use in lung cancer is associated with international guidelines, but additional algorithms could be set up. However, even if useful for better care of patients, notably with advanced and metastatic NS-NSCLC, until now LB are not often integrated into daily practice, at least in Europe and notably in France. The purpose of this review is to describe the different opportunities and algorithms leading to the identification of the molecular signature of NS-NSCLC, using both tissue and liquid biopsies, and to introduce the principle limitations but also some perspectives in this field.
Collapse
Affiliation(s)
- Paul Hofman
- IHU RespirERA, Côte d’Azur University, 30 Avenue de la Voie Romaine, 06002 Nice Cedex 01, France;
- Laboratoire de Pathologie Clinique et Experimentale, Centre Hospitalier Universitaire de Nice, Hospital-Related Biobank (BB-0033-00025), Côte d’Azur University, 30 Avenue de la Voie Romaine, 06002 Nice Cedex 01, France
- FHU OncoAge, Pasteur Hospital, Côte d’Azur University, 30 Avenue de la Voie Romaine, 06002 Nice Cedex 01, France
| |
Collapse
|
3
|
Liu T, Zhang E, Cui S, Dai H, Yang X, Lin C. Effects of 630 nm laser on apoptosis, metastasis, invasion and epithelial-to-mesenchymal transition of human lung squamous cell carcinoma H520 cells mediated by hematoporphyrin derivatives. Lasers Med Sci 2024; 39:228. [PMID: 39210165 DOI: 10.1007/s10103-024-04176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Photodynamic therapy (PDT) has significant advantages in the treatment of malignant lung tumors. The research on the mechanism of PDT mediated by hematoporphyrin derivatives (HPD) and its cytotoxic effects on lung cancer cells has primarily focused on lung adenocarcinoma cells. However, the impact of HPD-PDT on lung squamous cell carcinoma has not been thoroughly studied. This study aimed to investigate the effects of 630 nm laser on apoptosis, metastasis, invasion, and epithelial-mesenchymal transition (EMT) in human lung squamous cell carcinoma H520 cells mediated by HPD. H520 cells were divided into four groups: control group, photosensitizer group, irradiation group, and HPD-PDT group. Cell proliferation was assessed using CCK8 assay; cell apoptosis was detected by Hoechst 33258 staining and flow cytometry; cell migration and invasion abilities were evaluated using wound-healing and invasion assays; and protein and mRNA expressions were analyzed by Western blot and reverse transcription-polymerase chain reaction (RT-PCR) respectively. Results showed that HPD-PDT significantly inhibited cell proliferation, promoted apoptosis (P < 0.05), suppressed cell migration and invasion (P < 0.05), decreased Bcl-2 mRNA expression, and increased Bax and Caspase-9 mRNA expression(P < 0.05). Western blotting analysis indicated increased expression of Bax, Caspase-9, and E-cadherin, and decreased expression of Bcl-2, N-cadherin, and Vimentin (P < 0.05). In conclusion, 630 nm laser mediated by HPD promoted cell apoptosis via upregulation of Bax and caspase-9, and downregulation of Bcl-2, and inhibited cell migration and invasion by regulating EMT in H520 cells.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Enhua Zhang
- Department of Respiratory and Critical Care Medicine, Linyi Central Hospital, Linyi, China
| | - Shichao Cui
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haoyu Dai
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaohui Yang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cunzhi Lin
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Garg P, Singhal S, Kulkarni P, Horne D, Malhotra J, Salgia R, Singhal SS. Advances in Non-Small Cell Lung Cancer: Current Insights and Future Directions. J Clin Med 2024; 13:4189. [PMID: 39064229 PMCID: PMC11278207 DOI: 10.3390/jcm13144189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The leading cause of cancer deaths worldwide is attributed to non-small cell lung cancer (NSCLC), necessitating a continual focus on improving the diagnosis and treatment of this disease. In this review, the latest breakthroughs and emerging trends in managing NSCLC are highlighted. Major advancements in diagnostic methods, including better imaging technologies and the utilization of molecular biomarkers, are discussed. These advancements have greatly enhanced early detection and personalized treatment plans. Significant improvements in patient outcomes have been achieved by new targeted therapies and immunotherapies, providing new hope for individuals with advanced NSCLC. This review discusses the persistent challenges in accessing advanced treatments and their associated costs despite recent progress. Promising research into new therapies, such as CAR-T cell therapy and oncolytic viruses, which could further revolutionize NSCLC treatment, is also highlighted. This review aims to inform and inspire continued efforts to improve outcomes for NSCLC patients globally, by offering a comprehensive overview of the current state of NSCLC treatment and future possibilities.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sulabh Singhal
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyoti Malhotra
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Sposito M, Belluomini L, Nocini R, Insolda J, Scaglione IM, Menis J, Simbolo M, Lugini A, Buzzacchino F, Verderame F, Spinnato F, Aprile G, Calvetti L, Occhipinti M, Marinelli D, Veccia A, Lombardo F, Soto Parra HJ, Ferraù F, Savastano C, Porta C, Pradelli L, Sicari E, Castellani S, Malapelle U, Novello S, Bria E, Pilotto S, Milella M. Tissue- and liquid-biopsy based NGS profiling in advanced non-small-cell lung cancer in a real-world setting: the IMMINENT study. Front Oncol 2024; 14:1436588. [PMID: 39045557 PMCID: PMC11263796 DOI: 10.3389/fonc.2024.1436588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction To date, for all non-small cell lung cancer (NSCLC) cases, it is recommended to test for driver alterations to identify actionable therapeutic targets. In this light, comprehensive genomic profiling (CGP) with next generation sequencing (NGS) has progressively gained increasing importance in clinical practice. Here, with the aim of assessing the distribution and the real-world frequency of gene alterations and their correlation with patient characteristics, we present the outcomes obtained using FoundationOne (F1CDx) and FoundationLiquid CDx (F1L/F1LCDx) NGS-based profiling in a nationwide initiative for advanced NSCLC patients. Methods F1CDx (324 genes) was used for tissue samples, and F1L (70 genes) or F1LCDx (324 genes) for liquid biopsy, aiming to explore the real-world occurrence of molecular alterations in aNSCLC and their relationship with patients' characteristics. Results Overall, 232 advanced NSCLC patients from 11 Institutions were gathered [median age 63 years; never/former or current smokers 29.3/65.9%; adenocarcinoma/squamous 79.3/12.5%; F1CDx/F1L+F1LCDx 59.5/40.5%]. Alterations were found in 170 different genes. Median number of mutated genes per sample was 4 (IQR 3-6) and 2 (IQR 1-3) in the F1CDx and F1L/F1LCDx cohorts, respectively. TP53 (58%), KRAS (22%), CDKN2A/B (19%), and STK11 (17%) alterations were the most frequently detected. Actionability rates (tier I and II) were comparable: 36.2% F1CDx vs. 34% ctDNA NGS assays (29.5% and 40.9% F1L and F1LCDx, respectively). Alterations in KEAP1 were significantly associated with STK11 and KRAS, so as TP53 with RB1. Median tumor mutational burden was 6 (IQR 3-10) and was significantly higher in smokers. Median OS from metastatic diagnosis was 23 months (IQR 18.5-19.5) and significantly lower in patients harboring ≥3 gene mutations. Conditional three-year survival probabilities increased over time for patients profiled at initial diagnosis and exceeded those of individuals tested later in their clinical history after 12 months. Conclusion This study confirms that NGS-based molecular profiling of aNSCLC on tissue or blood samples offers valuable predictive and prognostic insights.
Collapse
Affiliation(s)
- Marco Sposito
- Section of Innovation Biomedicine – Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust/Azienda Ospedaliero-Universitaria Integrata (AOUI), Verona, Italy
| | - Lorenzo Belluomini
- Section of Innovation Biomedicine – Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust/Azienda Ospedaliero-Universitaria Integrata (AOUI), Verona, Italy
| | - Riccardo Nocini
- Otolaryngology-Head and Neck Surgery Department, University of Verona Hospital Trust, Verona, Italy
| | - Jessica Insolda
- Section of Innovation Biomedicine – Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust/Azienda Ospedaliero-Universitaria Integrata (AOUI), Verona, Italy
| | - Ilaria Mariangela Scaglione
- Section of Innovation Biomedicine – Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust/Azienda Ospedaliero-Universitaria Integrata (AOUI), Verona, Italy
| | - Jessica Menis
- Section of Innovation Biomedicine – Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust/Azienda Ospedaliero-Universitaria Integrata (AOUI), Verona, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Antonio Lugini
- Medical Oncology Unit, Azienda Ospedaliera (AO) San Giovanni Addolorata Hospital, Rome, Italy
| | | | - Francesco Verderame
- Section of Oncology, Azienda Ospedaliera (AO) Ospedali Riuniti “Villa Sofia- V. Cervello”, Palermo, Italy
| | - Francesca Spinnato
- Section of Oncology, Azienda Ospedaliera (AO) Ospedali Riuniti “Villa Sofia- V. Cervello”, Palermo, Italy
| | - Giuseppe Aprile
- Department of Clinical Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | - Lorenzo Calvetti
- Department of Clinical Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | - Mario Occhipinti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
- Medical Oncology Department, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Dei Tumori, Milan, Italy
| | - Daniele Marinelli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
- Division of Medical Oncology B, Policlinico Umberto I, Rome, Italy
| | - Antonello Veccia
- Medical Oncology Department, Santa Chiara Hospital, Trento, Italy
| | | | - Hector José Soto Parra
- Medical Oncology, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-S. Marco”, Catania, Italy
| | - Francesco Ferraù
- Department of Medical Oncology, Unità Operativa Complessa (UOC) Oncologia, Taormina, Italy
| | | | - Camilla Porta
- AdRes Health Economics and Outcome Research, Turin, Italy
| | | | | | | | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Silvia Novello
- Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Sara Pilotto
- Section of Innovation Biomedicine – Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust/Azienda Ospedaliero-Universitaria Integrata (AOUI), Verona, Italy
| | - Michele Milella
- Section of Innovation Biomedicine – Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust/Azienda Ospedaliero-Universitaria Integrata (AOUI), Verona, Italy
| |
Collapse
|
6
|
Ying L, Xu L, Yang J, Zhang Q. Prognostic significance of CT-determined sarcopenia in older patients with advanced squamous cell lung cancer treated with programmed death-1 inhibitors. Sci Rep 2024; 14:12025. [PMID: 38797769 PMCID: PMC11128437 DOI: 10.1038/s41598-024-62825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Sarcopenia has been associated with higher toxicity induced by anti-cancer treatments and shorter survival in patients with squamous cell lung carcinoma (SqCLC). Over the past few decades, immune checkpoint inhibitors (ICIs) significantly improves the prognosis. However, few clinical studies explored the effectiveness of immunotherapy in the elderly population. Here, we performed a retrospective analysis to determine the prognostic role of sarcopenia in older patients with SqCLC receiving ICIs. We retrospectively assessed SqCLC patients who were treated with PD-1 inhibitors and all patients were at least 70 years old. Pre-treatment sarcopenic status was determined by analyzing L3 skeletal muscle index (SMI) with chest CT. Progression-free survival (PFS), disease-specific survival (DSS) and overall survival (OS) were estimated using the Kaplan-Meier method, and the differences in survival were compared using the log-rank test. Among 130 male SqCLC patients, 93 had sarcopenia. Patients with sarcopenia were older and had a lower body mass index (BMI). Over an average follow-up of 20.8 months, 92 patients died. For all 130 patients, the mean OS was 13.3 months. Patients with sarcopenia had a significantly shorter OS and PFS than those without sarcopenia (OS, 12.4 ± 5.2 months vs. 15.5 ± 10.5 months, P = 0.028; PFS, 6.4 ± 2.9 months vs. 7.7 ± 4.2 months; P = 0.035). Multivariable analysis showed that sarcopenia was an independent prognostic factor for shorter OS and PFS. CT-determined sarcopenia is an independent prognostic factor for older patients with SqCLC receiving ICIs.
Collapse
Affiliation(s)
- Lin Ying
- Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Liqian Xu
- Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Ji Yang
- Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Qin Zhang
- Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China.
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Wang Y, Song Y, Wang R, Wu Y, Li M, Xu K, He R, Wang Z, Li Q, Kong FM(S, Wang T. Clinical factors and major pathological response after neoadjuvant chemoimmunotherapy in potentially resectable lung squamous cell carcinoma. Front Oncol 2024; 14:1265228. [PMID: 38680859 PMCID: PMC11045983 DOI: 10.3389/fonc.2024.1265228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/18/2024] [Indexed: 05/01/2024] Open
Abstract
Objective Major pathological response (MPR) helps evaluate the prognosis of patients with lung squamous cell carcinoma (LUSC). However, the clinical factors that affect the achievement of MPR after neoadjuvant chemoimmunotherapy (NCIO) in patients with LUSC remain unclear. This study aimed to explore the clinical factors affecting the MPR after NCIO in patients with potentially resectable LUSC. Methods This retrospective study included patients with stage IIB-IIIC LUSC who underwent surgical resection after receiving NCIO at a center between March 2020 and November 2022. In addition to the postoperative pathological remission rate, sex, age, body mass index (BMI), smoking history, TNM stage, hematological and imaging test results, and other indicators were examined before NCIO. According to the pathological response rate of the surgically removed tumor tissue, the patients were split into MPR and non-MPR groups. Results In total, 91 LUSC patients who met the study's eligibility criteria were enrolled: 32 (35%) patients in the non-MPR group and 59 (65%) in the MPR group, which included 43 cases of pathological complete remission (pCR). Pre-treatment lymphocyte level (LY) (odds ratio [OR] =5.997), tumor burden (OR=0.958), N classification (OR=15.915), radiographic response (OR=11.590), pulmonary atelectasis (OR=5.413), and PD-L1 expression (OR=1.028) were independently associated with MPR (all P < 0.05). Based on these six independent predictors, we developed a nomogram model of prediction having an area under the curve (AUC) of 0.914 that is simple to apply clinically to predict the MPR. The MPR group showed greater disease-free survival (DFS) than the non-MPR group, according to the survival analysis (P < 0.001). Conclusion The MPR rate of NCIO for potentially resectable LUSC was 65%. LY, tumor burden, N classification, radiographic response, pulmonary atelectasis, and PD-L1 expression in patients with LUSC before NCIO were the independent and ideal predictors of MPR. The developed nomogram demonstrated a good degree of accuracy and resilience in predicting the MPR following NCIO, indicating that it is a useful tool for assuring customized therapy for patients with possibly resectable LUSC.
Collapse
Affiliation(s)
- Ye Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
- School of Graduate, Dalian Medical University, Dalian, China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Runze Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Yu Wu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
- School of Graduate, Dalian Medical University, Dalian, China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Ke Xu
- Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Rong He
- Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Zheng Wang
- Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Qingqing Li
- Department of Endoscopy, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Feng-Ming (Spring) Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
- Faculty of Medicine, Dalian University of Technology, Dalian, China
| |
Collapse
|
8
|
Tian H, Wei R, Xiao C, Fan T, Che Y, Liu T, Zheng B, Li C, He J. Tumor-derived KLK8 predicts inferior survival and promotes an immune-suppressive tumor microenvironment in lung squamous cell carcinoma. BMC Pulm Med 2024; 24:53. [PMID: 38273291 PMCID: PMC10809653 DOI: 10.1186/s12890-023-02770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/17/2023] [Indexed: 01/27/2024] Open
Abstract
Lung squamous cell carcinoma (LUSC) is the second most common lung cancer worldwide, leading to millions of deaths annually. Although immunotherapy has expanded the therapeutic choices for LUSC and achieved considerable efficacy in a subset of patients, many patients could not benefit, and resistance was pervasive. Therefore, it is significant to investigate the mechanisms leading to patients' poor response to immunotherapies and explore novel therapeutic targets. Using multiple public LUSC datasets, we found that Kallikrein-8 (KLK8) expression was higher in tumor samples and was correlated with inferior survival. Using a LUSC cohort (n = 190) from our center, we validated the bioinformatic findings about KLK8 and identified high KLK8 expression as an independent risk factor for LUSC. Function enrichment showed that several immune signaling pathways were upregulated in the KLK8 low-expression group and downregulated in the KLK8 high-expression group. For patients with low KLK8 expression, they were with a more active TME, which was both observed in the TCGA database and immune marker immunohistochemistry, and they had extensive positive relations with immune cells with tumor-eliminating functions. This study identified KLK8 as a risk factor in LUSC and illustrated the associations between KLK8 and cancer immunity, suggesting the potentiality of KLK8 as a novel immune target in LUSC.
Collapse
Affiliation(s)
- He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Ran Wei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Tiejun Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Trulson I, Klawonn F, von Pawel J, Holdenrieder S. Improvement of differential diagnosis of lung cancer by use of multiple protein tumor marker combinations. Tumour Biol 2024; 46:S81-S98. [PMID: 38277317 DOI: 10.3233/tub-230021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Differential diagnosis of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) in hospitalized patients is crucial for appropriate treatment choice. OBJECTIVE To investigate the relevance of serum tumor markers (STMs) and their combinations for the differentiation of NSCLC and SCLC subtypes. METHODS Between 2000 and 2003, 10 established STMs were assessed retrospectively in 311 patients with NSCLC, 128 with SCLC prior systemic first-line therapy and 51 controls with benign lung diseases (BLD), by automatized electrochemiluminescence immunoassay technology. Receiver operating characteristic (ROC) curves and logistic regression analyses were used to evaluate the diagnostic efficacy of both individual and multiple STMs with corresponding sensitivities at 90% specificity. Standards for Reporting of Diagnostic Accuracy (STARD guidelines) were followed. RESULTS CYFRA 21-1 (cytokeratin-19 fragment), CEA (carcinoembryonic antigen) and NSE (neuron specific enolase) were significantly higher in all lung cancers vs BLD, reaching AUCs of 0.81 (95% CI 0.76-0.87), 0.78 (0.73-0.84), and 0.88 (0.84-0.93), respectively. By the three marker combination, the discrimination between benign and all malignant cases was improved resulting in an AUC of 0.93 (95% CI 0.90-0.96). In NSCLC vs. BLD, CYFRA 21-1, CEA and NSE were best discriminative STMs, with AUCs of 0.86 (95% CI 0.81-0.91), 0.80 (0.74-0.85), and 0.85 (0.79-0.91). The three marker combination also improved the AUC: 0.92; 95% CI 0.89-0.96). In SCLC vs. BLD, ProGRP (pro-gastrin-releasing peptide) and NSE were best discriminative STMs, with AUCs of 0.89 (95% CI 0.84-0.94) and 0.96 (0.93-0.98), respectively, and slightly improved AUC of 0.97 (95% CI 0.95-0.99) when in combination. Finally, discrimination between SCLC and NSCLC was possible by ProGRP (AUC 0.86; 95% CI 0.81-0.91), NSE (AUC 0.83; 0.78-0.88) and CYFRA 21-1 (AUC 0.69; 0.64-0.75) and by the combination of the 3 STMs (AUC 0.93; 0.91-0.96), with a sensitivity of 88% at 90% specificity. CONCLUSIONS The results confirm the power of STM combinations for the differential diagnosis of lung cancer from benign lesions and between histological lung cancer subtypes.
Collapse
Affiliation(s)
- Inga Trulson
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre Munich, Munich, Germany
| | - Frank Klawonn
- Ostfalia University, Department of Computer Science, Wolfenbüttel, Germany
- Helmholtz Centre for Infection Research, Biostatistics, Braunschweig, Germany
| | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre Munich, Munich, Germany
| |
Collapse
|
10
|
Nasuh S, Balci SO, Bozgeyik I, Ikeda MA, Tekayev M, Saadat KASM. ARID3A and ARID3B exert direct regulatory control over the long non-coding RNAs (lncRNAs) MALAT1 and NORAD within the context of non-small cell lung cancer (NSCLC). Pathol Res Pract 2023; 252:154948. [PMID: 37977034 DOI: 10.1016/j.prp.2023.154948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Lung cancer, known for its high mortality rates and poor prognosis, remains one of the most prevalent cancer types. Early detection and effective treatment methods are crucial for improving survival rates. Non-small cell lung cancer (NSCLC) accounts for approximately 85 % of all lung cancer cases. Long non-coding RNAs (lncRNAs), which play vital roles in various biological processes, have been implicated in the development of cancer and can impact key therapeutic targets in different cancer types. In NSCLC, the dysregulation of specific lncRNAs, such as MALAT1 and NORAD, has been associated with neoplastic initiation, progression, metastasis, tumor angiogenesis, chemoresistance, and genomic instability. Both MALAT1 and NORAD directly regulate the expression of the transcription factor E2F1, thereby influencing cell cycle progression. Additionally, MALAT1 has been reported to affect the expression of p53 target genes, leading to cell cycle progression through the repression of p53 promoter activity. NORAD, on the other hand, is indirectly regulated by p53. The AT-rich interaction domain (ARID) family of DNA-binding proteins, particularly ARID3A and ARID3B, are involved in various biological processes such as cell proliferation, differentiation, and development. They also play significant roles in E2F-dependent transcription and are transcriptional targets of p53. The intricate balance between promoting cellular proliferation through the pRB-E2F pathway and inducing growth arrest through the p53 pathway underscores the crucial regulatory role of ARID3A, ARID3B, and their interaction with lncRNAs MALAT1 and NORAD. In this study, we aimed to investigate the potential interactive and functional connections among ARID3A, ARID3B, MALAT1, and NORAD in NSCLC, considering their involvement in the pRB-E2F and p53 pathways. Our findings strongly suggest that ARID3A and ARID3B play a regulatory role in controlling MALAT1 and NORAD in NSCLC. Specifically, our study demonstrates that the activities of MALAT1 and NORAD were markedly increased upon the overexpression of ARID3A and ARID3B. Therefore, we can conclude that ARID3A and ARID3B likely contribute significantly to the oncogenic functions of MALAT1 and NORAD in NSCLC. Consequently, targeting ARID3A and ARID3B could hold promise as a therapeutic approach in NSCLC, given their direct control over the expression of MALAT1 and NORAD.
Collapse
Affiliation(s)
- Sedin Nasuh
- Department of Medical Biology and Genetics, Faculty of Medicine, Graduate Institute of Health Sciences, Gaziantep University, Gaziantep 27310, Turkey
| | - Sibel Oguzkan Balci
- Department of Medical Biology and Genetics, Faculty of Medicine, Graduate Institute of Health Sciences, Gaziantep University, Gaziantep 27310, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine Adiyaman University, Adiyaman 02040, Turkey
| | - Masa-Aki Ikeda
- Department of Regenerative and Reconstructive Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Muhammetnur Tekayev
- Department of Medical Biology and Genetics, Faculty of Medicine, Graduate Institute of Health Sciences, Gaziantep University, Gaziantep 27310, Turkey; Department of Histology and Embryology, Hamidiye Faculty of Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul 34668, Turkey
| | - Khandakar A S M Saadat
- Department of Medical Biology and Genetics, Faculty of Medicine, Graduate Institute of Health Sciences, Gaziantep University, Gaziantep 27310, Turkey.
| |
Collapse
|
11
|
Su J, Tan S, Gong H, Luo Y, Cheng T, Yang H, Wen X, Jiang Z, Li Y, Zhang L. The Evaluation of Prognostic Value and Immune Characteristics of Ferroptosis-Related Genes in Lung Squamous Cell Carcinoma. Glob Med Genet 2023; 10:285-300. [PMID: 37915460 PMCID: PMC10615648 DOI: 10.1055/s-0043-1776386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Background The purpose of our study was to construct a prognostic model based on ferroptosis-related gene signature to improve the prognosis prediction of lung squamous carcinoma (LUSC). Methods The mRNA expression profiles and clinical data of LUSC patients were downloaded. LUSC-related essential differentially expressed genes were integrated for further analysis. Prognostic gene signatures were identified through random forest regression and univariate Cox regression analyses for constructing a prognostic model. Finally, in a preliminary experiment, we used the reverse transcription-quantitative polymerase chain reaction assay to verify the relationship between the expression of three prognostic gene features and ferroptosis. Results Fifty-six ferroptosis-related essential genes were identified by using integrated analysis. Among these, three prognostic gene signatures (HELLS, POLR2H, and POLE2) were identified, which were positively affected by LUSC prognosis but negatively affected by immune cell infiltration. Significant overexpression of immune checkpoint genes occurred in the high-risk group. In preliminary experiments, we confirmed that the occurrence of ferroptosis can reduce three prognostic gene signature expression. Conclusions The three ferroptosis-related genes could predict the LUSC prognostic risk of antitumor immunity.
Collapse
Affiliation(s)
- Jialin Su
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Shuhua Tan
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Houwu Gong
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, People's Republic of China
| | - Yongzhong Luo
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
| | - Tianli Cheng
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
| | - Hua Yang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
| | - Xiaoping Wen
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
| | - Zhou Jiang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
| | - Yuning Li
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Lemeng Zhang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
12
|
Fan X, Guan G, Wang J, Jin M, Wang L, Duan X. Licochalcone A induces cell cycle arrest and apoptosis via suppressing MAPK signaling pathway and the expression of FBXO5 in lung squamous cell cancer. Oncol Rep 2023; 50:214. [PMID: 37859622 PMCID: PMC10620845 DOI: 10.3892/or.2023.8651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Lung squamous cell carcinoma (LSCC) is a highly heterogeneous malignancy with high mortality and few therapeutic options. Licochalcone A (LCA, PubChem ID: 5318998) is a chalcone extracted from licorice and possesses anticancer and anti‑inflammatory activities. The present study aimed to elucidate the anticancer effect of LCA on LSCC and explore the conceivable molecular mechanism. MTT assay revealed that LCA significantly inhibited the proliferation of LSCC cells with less cytotoxicity towards human bronchial epithelial cells. 5‑ethynyl‑2'‑deoxyuridine (EdU) assay demonstrated that LCA could reduce the proliferation rate of LSCC cells. The flow cytometric assays indicated that LCA increased the cell number of the G1 phase and induced the apoptosis of LSCC cells. LCA downregulated the protein expression of cyclin D1, cyclin E, CDK2 and CDK4. Meanwhile, LCA increased the expression level of Bax, cleaved poly(ADP‑ribose)polymerase‑1 (PARP1) and caspase 3, as well as downregulated the level of Bcl‑2. Proteomics assay demonstrated that LCA exerted its antitumor effects via inhibiting mitogen‑activated protein kinase (MAPK) signaling pathways and the expression of F‑box protein 5 (FBXO5). Western blot analysis showed that LCA decreased the expression of p‑ERK1/2, p‑p38MAPK and FBXO5. In the xenograft tumors of LSCC, LCA significantly inhibited the volumes and weight of tumors in nude mice with little toxicity in vital organs. Therefore, the present study demonstrated that LCA effectively inhibited cell proliferation and induced apoptosis in vitro, and suppressed xenograft tumor growth in vivo. LCA may serve as a future therapeutic candidate of LSCC.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Guoqiang Guan
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Juan Wang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Meihua Jin
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Liming Wang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xiaoqun Duan
- Industrial Technology Research Institute of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| |
Collapse
|
13
|
Yu L, Zheng J, Yu J, Zhang Y, Hu H. Circ_0067934: a circular RNA with roles in human cancer. Hum Cell 2023; 36:1865-1876. [PMID: 37592109 PMCID: PMC10587307 DOI: 10.1007/s13577-023-00962-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
A circular RNA (circRNA) is a non-coding RNA (ncRNA) derived from reverse splicing from pre-mRNA and is characterized by the absence of a cap structure at the 5' end and a poly-adenylated tail at the 3' end. Owing to the development of RNA sequencing and bioinformatics approaches in recent years, the important clinical value of circRNAs has been increasingly revealed. Circ_0067934 is an RNA molecule of 170 nucleotides located on chromosome 3q26.2. Circ_0067934 is formed via the reverse splicing of exons 15 and 16 in PRKCI (protein kinase C Iota). Recent studies revealed the upregulation or downregulation of circ_0067934 in various tumors. The expression of circ_0067934 was found to be correlated with tumor size, TNM stage, and poor prognosis. Based on experiments with cancer cells, circ_0067934 promotes cancer cell proliferation, migratory activity, and invasion when overexpressed or downregulated. The potential mechanism involves the binding of circ_0067934 to microRNAs (miRNAs; miR-545, miR-1304, miR-1301-3p, miR-1182, miR-7, and miR-1324) to regulate the post-transcriptional expression of genes. Other mechanisms include inhibition of the Wnt/β-catenin and PI3K/AKT signaling pathways. Here, we summarized the biological functions and possible mechanisms of circ_0067934 in different tumors to enable further exploration of its translational applications in clinical diagnosis, therapy, and prognostic assessments.
Collapse
Affiliation(s)
- Liqing Yu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Jiacheng Zheng
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Jiali Yu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Yujun Zhang
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The First Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Huoli Hu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
| |
Collapse
|
14
|
Joon HK, Thalor A, Gupta D. Machine learning analysis of lung squamous cell carcinoma gene expression datasets reveals novel prognostic signatures. Comput Biol Med 2023; 165:107430. [PMID: 37703712 DOI: 10.1016/j.compbiomed.2023.107430] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) patients are often diagnosed at an advanced stage and have poor prognoses. Thus, identifying novel biomarkers for the LUSC is of utmost importance. METHODS Multiple datasets from the NCBI-GEO repository were obtained and merged to construct the complete dataset. We also constructed a subset from this complete dataset with only known cancer driver genes. Further, machine learning classifiers were employed to obtain the best features from both datasets. Simultaneously, we perform differential gene expression analysis. Furthermore, survival and enrichment analyses were performed. RESULTS The kNN classifier performed comparatively better on the complete and driver datasets' top 40 and 50 gene features, respectively. Out of these 90 gene features, 35 were found to be differentially regulated. Lasso-penalized Cox regression further reduced the number of genes to eight. The median risk score of these eight genes significantly stratified the patients, and low-risk patients have significantly better overall survival. We validated the robust performance of these eight genes on the TCGA dataset. Pathway enrichment analysis identified that these genes are associated with cell cycle, cell proliferation, and migration. CONCLUSION This study demonstrates that an integrated approach involving machine learning and system biology may effectively identify novel biomarkers for LUSC.
Collapse
Affiliation(s)
- Hemant Kumar Joon
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Anamika Thalor
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
15
|
Dos Santos EWP, de Sousa RC, de Franca MNF, Santos JF, Ottoni FM, Isidório RG, de Lucca Junior W, Alves RJ, Scher R, Corrêa CB. Inhibitory effect of O-propargyllawsone in A549 lung adenocarcinoma cells. BMC Complement Med Ther 2023; 23:333. [PMID: 37730601 PMCID: PMC10510246 DOI: 10.1186/s12906-023-04156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Lung cancer is the deadliest type of cancer in the world and the search for compounds that can treat this disease is highly important. Lawsone (2-hydroxy-1,4-naphtoquinone) is a naphthoquinone found in plants from the Lawsone genus that show a high cytotoxic effect in cancer cell lines and its derivatives show an even higher cytotoxic effect. METHODS Sulforhodamine B was used to evaluate the cytotoxic activity of compounds on tumor cells. Clonogenic assay was used to analyze the reduction of colonies and wound healing assay to the migratory capacity of A549 cells. Apoptosis and necrosis were analyzed by flow cytometer and Giemsa staining. Hemolysis assay to determine toxicity in human erythrocytes. RESULTS Lawsone derivatives were evaluated and compound 1 (O-propargyllawsone) was the one with the highest cytotoxic effect, with IC50 below 2.5 µM in A549 cells. The compound was able to reduce colony formation and inhibit cell migration. Morphological changes and cytometry analysis show that the compound induces apoptosis and necrosis in A549 cells. CONCLUSIONS These results show that O-propargyllawsone show a cytotoxic effect and may induce apoptosis in A549 cells.
Collapse
Affiliation(s)
- Edmilson Willian Propheta Dos Santos
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Rauan Cruz de Sousa
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Mariana Nobre Farias de Franca
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Jileno Ferreira Santos
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Flaviano Melo Ottoni
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel Geralda Isidório
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Waldecy de Lucca Junior
- Laboratory of Molecular Neuroscience of Sergipe, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Ricardo José Alves
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Scher
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Cristiane Bani Corrêa
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil.
| |
Collapse
|
16
|
Yuan Y, Xie B, Guo D, Liu C, Jiang G, Lai G, Zhang Y, Hu X, Wu Z, Zheng R, Huang L. Identification of ALG3 as a potential prognostic biomarker in lung adenocarcinoma. Heliyon 2023; 9:e18065. [PMID: 37539167 PMCID: PMC10395363 DOI: 10.1016/j.heliyon.2023.e18065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Background The abnormal expression of Alpha-1,3-mannosyltransferase (ALG3) has been implicated in tumor promotion. However, the clinical significance of ALG3 in Lung Adenocarcinoma (LUAD) remains poorly understood. Therefore, we aimed to assess the prognostic value of ALG3 and its association with immune infiltrates in LUAD. Methods The transcriptional expression profiles of ALG3 were obtained from the Cancer Genome Atlas (TCGA), comparing lung adenocarcinoma tissue with normal tissues. To determine the prognostic significance of AGL3, Kaplan-Meier plotter, and Cox regression analysis were employed. Logistic regression was utilized to analyze the association between ALG3 expression and clinical characteristics. Additionally, a receiver operating characteristic (ROC) curve and a nomogram were constructed. To explore the underlying mechanisms, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene set enrichment analysis (GSEA) was conducted. The relationship between AGL3A mRNA expression and immune infiltrates was investigated using the tumor immune estimation resource (TIMER) and tumor-immune system interaction database (TISIDB). Furthermore, an in vitro experiment was performed to assess the impact of ALG3 mRNA on lung cancer stemness abilities and examine key signaling pathway proteins. Results Our results revealed the ALG3 mRNA and protein expression in patients with LUAD was much higher than that in adjacent normal tissues. High expression of ALG3 was significantly associated with N stage (N0, HR = 1.98, P = 0.002), pathological stage (stage I, HR = 2.09, P = 0.003), and the number of pack years (<40, HR = 2.58, P = 0.001). Kaplan-Meier survival analysis showed that high expression of ALG3 was associated with poor overall survival (P < 0.001), disease-free survival (P < 0.001), and progression-free interval (P = 0.007). Through multivariate analysis, it was determined that elevated ALG3 expression independently impacted overall survival (HR = 1.325, P = 0.04). The Tumor Immune Estimation Resource discovered a link between ALG3 expression and tumor-infiltrating immune cells in LUAD. Additionally, ROC analysis proved that ALG3 is a reliable diagnostic marker for LUAD (AUC:0.923). Functional pathways analysis identified that ALG3 is negatively correlated with FAT4. We performed qRT-PCR to assess that knockdown ALG3 expression significantly upregulated FAT4 expression. Spheroid assay and flow cytometry analysis results showed that downregulated of ALG3 inhibited H1975 cell line stemness. Western blot analysis revealed that decreased ALG3 inhibited the YAP/TAZ signal pathway. Conclusion High expression of ALG3 is strongly associated with poor prognosis and immune infiltrates in LUAD.
Collapse
Affiliation(s)
- Yinjiao Yuan
- The First School of Chinical Medicine, Southern Medical University, Guangzhou, 510510, China
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, 523059, China
| | - BaoCheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Dongbo Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, China
| | - Caixiang Liu
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, 523059, China
| | - Guanming Jiang
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, 523059, China
| | - Guowei Lai
- Department of General Surgery, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
- General Hospital of Third Division, Xinjiang Production and Construction Corps, Tumushuker, China
| | - Yu Zhang
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiarong Hu
- Department of General Surgery, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Zhiming Wu
- Department of General Surgery, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Ruinian Zheng
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, 523059, China
| | - Linxuan Huang
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, 523059, China
| |
Collapse
|
17
|
Liu Y, Duan J, Zhang F, Liu F, Luo X, Shi Y, Lei Y. Mutational and Transcriptional Characterization Establishes Prognostic Models for Resectable Lung Squamous Cell Carcinoma. Cancer Manag Res 2023; 15:147-163. [PMID: 36824152 PMCID: PMC9942504 DOI: 10.2147/cmar.s384918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/05/2023] [Indexed: 02/18/2023] Open
Abstract
Background The prognosis of non-small cell lung cancer (NSCLC) patients has been comprehensively studied. However, the prognosis of resectable (stage I-IIIA) lung squamous cell carcinoma (LUSC) has not been thoroughly investigated at genomic and transcriptional levels. Methods Data of genomic alterations and transcriptional-level changes of 355 stage I-IIIA LUSC patients were downloaded from The Cancer Genome Atlas (TCGA) database, together with the clinicopathological information (training cohort). A validation cohort of 91 patients was retrospectively recruited. Data were analyzed and figures were plotted using the R software. Results Training cohort was established with 355 patients. TP53 (78%), TTN (68%), CSMD3 (39%), MUT16 (36%) and RYR2 (36%) were genes with the highest mutational frequency. BRINP3, COL11A1, GRIN2B, MUC5B, NLRP3 and TENM3 exhibited significant higher mutational frequency in stage III (P < 0.05). Patients with stage III also exhibited significantly higher tumor mutational burden (TMB) than those with stage I (P < 0.01). The mutational status of 10 genes were found to have significant stratification on patient prognosis. TMB at threshold of 25 percentile (TMB = 2.39 muts/Mb) also significantly stratified the patient prognosis (P = 0.0003). Univariate and multivariate analyses revealed TTN, ADGRB3, MYH7 and MYH15 mutational status and TMB as independent risk factors. Further analysis of transcriptional profile revealed many significantly up- and down-regulated genes, and multivariate analysis found the transcriptional levels of seven genes as independent risk factors. Significant factors from the multivariate analyses were used to establish a Nomogram model to quantify the risk in prognosis of individual LUSC patients. The model was validated with a cohort containing 91 patients, which showed good predicting efficacy and consistency. Conclusion The influencing factors of prognosis of stage I-III LUSC patients have been revealed. Risk factors including gender, T stage, cancer location, and the mutational and transcriptional status of several genes were used to establish a Nomogram model to assess the patient prognosis. Subsequent validation proved its effectiveness.
Collapse
Affiliation(s)
- Yinqiang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jin Duan
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Fujun Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Fanghao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Xiaoyu Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Yunfei Shi
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Youming Lei
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China,Correspondence: Youming Lei; Yunfei Shi, Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650031, People’s Republic of China, Email ;
| |
Collapse
|
18
|
PSMA1, a Poor Prognostic Factor, Promotes Tumor Growth in Lung Squamous Cell Carcinoma. DISEASE MARKERS 2023; 2023:5386635. [PMID: 36776923 PMCID: PMC9918360 DOI: 10.1155/2023/5386635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/12/2022] [Accepted: 11/25/2022] [Indexed: 02/05/2023]
Abstract
Lung squamous cell carcinoma (LUSC) has a poor clinical prognosis and lacks effective targeted therapy. This study is aimed at investigating the role of PSMA1 (proteasome subunit alpha type-1) in LUSC. The differential expression genes (DEGs) in LUSC were retrieved from The Cancer Genome Atlas (TCGA) by "edgR" algorithm and by "limma" R package. Then, the relationship between genes and overall survival (OS) was explored by the least absolute shrinkage and selection operator (LASSO) and multivariate Cox (multi-Cox) regression. Next, the PSMA1 expression in tissues of LUSC was detected by IHC, qRT-PCR, and western blot (WB). Moreover, the effects of PSMA1 on the proliferation and viability of LUSC cell were explored by cell counting kit 8 (CCK-8) assays, colony formation assays, and flow cytometry (FCM) analysis. All 4421 DEGs were screened by TCGA database, and 26 genes associated with OS were selected by multi-Cox. Based on TCGA database, PSMA1 was highly expressed in tissues of LUSC patients, and OS and FP of patients with PSMA1 overexpression were significantly lower than those of patients with low PSMA1 expression. Furthermore, PSMA1 knockdown significantly decreased the proliferation of LUSC cells and promoted the apoptosis of LUSC cells, and these effects were reversed by PSMA1 overexpression. The results of this project supported that PSMA1 might be a critical gene regulating the development of LUSC and has the potential to be explored as a prognostic biomarker of LUSC.
Collapse
|
19
|
Mejía-Méndez JL, López-Mena ER, Sánchez-Arreola E. Activities against Lung Cancer of Biosynthesized Silver Nanoparticles: A Review. Biomedicines 2023; 11:389. [PMID: 36830926 PMCID: PMC9953519 DOI: 10.3390/biomedicines11020389] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Nanomedicine is an interdisciplinary field where nanostructured objects are applied to treat or diagnose disease. Nanoparticles (NPs) are a special class of materials at nanometric scale that can be prepared from lipids, polymers, or noble metals through bottom-up approaches. Biological synthesis is a reliable, sustainable, and non-toxic bottom-up method that uses phytochemicals, microorganisms, and enzymes to induce the reduction of metal ions into NPs. Silver (Ag) NPs exhibit potent therapeutic properties that can be exploited to overcome the limitations of current treatment modalities for human health issues such as lung cancer (LC). Here, we review the preparation of AgNPs using biological synthesis and their application against LC using in vitro and in vivo models. An overview of the staging, diagnosis, genetic mutations, and treatment of LC, as well as its main subtypes, is presented. A summary of the reaction mechanisms of AgNPs using microbial cell cultures, plant extracts, phytochemicals, and amino acids is included. The use of capping agents in the biosynthesis of AgNPs with anticancer activity is also detailed. The history and biological activities of metal-based nanostructures synthesized with gold, copper, palladium, and platinum are considered. The possible anticancer mechanisms of AgNPs against LC models are covered. Our perspective about the future of AgNPs in LC treatment and nanomedicine is added.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico
| | - Eugenio Sánchez-Arreola
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| |
Collapse
|
20
|
Guo MZ, Murray JC, Ghanem P, Voong KR, Hales RK, Ettinger D, Lam VK, Hann CL, Forde PM, Brahmer JR, Levy BP, Feliciano JL, Marrone KA. Definitive Chemoradiation and Durvalumab Consolidation for Locally Advanced, Unresectable KRAS-mutated Non-Small Cell Lung Cancer. Clin Lung Cancer 2022; 23:620-629. [PMID: 36045016 DOI: 10.1016/j.cllc.2022.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Consolidation durvalumab immunotherapy following definitive chemoradiation (CRT) for unresectable stage III non-small cell lung cancer (NSCLC) improves overall survival. As therapeutic options for patients with KRAS-driven disease evolve, more understanding regarding genomic determinants of response and patterns of progression for durvalumab consolidation is needed to optimize outcomes. METHODS We conducted a single-institutional retrospective analysis of real-world patients with locally advanced, unresectable NSCLC who completed CRT and received durvalumab consolidation. Kaplan-Meier analyses compared progression-free survival (PFS) and overall survival (OS) from start of durvalumab consolidation between patients with KRAS-mutated and non-mutated tumors. Fisher's exact test was used to compare rates of intrathoracic or extrathoracic progression. RESULTS Of 74 response-evaluable patients, 39 had clinical genomic profiling performed. 18 patients had tumors with KRAS mutations, 7 patients had tumors with non-KRAS actionable alterations (EGFR, ALK, ERBB2, BRAF, MET, RET, or ROS1), and 14 patients had tumors without actionable alterations. Median PFS for the overall cohort was 16.1 months. PFS for patients with KRAS-mutated NSCLC was 12.6 months versus 12.7 months for patients with non-actionable tumors (P= 0.77, log-rank). Fisher's exact test revealed a statistically significantly higher rate of extrathoracic progression versus intrathoracic-only progression for patients with KRAS-driven disease compared to patients with non-actionable tumors (P= 0.015). CONCLUSION Patients with KRAS-mutated NSCLC derived similar benefit from durvalumab as patients with non-actionable tumors. A higher rate of extrathoracic progression was also observed among the patients with KRAS-mutated NSCLC compared to patients with non-actionable tumors. This highlights the potential unmet needs for novel systemic therapies and surveillance methods for KRAS-mutated stage III NSCLC.
Collapse
Affiliation(s)
- Matthew Z Guo
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Joseph C Murray
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Paola Ghanem
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - K Ranh Voong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Russell K Hales
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - David Ettinger
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Vincent K Lam
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Christine L Hann
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Patrick M Forde
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Julie R Brahmer
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Benjamin P Levy
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Josephine L Feliciano
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Kristen A Marrone
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD.
| |
Collapse
|
21
|
The Prognostic and Therapeutic Potential of DNA Damage Repair Pathway Alterations and Homologous Recombination Deficiency in Lung Cancer. Cancers (Basel) 2022; 14:cancers14215305. [DOI: 10.3390/cancers14215305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains the second most commonly diagnosed cancer worldwide and the leading cause of cancer-related mortality. The mapping of genomic alterations and their role in lung-cancer progression has been followed by the development of new therapeutic options. Several novel drugs, such as targeted therapy and immunotherapy, have significantly improved outcomes. However, many patients with lung cancer do not benefit from existing therapies or develop progressive disease, leading to increased morbidity and mortality despite initial responses to treatment. Alterations in DNA-damage repair (DDR) genes represent a cancer hallmark that impairs a cell’s ability to prevent deleterious mutation accumulation and repair. These alterations have recently emerged as a therapeutic target in breast, ovarian, prostate, and pancreatic cancers. The role of DDR alterations remains largely unknown in lung cancer. Nevertheless, recent research efforts have highlighted a potential role of some DDR alterations as predictive biomarkers of response to treatment. Despite the failure of PARP inhibitors (main class of DDR targeting agents) to improve outcomes in lung cancer patients, there is some evidence suggesting a role of PARP inhibitors and other DDR targeting agents in benefiting a distinct subset of lung cancer patients. In this review, we will discuss the existing literature on DDR alterations and homologous recombination deficiency (HRD) state as predictive biomarkers and therapeutic targets in both non-small cell lung and small cell lung cancer.
Collapse
|
22
|
Xie S, Wan X, Chen S, Hu Y, Liu X. p21-activated kinase 2 binds to transcription factor SOX2 and up-regulates DEK to promote the progression of lung squamous cell carcinoma. J Transl Med 2022; 102:1109-1120. [PMID: 35821094 DOI: 10.1038/s41374-022-00808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Lung squamous cell carcinoma (LSCC) is a prevalent and progressive subtype of lung cancer. This study aimed to substantiate the regulatory effect of the PAK2/SOX2/DEK axis on the LSCC development. LSCC tissues (n = 83) and adjacent normal tissues were collected and SOX2 expression was determined by qRT-PCR and Western blotting. Correlation between SOX2 expression and the prognosis of LSCC patients was then explored utilizing Kaplan-Meier analysis. Co-immunoprecipitation and glutathione-S-transferase pull-down assays were conducted to validate the binding of SOX2 to DEK. Gain- and loss- of function assays were then performed on LSCC cells, with CCK-8 and Transwell assays applied to detect the malignant behaviors of cells. A mouse xenograft model of LSCC was further established for in vivo validation. The expression levels of SOX2, PAK2 and DEK were up-regulated in LSCC tissues and cells. SOX2 overexpression was correlated with poor prognosis of LSCC patients. Knockdown of SOX2 weakened the viability and the migratory and invasive potential of LSCC cells. Further, PAK2 directly interacted with SOX2. PAK2 overexpression accelerated the malignant phenotypes of LSCC cells through interplay with SOX2. Moreover, SOX2 activated the expression of DEK, and silencing DEK attenuated the malignant behaviors of LSCC cells. In conclusion, PAK2 could bind to the transcription factor SOX2 and thus activate the expression of DEK, thereby driving the malignant phenotypes of LSCC cells both in vivo and in vitro.
Collapse
Affiliation(s)
- Shiguang Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, P.R. China
| | - Xuan Wan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, P.R. China
| | - Shuyun Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, P.R. China
| | - Yan Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, P.R. China.
| | - Xiaoming Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, P.R. China.
| |
Collapse
|
23
|
Dahl E, Villwock S, Habenberger P, Choidas A, Rose M, Klebl BM. White Paper: Mimetics of Class 2 Tumor Suppressor Proteins as Novel Drug Candidates for Personalized Cancer Therapy. Cancers (Basel) 2022; 14:cancers14184386. [PMID: 36139547 PMCID: PMC9496810 DOI: 10.3390/cancers14184386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary A concept is presented for a new therapeutic approach, still in its early stages, which focuses on the phenotypic mimicry (“mimesis”) of proteins encoded by highly disease-relevant class 2 tumor suppressor genes that are silenced by DNA promoter methylation. Proteins derived from tumor suppressor genes are usually considered control systems of cells against oncogenic properties. Thus they represent the brakes in the “car-of-life.” Restoring this “brake function” in tumors by administering mimetic drugs may have a significant therapeutic effect. The proposed approach could thus open up a new, hitherto unexploited area of research for the development of anticancer drugs for difficult-to-treat cancers. Abstract The aim of our proposed concept is to find new target structures for combating cancers with unmet medical needs. This, unfortunately, still applies to the majority of the clinically most relevant tumor entities such as, for example, liver cancer, pancreatic cancer, and many others. Current target structures almost all belong to the class of oncogenic proteins caused by tumor-specific genetic alterations, such as activating mutations, gene fusions, or gene amplifications, often referred to as cancer “driver alterations” or just “drivers.” However, restoring the lost function of tumor suppressor genes (TSGs) could also be a valid approach to treating cancer. TSG-derived proteins are usually considered as control systems of cells against oncogenic properties; thus, they represent the brakes in the “car-of-life.” Restoring these tumor-defective brakes by gene therapy has not been successful so far, with a few exceptions. It can be assumed that most TSGs are not being inactivated by genetic alteration (class 1 TSGs) but rather by epigenetic silencing (class 2 TSGs or short “C2TSGs”). Reactivation of C2TSGs in cancer therapy is being addressed by the use of DNA demethylating agents and histone deacetylase inhibitors which act on the whole cancer cell genome. These epigenetic therapies have neither been particularly successful, probably because they are “shotgun” approaches that, although acting on C2TSGs, may also reactivate epigenetically silenced oncogenic sequences in the genome. Thus, new strategies are needed to exploit the therapeutic potential of C2TSGs, which have also been named DNA methylation cancer driver genes or “DNAme drivers” recently. Here we present a concept for a new translational and therapeutic approach that focuses on the phenotypic imitation (“mimesis”) of proteins encoded by highly disease-relevant C2TSGs/DNAme drivers. Molecular knowledge on C2TSGs is used in two complementary approaches having the translational concept of defining mimetic drugs in common: First, a concept is presented how truncated and/or genetically engineered C2TSG proteins, consisting solely of domains with defined tumor suppressive function can be developed as biologicals. Second, a method is described for identifying small molecules that can mimic the effect of the C2TSG protein lost in the cancer cell. Both approaches should open up a new, previously untapped discovery space for anticancer drugs.
Collapse
Affiliation(s)
- Edgar Dahl
- Institute of Pathology, Medical Faculty, RWTH Aachen University, D-52074 Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), D-52074 Aachen, Germany
- Correspondence:
| | - Sophia Villwock
- Institute of Pathology, Medical Faculty, RWTH Aachen University, D-52074 Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), D-52074 Aachen, Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Straße 15, D-44227 Dortmund, Germany
| | - Axel Choidas
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Straße 15, D-44227 Dortmund, Germany
| | - Michael Rose
- Institute of Pathology, Medical Faculty, RWTH Aachen University, D-52074 Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), D-52074 Aachen, Germany
| | - Bert M. Klebl
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Straße 15, D-44227 Dortmund, Germany
| |
Collapse
|
24
|
N6-Methyladenosine (m6A)-Related lncRNAs Are Potential Signatures for Predicting Prognosis and Immune Response in Lung Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:5240611. [PMID: 36090906 PMCID: PMC9462982 DOI: 10.1155/2022/5240611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/21/2022] [Indexed: 12/16/2022]
Abstract
Background Despite increasing understanding of m6A-related lncRNAs in lung cancer, the role of m6A-related lncRNAs in the prognosis and treatment of lung squamous cell carcinoma is poorly understood to date. Thus, the current study aims to elucidate its role and build a model to predict the prognosis of LUSC patients. Materials and Methods The data of the current study were accessed from the TCGA database. Pearson correlation analysis was performed to identify lncRNAs correlated to m6A. Next, an m6A-related lncRNAs risk model was built using a single factor, least absolute association, selection operator, and multivariate Cox regression analysis. Results The relevance between 23 m6A genes and 14,056 lncRNAs is shown by Pearson correlation analysis by Sankey diagram. Multivariate Cox regression analysis determined that 11 m6A-lncRNAs show predictive potential in prognosis, which is confirmed by the consistency index, Kaplan–Meier analysis, principal component analysis, and ROC curve. Additionally, the immune analysis showed that the enrichment of immune cells, major histocompatibility complex molecules, and immune checkpoints in the high and low-risk subgroups were markedly disparate, with the high-risk group showing a stronger immune escape ability and a worse response to immunotherapy. Conclusion In conclusion, the risk model based on m6A-related lncRNAs showed great promise in predicting the prognosis and the efficacy of immunotherapy.
Collapse
|
25
|
Huan S, Chen M, Sun S, Zhong Y, Chen Y, Ji Y, Yin G. Identification of a 5-lncRNA-Based Signature for Immune Characteristics and Prognosis of Lung Squamous Cell Carcinoma and Verification of the Function of lncRNA SPATA41. Front Genet 2022; 13:905353. [PMID: 36105081 PMCID: PMC9465393 DOI: 10.3389/fgene.2022.905353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is one of the most lethal cancers worldwide. Traditional tumor-node-metastasis (TNM) staging system has many insufficiencies in predicting immune characteristics, overall survival (OS), and prognosis of LUSC. LncRNA is currently found involved in tumor development and effectively predicts tumor prognosis. We screened potential tumor-related lncRNAs for immune characteristics and constructed a nomogram combining lncRNA and traditional clinical indicators for prognosis prediction. We obtained the large-scale gene expression profiles of samples from 492 LUSC patients in The Cancer Genome Atlas database. SPATA41, AL034550.2, AP003721.2, AC106786.1, and AC078889.1 were finally screened to construct a 5-lncRNA-based signature. The risk score of the signature divided patients into subgroups of high-risk and low-risk with significant differences in OS. Their area under the curve (AUC) reached more than 0.70 in 1, 3, and 5 years. In addition, compared with the high-risk subgroup, the low-risk subgroup exhibited a remarkably favorable prognosis and TME score, along with a higher immune infiltration score and lower TIDE score. The signature also significantly related to chemotherapy response, especially in cisplatin, vinorelbine, and paclitaxel. Importantly, the nomogram we constructed had good reliability with the assessment of the calibration chart and consistency index (c-index). GO and KEGG enrichment analysis indicated that co-expression mRNAs of the 5 lncRNAs were mainly focused on RNA splicing, DNA replication, and protein serine/threonine kinase activity. Functional assays demonstrated that SPATA41, one of the five OS-related lncRNAs, regulated invasion, migration, proliferation, and programmed death in vitro. In summary, our 5-lncRNA-based signature has a good performance in predicting immune characteristics and prognosis of LUSC patients.
Collapse
Affiliation(s)
- Sheng Huan
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Department of Anesthesiology, Nanjing Second Hospital, Nanjing, China
| | - Miao Chen
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Department of Surgery, Nanjing Second Hospital, Nanjing, China
| | - Sumin Sun
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanling Zhong
- Department of Anesthesiology, Nanjing Second Hospital, Nanjing, China
| | - Yu Chen
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Yihao Ji
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Department of Critical Medicine, Nanjing Second Hospital, Nanjing, China
| | - Guoping Yin
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Department of Anesthesiology, Nanjing Second Hospital, Nanjing, China
- *Correspondence: Guoping Yin,
| |
Collapse
|
26
|
Zang X, Zhang J, Jiao P, Xue X, Lv Z. Non-Small Cell Lung Cancer Detection and Subtyping by UPLC-HRMS-Based Tissue Metabolomics. J Proteome Res 2022; 21:2011-2022. [PMID: 35856400 DOI: 10.1021/acs.jproteome.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the prevalent histological subtype of lung cancer. In this study, we performed ultraperformance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS)-based metabolic profiling of 227 tissue samples from 79 lung cancer patients with adenocarcinoma (AC) or squamous cell carcinoma (SCC). Orthogonal partial least squares-discriminant analysis (oPLS-DA) analyses showed that AC, SCC, and NSCLC tumors were discriminated from adjacent noncancerous tissue (ANT) and distant noncancerous tissue (DNT) samples with good accuracies (91.3, 100, and 88.3%), sensitivities (85.7, 100, and 83.9%), and specificities (94.3, 100, and 90.7%), using 12, 4, and 7 discriminant metabolites, respectively. The discriminant panel for AC detection included valine, sphingosine, glutamic acid γ-methyl ester, and lysophosphatidylcholine (LPC) (16:0), levels of which in tumor tissues were significantly altered. Valine, sphingosine, LPC (18:1), and leucine derivatives were used for SCC detection. The discrimination between AC and SCC had 96.8% accuracy, 98.2% sensitivity, and 85.7% specificity using a five-metabolite panel, of which valine and creatine had significant differences. The classification models were further verified with external validation sets, showing a promising prospect for NSCLC tissue detection and subtyping.
Collapse
Affiliation(s)
- Xiaoling Zang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Jie Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Peng Jiao
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Xuyan Xue
- College of Physics, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| |
Collapse
|
27
|
Santos ES, Rodriguez E. Treatment Considerations for Patients with Advanced Squamous Cell Carcinoma of the Lung. Clin Lung Cancer 2022; 23:457-466. [DOI: 10.1016/j.cllc.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022]
|
28
|
Chinchilla-Tábora LM, Sayagués JM, González-Morais I, Rodríguez M, Ludeña MD. Prognostic Impact of EGFR Amplification and Visceral Pleural Invasion in Early Stage Pulmonary Squamous Cell Carcinomas Patients after Surgical Resection of Primary Tumor. Cancers (Basel) 2022; 14:cancers14092174. [PMID: 35565304 PMCID: PMC9101408 DOI: 10.3390/cancers14092174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Over the last few decades, an increasing amount of information has been accumulated on biomarkers in non-small cell lung cancer (NSCLC). Despite these advances, most biomarkers have been identified in the adenocarcinoma histological subtype (AC). However, the application of molecular-targeted therapies in the prognosis and treatment of SCC in the clinical setting is very limited, becoming one of the main focus areas in research. Here, we prospectively analyzed the frequency of numerical/structural abnormalities of chromosomes 5, 7, 8, 9, 13 and 22 with FISH in 48 pulmonary SCC patients. From a total of 12 probes, only abnormalities of the 7p12 and 22q12 chromosomal regions were identified as unique genetic variables associated with the prognosis of the disease. The study for these two chromosomal regions was extended to 108 patients with SCC. Overall, chromosome losses were observed more frequently than chromosome gains, i.e., 61% versus 19% of all the chromosome abnormalities detected. The highest levels of genetic amplification were detected for the 5p15.2, 7p12, 8q24 and 22q11 chromosome bands, of which several genes are potentially involved in the pathogenesis of SCC, among others, include the EGFR gene at chromosome 7p12. Patients who displayed EGFR amplification (n = 13; 12%) were mostly older than 65 years (p = 0.07) and exclusively patients in early T-primary tumor stage (pT1−pT2; p = 0.03) with a significantly shortened overall survival (OS) (p ≤ 0.001). Regarding prognosis, the clinical, biological, and histopathologic characteristics of the disease that displayed a significant adverse influence on OS in the univariate analysis included patients older than 65 years (p = 0.02), the presence of lymph node involvement (p = 0.005), metastasis (p = 0.01) and, visceral pleural invasion (VPI) at diagnosis (p = 0.04). EGFR amplification also conferred an adverse impact on patient OS in the whole series (p = 0.02) and especially in patients in early stages (pT1−pT2; p = 0.01). A multivariate analysis of the prognostic factors for OS showed that the most informative combination of independent variables to predict an adverse outcome was the presence of VPI and/or EGFR amplification (p < 0.001). Based on these two variables, a scoring system was built to stratify patients into low- (no adverse features: score 0; n = 69), intermediate- (one adverse feature: score 1; n = 29) and high-risk (two adverse features: score 2; n = 5) groups, with significantly different (p = 0.001) OS rates at 50 months, which were as following: 32%, 28% and 0%, respectively. In the present study, we show that the presence of a high level of 7p12 (EGFR) amplification, exclusively detected in early stage SCC (pT1−pT2), is an independent adverse prognostic factor for OS. The identification of the EGFR gene copy number using FISH techniques may provide a more accurate diagnosis of high-risk populations after the complete resection of the primary tumor. When combined with VPI, three groups of pulmonary SCC were clearly identified that show the extent of the disease. This is of such importance that further prospective studies are necessary in larger series of SCC patients to be classified at the time of diagnosis. This could be achieved with the combined assessment of 7p12 amplification and VPI in primary tumor samples.
Collapse
|
29
|
Gao J, Yang D, Cao R, Huang H, Ma J, Wang Z, Xia J, Pan X. The role of Fbxo5 in the development of human malignant tumors. Am J Cancer Res 2022; 12:1456-1464. [PMID: 35530293 PMCID: PMC9077063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023] Open
Abstract
Fbxo5 (F-Box only protein 5), as a substrate recognition subunit of SCF (SKP1-Cullin1-Fbox) protein, plays a crucial role in various cellular processes through ubiquitination and degradation of multiple proteins. In recent years, many studies have pointed out that Fbxo5 is critically involved in carcinogenesis. Moreover, targeting Fbxo5 could have a therapeutic potential for cancer therapy. This review focuses on the functions of Fbxo5 in various types of human malignancies and its underlying molecular mechanisms. This review might lay the foundation for enhancing future investigation on Fbxo5 functions in cancer development and progression.
Collapse
Affiliation(s)
- Junjie Gao
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Dandan Yang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Ruoxue Cao
- Department of Laboratory, Lianyungang Second People’s HospitalLianyungang 222000, Jiangsu, China
| | - Hua Huang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Xueshan Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| |
Collapse
|
30
|
Feng Z, Yin Y, Liu B, Zheng Y, Shi D, Zhang H, Qin J. Prognostic and Immunological Role of FAT Family Genes in Non-Small Cell Lung Cancer. Cancer Control 2022; 29:10732748221076682. [PMID: 35212236 PMCID: PMC8891876 DOI: 10.1177/10732748221076682] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The FAT atypical cadherin 1/2/3/4 (FAT1/2/3/4) has been linked to the occurrence and development of various cancers. However, the prognostic and immunological role of FAT1/2/3/4 in non-small cell lung cancer (NSCLC) has not been clarified. Methods The association of FAT1/2/3/4 mutations with tumor mutation burden (TMB), tumor immunity in the microenvironment, and response to ICIs in NSCLC was investigated. Whole-exome sequencing data of lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) samples from the Cancer Genome Atlas (TCGA), and an immunotherapy data set comprising mutation and survival data of 75 NSCLC patients were analyzed. Two independent pan-cancer cohorts with large samples were used to validate the prognostic value of FAT1/2/3/4 mutations in immunotherapy. Results A high mutation rate of FAT1/2/3/4 (57.3%, 603/1052) was observed in NSCLC patients. TMB was significantly higher in samples with mutated FAT1/2/3/4 compared to samples with wildtype FAT1/2/3/4 (P < .05). FAT2 mutation was found to be an independent prognostic biomarker in LUAD. FAT1/2/3/4 were aberrantly expressed in LUAD and LUSC, and high FAT2 expression strongly correlated with high PD-L1 levels in LUAD. Moreover, LUAD patients with FAT1 mutations showed significantly high activated dendritic cells infiltration, whereas those with FAT2/3/4 mutations had high infiltration of CD8+ T-cells, M1 macrophages, activated memory CD4+ T-cells, and helper follicular T-cells. It was also observed that FAT1/2/4 mutations were significantly associated with better enhanced objective response and durable clinical benefit, whereas FAT1/2/3 mutations correlated with longer progression-free survival in ICI-treated NSCLC cohort. FAT1/4 mutations were related to better overall survival in pan-cancer patients treated with ICIs. Conclusions FAT family genes are potential prognostic and immunological biomarkers and correlate with response to ICIs in NSCLC.
Collapse
Affiliation(s)
- Zhenxing Feng
- Department of Radiology, 499773Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, China
| | - Yan Yin
- Respiratory and Critical Care Medicine, 499773Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, China
| | - Bin Liu
- Respiratory and Critical Care Medicine, 499773Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, China
| | - Yafang Zheng
- Department of Radiology, 499773Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, China
| | - Dongsheng Shi
- Respiratory and Critical Care Medicine, 499773Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, China
| | - Hong Zhang
- Department of Radiology, 499773Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, China
| | - Jianwen Qin
- Respiratory and Critical Care Medicine, 499773Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, China
| |
Collapse
|
31
|
Yang Z, Tian H, Bie F, Xu J, Zhou Z, Yang J, Li R, Peng Y, Bai G, Tian Y, Chen Y, Liu L, Fan T, Xiao C, Zheng Y, Zheng B, Wang J, Li C, Gao S, He J. ERAP2 Is Associated With Immune Infiltration and Predicts Favorable Prognosis in SqCLC. Front Immunol 2022; 12:788985. [PMID: 34992605 PMCID: PMC8725995 DOI: 10.3389/fimmu.2021.788985] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
Background Immunotherapy has been proven effective among several human cancer types, including Squamous cell lung carcinoma (SqCLC). ERAP2 plays a pivotal role in peptide trimming of many immunological processes. However, the prognostic role of ERAP2 and its relationship with immune cell infiltration in SqCLC remains unclear. Methods The differential expression of ERAP2 was identified via GEO and TCGA databases. We calculated the impact of ERAP2 on clinical prognosis using the Kaplan-Meier plotter. TIMER was applied to evaluate the abundance of immune cells infiltration and immune markers. SqCLC tissue microarrays containing 190 patients were constructed, and we performed immunohistochemical staining for ERAP2, CD8, CD47, CD68, and PD-L1 to validate our findings in public data. Results In the GEO SqCLC database, ERAP2 was upregulated in patients with better survival (p=0.001). ERAP2 expression in SqCLC was significantly lower than that of matched normal samples (p<0.05) based on TCGA SqCLC data. Higher expression of ERAP2 was significantly associated with better survival in SqCLC patients from TCGA (p=0.007), KM-plotter (p=0.017), and our tissue microarrays (TMAs) (p=0.026). In univariate and multivariate Cox analysis of SqCLC TMAs, high ERAP2 expression was identified as an independent protective factor for SqCLC patients (Univariate Cox, HR=0.659, range 0.454-0.956, p<0.05. Multivariate Cox, HR=0.578, range 0.385-0.866, p<0.05). In TIMER, ERAP2 was positively correlated with several immune markers (CD274, p=1.27E-04; CD68, p=5.88E-08) and immune infiltrating cells (CD8+ T cell, p=4.09E-03; NK cell, p=1.00E-04). In our cohort, ERAP2 was significantly correlated with CD8+ tumor-infiltrating lymphocytes (TILs) (p=0.0029), and patients with higher ERAP2 expression had a higher percentage of PD-L1 positive patients (p=0.049) and a higher CD8+ TILs level (p=0.036). Conclusions For the first time, our study demonstrates that higher expression of ERAP2 is tightly associated with the immuno-supportive microenvironment and can predict a favorable prognosis in SqCLC. Meanwhile, ERAP2 may be a promising immunotherapeutic target for patients with SqCLC.
Collapse
Affiliation(s)
- Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fenglong Bie
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junhui Yang
- Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Renda Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yue Peng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanhua Tian
- Department of Thoracic Surgery/Head & Neck Medical Oncology, The University of Texas (UT) MD Anderson Cancer Center, Houston, TX, United States
| | - Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Lei Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Phase II study of afatinib plus pembrolizumab in patients with squamous cell carcinoma of the lung following progression during or after first-line chemotherapy (LUX-Lung-IO). Lung Cancer 2022; 166:107-113. [DOI: 10.1016/j.lungcan.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022]
|
33
|
Zhong X, Yao L, Xu L, Ma Q, Huang G, Yang M, Gao C, Cheng J, Zhou X, Li Q, Guo X. Comprehensive Analysis of Potential Correlation Between Solute Carrier 1A (SLC1A) Family and Lung Adenocarcinoma. Int J Gen Med 2022; 15:2101-2117. [PMID: 35241927 PMCID: PMC8886152 DOI: 10.2147/ijgm.s350986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common dangerous malignant tumor and the leading cause of global cancer incidence and mortality. The Solute Carrier 1A (SLC1A) family play a significant part in cellular biological process, inflammation, and immunity. Specific functions of the SLC1A family in lung cancer are still not systematically described. Objective This study aimed to explore the best biological understanding of SLC1A family in lung cancer. Methods To study the expression and role of the SLC1A family in lung cancer, researchers used a variety of bioinformatics databases and tools. Results Aberrant expression of SLC1A family genes were demonstrated and analyzed the association with gender, tumor grade, cancer stages, and nodal metastasis status. The ectopic expression of SLC1A family genes has prognostic value for LUAD patients. Immune infiltration revealed a significant correlation between SLC1A family genes expression in LUAD. SLC1A family genes were involved in manifold biological processes and have different levels of DNA methylation and genetic alteration. Conclusions These findings suggested that members of the SLC1A family could be a potential target for the development of LUAD therapeutics as well as a reliable indicator of LUAD prognostic value.
Collapse
Affiliation(s)
- Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Lihua Yao
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Lei Xu
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Guangcheng Huang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Miyuan Yang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Chuanli Gao
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Jibing Cheng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xi Zhou
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Qinrong Li
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Correspondence: Xiaolan Guo, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China, Tel +86-817-2282059, Fax +86-817-2282059, Email
| |
Collapse
|
34
|
The Indication of Poor Prognosis by High Expression of ENO1 in Squamous Cell Carcinoma of the Lung. JOURNAL OF ONCOLOGY 2021; 2021:9910962. [PMID: 34504528 PMCID: PMC8423576 DOI: 10.1155/2021/9910962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/27/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022]
Abstract
The purpose of this study is to investigate the significance of alpha-enolase (ENO1) expression in squamous cell carcinoma of the lung (LUSC), its prognostic value, and prospective molecular mechanism. Using multiplatforms data, including in-house immunohistochemistry, in-house real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), in-house microarray, and public high-throughput data, the expression significance and prognostic role of ENO1 in LUSC tissues were analyzed comprehensively. With the combination of all eligible cases, compared with 941 non-LUSC lung tissues, ENO1 was significantly overexpressed in 1163 cases of LUSC (standardized mean difference (SMD) = 1.23, 95% confidence interval (CI) = 0.76–1.70, P < 0.001). ENO1 also displayed a great ability to differentiate LUSC tissues from non-LUSC lung tissues (AUC = 0.8705) with the comprehensive sensitivity being 0.88 [0.83–0.92], and comprehensive specificity being 0.89 [0.84–0.94]). Moreover, in 1860 cases of LUSC with survival information, patients with higher expression of ENO1 had poorer prognosis (hazard ratio (HR) = 1.20, 95% CI = 1.01–1.43, P = 0.043). ENO1 and its related genes mainly participated in the pathways of cell division and proliferation. In conclusion, the upregulation of ENO1 could affect the carcinogenesis and unfavorable outcome of LUSC.
Collapse
|
35
|
Xie A, Xu X, Kuang P, Zhang L, Yu F. TMED3 promotes the progression and development of lung squamous cell carcinoma by regulating EZR. Cell Death Dis 2021; 12:804. [PMID: 34429402 PMCID: PMC8385054 DOI: 10.1038/s41419-021-04086-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
Lung squamous cell carcinoma (LUSC) has a poor clinical prognosis and lacks effective targeted therapy. The transmembrane emp24 trafficking protein 3 (TMED3) belongs to the TMED family, which is responsible for the transport of intracellular proteins. This study was to explore the clinicopathological significance and biological effects of TMED3 in LUSC. Expression of TMED3 in LUSC was detected by immunohistochemical (IHC). The loss-of-function assays were used to investigate the effects of TMED3 on proliferation, apoptosis, cell cycle, and migration of LUSC cells. The influence of TMED3 knockdown on tumor growth in vivo was evaluated by mice xenograft models. In addition, the downstream target of TMED3 was recognized by RNA sequencing and Ingenuity Pathway Analysis (IPA). Moreover, TMED3 was upregulated in LUSC tissue, which was positively correlated with pathological grade. TMED3 knockdown was involved in the regulation of LUSC cell function, such as inhibition of proliferation, reduction of colony formation, induction of apoptosis, and reduction of migration. TMED3 knockdown induced abnormalities in apoptosis-related proteins in LUSC cells. In addition, the inhibition of cell migration by TMED3 knockdown was achieved by regulating EMT. Mechanically, EZR was considered as a potential target for TMED3 to regulate the progress of LUSC. Inhibition of EZR can inhibit the progression of LUSC, and even reduce the promoting effects of TMED3 overexpression on LUSC. In conclusion, TMED3 promoted the progression and development of LUSC by EZR, which may be a novel therapeutic target for LUSC.
Collapse
Affiliation(s)
- An Xie
- Jiangxi Institute of Urology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Xinping Xu
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Peng Kuang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Feng Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
36
|
Voggel S, Abele M, Seitz C, Agaimy A, Vokuhl C, Dirksen U, Bier A, Flaadt T, Classen CF, Claviez A, Schneider DT, Brecht IB. Primary lung carcinoma in children and adolescents - Clinical characteristics and outcome of 12 cases from the German registry for rare paediatric tumours (STEP). Lung Cancer 2021; 160:66-72. [PMID: 34418863 DOI: 10.1016/j.lungcan.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Primary lung carcinomas are very rare paediatric tumours with an incidence of < 2/1.000.000 per year. They are clinically and histologically heterogeneous, and there are no therapeutic guidelines for this age group. Therefore, they represent a challenge for treating physicians. This analysis was performed to expand knowledge on characteristics, treatment and prognosis of primary lung carcinoma in paediatric patients. MATERIAL AND METHODS Between 2009 and 2019, twelve children and adolescents with lung carcinoma were identified in the prospective German registry for rare paediatric tumours (STEP). Data were analysed for histopathological entities, symptoms, diagnostics, therapy, clinical course and outcome. RESULTS Mucoepidermoid carcinoma (MEC) was the most frequent entity (n = 7), followed by adenocarcinoma (n = 2), squamous cell carcinoma (SCC; n = 2) and adenosquamous carcinoma (n = 1). Patients presented with non-specific symptoms and often, they were initially mistreated for airway infections. Patients with MEC showed no metastases and were successfully treated with complete resection. Patients with adenocarcinoma and SCC were older than 16 years of age at diagnosis. While patients with SCC presented with distant metastases and died within one year after diagnosis, those with adenocarcinoma and adenosquamous carcinoma achieved complete remission after multimodal treatment. CONCLUSIONS Presenting symptoms of lung carcinomas are unspecific and therefore, diagnostic evaluation and treatment are difficult. In the absence of carcinogen exposure, etiology seems to differ from adult lung carcinoma. Children diagnosed with MEC face a favourable outcome. In contrast, patients with prognostically unfavourable adenocarcinoma and SCC might benefit from molecular profiling and targeted therapies. International collaboration for the establishment of treatment protocols adjusted for distinct features of primary lung carcinoma in childhood is essential.
Collapse
Affiliation(s)
- Sarah Voggel
- Paediatric Haematology/Oncology, Department of Paediatrics, University Hospital Tuebingen, Germany
| | - Michael Abele
- Paediatric Haematology/Oncology, Department of Paediatrics, University Hospital Tuebingen, Germany
| | - Christian Seitz
- Paediatric Haematology/Oncology, Department of Paediatrics, University Hospital Tuebingen, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Germany
| | - Christian Vokuhl
- Section of Paediatric Pathology, Institute of Pathology, University Hospital Bonn, Germany
| | - Uta Dirksen
- Paediatrics III, West German Cancer Centre Essen, University Hospital Essen, Germany
| | - Andrea Bier
- Department of Pneumology, University Hospital Rostock, Germany
| | - Tim Flaadt
- Paediatric Haematology/Oncology, Department of Paediatrics, University Hospital Tuebingen, Germany
| | - Carl F Classen
- Paediatric Haematology/Oncology/Immunology, Department of Paediatrics, University Hospital Rostock, Germany
| | - Alexander Claviez
- Department of Paediatrics, Schleswig-Holstein Medical University in Kiel, Kiel, Germany
| | | | - Ines B Brecht
- Paediatric Haematology/Oncology, Department of Paediatrics, University Hospital Tuebingen, Germany.
| |
Collapse
|
37
|
Identification of SLC38A7 as a Prognostic Marker and Potential Therapeutic Target of Lung Squamous Cell Carcinoma. Ann Surg 2021; 274:500-507. [PMID: 34171866 DOI: 10.1097/sla.0000000000005001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND No effective molecular targeted therapy has been established for SCC. We conducted a comprehensive study of SCC patients using RNA-sequencing and TCGA dataset to clarify the driver oncogene of SCC. METHOD Forty-six samples of 23 patients were totally analyzed with RNA-sequencing. We then searched for candidate-oncogenes of SCC using the TCGA database. To identify candidate oncogenes, we used the following 2 criteria: (1) the genes of interest were overexpressed in tumor tissues of SCC patients in comparison to normal tissues; and (2) using an integrated mRNA expression and DNA copy number profiling analysis using the TCGA dataset, the DNA copy number of the genes was positively correlated with the mRNA expression. RESULT We identified 188 candidate-oncogenes. Among those, the high expression of SLC38A7 was a strong prognostic marker that was significantly associated with a poor prognosis in terms of both overall survival (OS) and recurrence-free survival in the TCGA dataset (P < 0.05). Additionally, 202 resected SCC specimens were also subjected to an immunohistochemical analysis. Patients with the high expression of SLC38A7 (alternative name is sodium-coupled amino acid transporters 7) protein showed significantly shorter OS in comparison to those with the low expression of SLC38A7 protein [median OS 3.9 years (95% confidence interval, 2.4-6.4 years) vs 2.2 years (95% confidence interval, 1.9-4.1 years); log rank test: P = 0.0021]. CONCLUSION SLC38A7, which is the primary lysosomal glutamine transporter required for the extracellular protein-dependent growth of cancer cells, was identified as a candidate therapeutic target of SCC.
Collapse
|
38
|
Chevallier M, Tsantoulis P, Addeo A, Friedlaender A. Influence of Concurrent Mutations on Overall Survival in EGFR-mutated Non-small Cell Lung Cancer. Cancer Genomics Proteomics 2021; 17:597-603. [PMID: 32859638 DOI: 10.21873/cgp.20216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIM Non-small cell lung cancer (NSCLC) patients with activating somatic mutations in the epidermal growth factor receptor (EGFR) have better outcomes with tyrosine kinase inhibitors (TKIs) than with chemotherapy. However, even with the most effective therapies, not all patients respond. The presence of concurrent pathogenic mutations could play a role in resistance. The objective of this study was to analyze the impact of concurrent mutations in genes other than EGFR on survival outcomes of patients treated with TKIs for EGFR-mutated NSCLC. PATIENTS AND METHODS We conducted a retrospective cohort analysis of patients with advanced NSCLC treated with TKIs in our center between January 2016 and December 2019. Clinical and pathological characteristics, EGFR mutational status, presence of co-occurring genetic alterations, overall (OS) and progression-free survival (PFS) were evaluated. RESULTS Of the 42 patients with advanced NSCLC harboring EGFR mutations who received TKIs in our center, 22 (52%) had no concurrent mutations, 15 (36%) had a non-pathogenic, non-resistance co-mutation, and 5 (12%) had a concurrent resistance mutation. The median OS of the global population was 14.9 months, with a shorter OS in the group harboring a concurrent resistance mutation (7.7 vs. 18.1 months, p=0.002). Concurrent mutations possibly associated with resistance were found in PIK3CA, KRAS and PTEN genes. CONCLUSION Concurrent resistance mutations in genes other than EGFR influenced the outcome of patients with NSCLC, while non-resistance mutations did not alter survival, compared to the absence of co-mutations. This evidence highlights the importance of a careful interpretation of molecular findings. The best treatment options for these patients should be studied in randomized controlled trials.
Collapse
Affiliation(s)
| | - Petros Tsantoulis
- Oncology Department, Geneva University Hospital, Geneva, Switzerland
| | - Alfredo Addeo
- Oncology Department, Geneva University Hospital, Geneva, Switzerland
| | - Alex Friedlaender
- Oncology Department, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
39
|
Chevallier M, Borgeaud M, Addeo A, Friedlaender A. Oncogenic driver mutations in non-small cell lung cancer: Past, present and future. World J Clin Oncol 2021; 12:217-237. [PMID: 33959476 PMCID: PMC8085514 DOI: 10.5306/wjco.v12.i4.217] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Lung cancer, of which non-small lung cancer is the most common subtype, represents the leading cause of cancer related-death worldwide. It is now recognized that a significant proportion of these patients present alterations in certain genes that drive oncogenesis. In recent years, more of these so-called oncogenic drivers have been identified, and a better understanding of their biology has allowed the development new targeted agents. This review aims to provide an update about the current landscape of driver mutation in non-small-cell lung cancer. Alterations in Kirsten rat sarcoma, epidermal growth factor receptor, MET, anaplastic lymphoma kinase, c-ROS oncogene 1, v-raf murine sarcoma viral oncogene homolog B, neurotrophic receptor tyrosine kinase, human epidermal growth factor 2, neuregulin-1 and rearranged during transfection are discussed, as well as agents targeting these alterations. Current standards of treatment as well as promising future strategies are presented. Currently, more than fifteen targeted agents are food and Drug administration-approved for seven oncogenic drivers in non-small-cell lung cancer, highlighting the importance of actively searching for these mutations. Continuous and future efforts made in defining the biology of each of these alterations will help to elucidate their respective resistance mechanisms, and to define the best treatment strategy and therapeutic sequence.
Collapse
Affiliation(s)
- Mathieu Chevallier
- Department of Oncology, University Hospital Geneva, Geneva 1205, Switzerland
| | - Maxime Borgeaud
- Department of Oncology, University Hospital Geneva, Geneva 1205, Switzerland
| | - Alfredo Addeo
- Department of Oncology, University Hospital Geneva, Geneva 1205, Switzerland
| | - Alex Friedlaender
- Department of Oncology, University Hospital Geneva, Geneva 1205, Switzerland
- Department of Oncology, Clinique Générale Beaulieu, Geneva 1206, Switzerland
| |
Collapse
|
40
|
Role of Annexin A1 in Squamous Cell Lung Cancer Progression. DISEASE MARKERS 2021; 2021:5520832. [PMID: 33959206 PMCID: PMC8075699 DOI: 10.1155/2021/5520832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/18/2022]
Abstract
Lung cancer remains the primary cause of cancer-related death worldwide, and its molecular mechanisms of tumor progression need further characterization to improve the clinical management of affected patients. The role of Annexin A1 (ANXA1) in tumorigenesis and cancer progression in general and especially in lung cancer remains to be controversial and seems to be highly tissue specific and inconsistent among tumor initiation, progression, and metastasis. In the current study, we investigated ANXA1 expression in 81 squamous cell lung cancer (SQCLC), 86 pulmonary adenocarcinoma (AC), and 30 small cell lung cancer (SCLC) patient-derived tissue samples and its prognostic impact on patient's survival. Mechanistically, we analyzed the impact of ANXA1 expression on proliferation and migration of SQCLC cell lines using CRISPR-Cas9 and mammalian overexpression vectors. Strong expression of ANXA1 was significantly correlated to longer overall survival only in SQCLC patients (P = 0.019). Overexpression of ANXA1 promoted proliferation in SQCLC cell lines but suppressed their migration, while knockout of ANXA1 promoted cell migration and suppressed proliferation. In conclusion, ANXA1 expression might elongate patients' survival by inhibiting tumor cell migration and subsequent metastasis.
Collapse
|
41
|
Joshi A, Mishra R, Desai S, Chandrani P, Kore H, Sunder R, Hait S, Iyer P, Trivedi V, Choughule A, Noronha V, Joshi A, Patil V, Menon N, Kumar R, Prabhash K, Dutt A. Molecular characterization of lung squamous cell carcinoma tumors reveals therapeutically relevant alterations. Oncotarget 2021; 12:578-588. [PMID: 33796225 PMCID: PMC7984830 DOI: 10.18632/oncotarget.27905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/15/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Unlike lung adenocarcinoma patients, there is no FDA-approved targeted-therapy likely to benefit lung squamous cell carcinoma patients. MATERIALS AND METHODS We performed survival analyses of lung squamous cell carcinoma patients harboring therapeutically relevant alterations identified by whole exome sequencing and mass spectrometry-based validation across 430 lung squamous tumors. RESULTS We report a mean of 11.6 mutations/Mb with a characteristic smoking signature along with mutations in TP53 (65%), CDKN2A (20%), NFE2L2 (20%), FAT1 (15%), KMT2C (15%), LRP1B (15%), FGFR1 (14%), PTEN (10%) and PREX2 (5%) among lung squamous cell carcinoma patients of Indian descent. In addition, therapeutically relevant EGFR mutations occur in 5.8% patients, significantly higher than as reported among Caucasians. In overall, our data suggests 13.5% lung squamous patients harboring druggable mutations have lower median overall survival, and 19% patients with a mutation in at least one gene, known to be associated with cancer, result in significantly shorter median overall survival compared to those without mutations. CONCLUSIONS We present the first comprehensive landscape of genetic alterations underlying Indian lung squamous cell carcinoma patients and identify EGFR, PIK3CA, KRAS and FGFR1 as potentially important therapeutic and prognostic target.
Collapse
Affiliation(s)
- Asim Joshi
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Rohit Mishra
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
| | - Sanket Desai
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Pratik Chandrani
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
- 5Centre for Computational Biology, Bioinformatics and Crosstalk Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
| | - Hitesh Kore
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
| | - Roma Sunder
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
| | - Supriya Hait
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Prajish Iyer
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Vaishakhi Trivedi
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Anuradha Choughule
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Vanita Noronha
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Amit Joshi
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Vijay Patil
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Nandini Menon
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Rajiv Kumar
- 3Department of Pathology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
| | - Kumar Prabhash
- 2Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai, Maharashtra 400012, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
- Kumar Prabhash, email:
| | - Amit Dutt
- 1Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
- 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 410210, India
- Correspondence to: Amit Dutt, email:
| |
Collapse
|
42
|
Kim ES, Kish JK, Cseh A, Moehring B, Tang W, Terlizzi E, Subramanian J. Second-line Afatinib or Chemotherapy Following Immunochemotherapy for the Treatment of Metastatic, Squamous Cell Carcinoma of the Lung: Real-world Effectiveness and Safety From a Multisite Retrospective Chart Review in the USA. Clin Lung Cancer 2021; 22:292-300.e1. [PMID: 33745863 DOI: 10.1016/j.cllc.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND The ErbB family blocker, afatinib, is approved for patients with squamous cell carcinoma (SqCC) of the lung following platinum-doublet chemotherapy but has not been explored following immunochemotherapy. Here, we assessed the characteristics and outcomes of patients with SqCC of the lung who received second-line afatinib or chemotherapy after first-line pembrolizumab plus chemotherapy in a "real-world" setting. METHODS In this retrospective, multisite cohort study, community oncologists identified eligible patients and extracted data from electronic health records. Primary outcome measures were patient demographics and clinical characteristics, time on treatment, and incidence of severe immune-related adverse events (irAEs). RESULTS Two hundred patients were included: 99 received second-line afatinib and 101 received second-line chemotherapy. Median age was 68 and 66 years, respectively; 35% and 3% of patients had mixed histology tumors, and 39% and 5% of tumors were epidermal growth factor receptor (EGFR) mutation-positive (EGFRm+). Median time on treatment was 7.3 months with afatinib (mixed histology/SqCC tumors: 8.1/5.8 months; EGFRm+/EGFRm- tumors: 7.4/5.9 months) and 4.2 months with chemotherapy. Grade 3/4 irAEs were observed in 6 patients in the afatinib cohort (all had a prior grade 3/4 irAE during first-line therapy) and no patients in the chemotherapy cohort. The most common adverse drug reactions with afatinib were diarrhea (26%), rash (6%), stomatitis, fatigue, and nausea (5% each). CONCLUSION Encouraging time on treatment, and absence of newly diagnosed irAEs, indicate that afatinib is a treatment option following immunochemotherapy in patients with SqCC of the lung, and is currently the only approved oral agent in this setting.
Collapse
Affiliation(s)
- Edward S Kim
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA.
| | | | - Agnieszka Cseh
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | | | - Wenbo Tang
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | | | - Janakiraman Subramanian
- Division of Oncology, Saint Luke's Cancer Institute, Kansas City, MO, USA; Center for Precision Oncology, Saint Luke's Cancer Institute, Kansas City, MO, USA
| |
Collapse
|
43
|
Xu FZ, Zhang YB. Correlation analysis between serum neuron-specific enolase and the detection of gene mutations in lung adenocarcinoma. J Thorac Dis 2021; 13:552-561. [PMID: 33717528 PMCID: PMC7947504 DOI: 10.21037/jtd-20-1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Lung cancer is a chronic, progressive and malignant disease associated with ever-growing incidence and mortality. Targeted therapy plays an important role in the clinical treatment of lung cancer. Besides, neuron-specific enolase (NSE), an intracellular enzyme, is highly correlated with the targeted treatment outcome in patients with non-small cell lung cancer (NSCLC). The present study aimed to explore the correlation of NSE with the detection of gene mutations. Methods It is a case-control study. From June 2017 to October 2019, the newly diagnosed patients with lung adenocarcinoma were enrolled from the First Affiliated Hospital of Anhui Medical University. Next-generation sequencing (NGS) was conducted in these patients. Kruskal-Wallis test was used to calculate the difference in NSE levels between mutant and non-mutant group and the differences were compared between blood and tissue samples. Results Compared with patients with no gene mutation (15.4±7.8 mmol/L), the NSE levels in patients with gene mutations were remarkably increased in blood sample group (22.2±12.9 mmol/L) (P<0.05). Besides, the linear regression model was applied for analysis which further emphasized the close relationship between them. The area under the ROC curve (AUC) of NSE was 0.7300 [95% confidence interval (CI): 0.6059-0.8541] and optimal threshold was 18.5650 U/mL with a sensitivity of 87.50% and a specificity of 52.08%. In addition, NSE levels increased in blood sample group, suggesting that the occurrence of polygenic mutation with dismal prognosis, but no correlation was detected in tissue sample group. Conclusions This study elucidates the functional role of NSE, and findings in this study notably increase the gene detection efficiency for lung adenocarcinoma.
Collapse
Affiliation(s)
- Fang-Zhou Xu
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan-Bei Zhang
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
44
|
Yuan M, Yu C, Chen X, Wu Y. Investigation on Potential Correlation Between Small Nuclear Ribonucleoprotein Polypeptide A and Lung Cancer. Front Genet 2021; 11:610704. [PMID: 33552128 PMCID: PMC7859448 DOI: 10.3389/fgene.2020.610704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
SNRPA (small nuclear ribonucleoprotein polypeptide A) gene is essential for the pre-mRNA splicing process. Using the available datasets of TCGA or GEO, we aimed at exploring the potential association between the SNRPA gene and lung cancer by several online tools (such as GEIPA2, MEXPRESS, Oncomine) and bioinformatics analysis software (R or GSEA). SNRPA was highly expressed in the tissues of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma tissue (LUSC), compared with control tissues. The high SNRPA expression was associated with a poor survival prognosis of LUAD cases, while the genetic alteration within SNRPA was linked to the overall survival prognosis of LUSC cases. There was a potential correlation between promoter methylation and the expression of SNRPA for LUAD. Compared with normal tissues, we observed a higher phosphorylation level at the S115 site of SNRPA protein (NP_004587.1) (p = 0.002) in the primary LUAD tissues. The potential ATR kinase of the S115 site was predicted. Besides, SNRPA expression in lung cancer was negatively correlated with the infiltration level of M2 macrophage but positively correlated with that of Follicular B helper T cells, in both LUAD and LUSC. The enrichment analysis of SNRPA-correlated genes showed that cell cycle and ubiquitin mechanism-related issues were mainly observed for LUAD; however, RNA splicing-related cellular issues were mainly for LUSC. In summary, the SNRPA gene was identified as a potential prognosis biomarker of lung cancer, especially lung adenocarcinoma, which sheds new light on the association between the spliceosomal complex component and tumorigenesis.
Collapse
Affiliation(s)
- Maoxi Yuan
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Chunmei Yu
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Xin Chen
- Department of Thoracic Surgery, The People's Hospital of Feixian County, Linyi, China
| | - Yubing Wu
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| |
Collapse
|
45
|
Chang YS, Tu SJ, Chen YC, Liu TY, Lee YT, Yen JC, Fang HY, Chang JG. Mutation profile of non-small cell lung cancer revealed by next generation sequencing. Respir Res 2021; 22:3. [PMID: 33407425 PMCID: PMC7789556 DOI: 10.1186/s12931-020-01608-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Precision therapy for lung cancer requires comprehensive genomic analyses. Specific effects of targeted therapies have been reported in Asia populations, including Taiwanese, but genomic studies have rarely been performed in these populations. METHOD We enrolled 72 patients with non-small cell lung cancer, of whom 61 had adenocarcinoma, 10 had squamous cell carcinoma, and 1 had combined adenocarcinoma and squamous cell carcinoma. Whole-exome or targeted gene sequencing was performed. To identify trunk mutations, we performed whole-exome sequencing in two tumor regions in four patients. RESULTS Nineteen known driver mutations in EGFR, PIK3CA, KRAS, CTNNB1, and MET were identified in 34 of the 72 tumors evaluated (47.22%). A comparison with the Cancer Genome Atlas dataset showed that EGFR was mutated at a much higher frequency in our cohort than in Caucasians, whereas KRAS and TP53 mutations were found in only 5.56% and 25% of our Taiwanese patients, respectively. We also identified new mutations in ARID1A, ARID2, CDK12, CHEK2, GNAS, H3F3A, KDM6A, KMT2C, NOTCH1, RB1, RBM10, RUNX1, SETD2, SF3B1, SMARCA4, THRAP3, TP53, and ZMYM2. Moreover, all ClinVar pathogenic variants were trunk mutations present in two regions of a tumor. RNA sequencing revealed that the trunk or branch genes were expressed at similar levels among different tumor regions. CONCLUSIONS We identified novel variants potentially associated with lung cancer tumorigenesis. The specific mutation pattern in Taiwanese patients with non-small cell lung cancer may influence targeted therapies.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Siang-Jyun Tu
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chia Chen
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Yuan Liu
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Ting Lee
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan
| | - Ju-Chen Yen
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan
| | - Hsin-Yuan Fang
- Department of Thoracic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan. .,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan. .,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan. .,School of Medicine, China Medical University, Taichung, Taiwan. .,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
46
|
Imyanitov EN, Iyevleva AG, Levchenko EV. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit Rev Oncol Hematol 2020; 157:103194. [PMID: 33316418 DOI: 10.1016/j.critrevonc.2020.103194] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular testing has become a mandatory component of the non-small cell lung cancer (NSCLC) management. The detection of EGFR, BRAF and MET mutations as well as the analysis of ALK, ROS1, RET and NTRK translocations have already been incorporated in the NSCLC diagnostic standards, and the inhibitors of these kinases are in routine clinical use. There are emerging biomarkers, e.g., KRAS G12C substitutions and HER2 activating alterations, which are likely to enter NSCLC guidelines upon the approval of the corresponding drugs. In addition to genetic examination, NSCLCs are usually subjected to the analysis of PD-L1 protein expression in order to direct the use of immune checkpoint inhibitors. Comprehensive NSCLC testing for multiple predictive markers requires the analysis of distinct biological molecules (DNA, RNA, proteins) and, therefore, the involvement of different analytical platforms (PCR, DNA sequencing, immunohistochemistry, FISH). There are ongoing efforts aimed at the integration of multiple NSCLC molecular assays into a single diagnostic pipeline.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia; Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 195067, Russia.
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia
| | - Evgeny V Levchenko
- Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 195067, Russia; Department of Thoracic Oncology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
| |
Collapse
|
47
|
Abstract
Lung cancer is the leading cause of cancer mortality. It is classified into different histologic subtypes, including adenocarcinoma, squamous carcinoma, and large cell carcinoma (commonly referred as non-small cell lung cancer) and small cell lung cancer. Comprehensive molecular characterization of lung cancer has expanded our understanding of the cellular origins and molecular pathways affected in each of these subtypes. Many of these genetic alterations represent potential therapeutic targets for which drugs are constantly under development. This article discusses the molecular characteristics of the main lung cancer subtypes and discusses the current guidelines and novel targeted therapies, including checkpoint immunotherapy.
Collapse
Affiliation(s)
- Roberto Ruiz-Cordero
- Department of Pathology, University of California San Francisco, 1825 4th Street Room L2181A, San Francisco, CA 94158, USA.
| | - Walter Patrick Devine
- Department of Pathology, University of California San Francisco, 1600 Divisadero Street Room B-620, San Francisco, CA 94115, USA
| |
Collapse
|
48
|
Bilguun EO, Kaira K, Kawabata-Iwakawa R, Rokudai S, Shimizu K, Yokobori T, Oyama T, Shirabe K, Nishiyama M. Distinctive roles of syntaxin binding protein 4 and its action target, TP63, in lung squamous cell carcinoma: a theranostic study for the precision medicine. BMC Cancer 2020; 20:935. [PMID: 32993587 PMCID: PMC7526255 DOI: 10.1186/s12885-020-07448-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Lung squamous cell carcinoma (LSCC) remains a challenging disease to treat, and further improvements in prognosis are dependent upon the identification of LSCC-specific therapeutic biomarkers and/or targets. We previously found that Syntaxin Binding Protein 4 (STXBP4) plays a crucial role in lesion growth and, therefore, clinical outcomes in LSCC patients through regulation of tumor protein p63 (TP63) ubiquitination. Methods To clarify the impact of STXBP4 and TP63 for LSCC therapeutics, we assessed relevance of these proteins to outcome of 144 LSCC patients and examined whether its action pathway is distinct from those of currently used drugs in in vitro experiments including RNA-seq analysis through comparison with the other putative exploratory targets and/or markers. Results Kaplan–Meier analysis revealed that, along with vascular endothelial growth factor receptor 2 (VEGFR2), STXBP4 expression signified a worse prognosis in LSCC patients, both in terms of overall survival (OS, p = 0.002) and disease-free survival (DFS, p = 0.041). These prognostic impacts of STXBP4 were confirmed in univariate Cox regression analysis, but not in the multivariate analysis. Whereas, TP63 (ΔNp63) closely related to OS (p = 0.013), and shown to be an independent prognostic factor for poor OS in the multivariate analysis (p = 0.0324). The action pathway of STXBP4 on suppression of TP63 (ΔNp63) was unique: Ingenuity pathway analysis using the knowledge database and our RNA-seq analysis in human LSCC cell lines indicated that 35 pathways were activated or inactivated in association with STXBP4, but the action pathway of STXBP4 was distinct from those of other current drug targets: STXBP4, TP63 and KDR (VEGFR2 gene) formed a cluster independent from other target genes of tumor protein p53 (TP53), tubulin beta 3 (TUBB3), stathmin 1 (STMN1) and cluster of differentiation 274 (CD274: programmed cell death 1 ligand 1, PD-L1). STXBP4 itself appeared not to be a potent predictive marker of individual drug response, but we found that TP63, main action target of STXBP4, might be involved in drug resistance mechanisms of LSCC. Conclusion STXBP4 and the action target, TP63, could afford a key to the development of precision medicine for LSCC patients.
Collapse
Affiliation(s)
- Erkhem-Ochir Bilguun
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-9-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, 3-9-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-City, Saitama, 350-1298, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-9-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Susumu Rokudai
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, 3-9-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kimihiro Shimizu
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-9-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Surgery, Division of General Thoracic Surgery, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-9-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, 3-9-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-9-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Nishiyama
- Gunma University, 3-9-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan. .,Higashi Sapporo Hospital, 7-35, 3-3 Higashi-Sapporo, Shiroishi-ku, Sapporo, 003-8585, Japan.
| |
Collapse
|
49
|
Santos ES, Hart L. Advanced Squamous Cell Carcinoma of the Lung: Current Treatment Approaches and the Role of Afatinib. Onco Targets Ther 2020; 13:9305-9321. [PMID: 33061419 PMCID: PMC7519820 DOI: 10.2147/ott.s250446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
Options for the treatment of squamous cell lung carcinoma expanded in recent years with the introduction of the immune checkpoint inhibitors into routine clinical practice in both the first- and second-line settings but are still limited. As a result, pembrolizumab, given either alone or in combination with platinum-based chemotherapy, is now a standard first-line treatment for squamous cell lung cancer. However, few options exist once patients have progressed on immune checkpoint inhibitors and chemotherapy. In this setting, the irreversible ErbB family blocker, afatinib, has a potential role as second or subsequent therapy for some patients. The Phase III LUX-Lung 8 study demonstrated that afatinib significantly prolonged progression-free and overall survival compared with erlotinib in patients with squamous cell lung carcinoma. Notably, retrospective, ad-hoc biomarker analyses of a subset of patients from LUX-Lung 8 suggested that patients with ErbB family mutations derived particular benefit from afatinib, especially those with ErbB2 (HER2) mutations. Afatinib has a manageable and predictable safety profile, and adverse events can be managed with the use of a tolerability-guided dose modification protocol. Until more data are available, afatinib could be considered as a potential second-line treatment option for patients who have progressed on combined pembrolizumab and platinum-based chemotherapy and are ineligible for more established second-line options, or as a third-line option in patients who have received first-line immunotherapy, and second-line chemotherapy or chemotherapy and antiangiogenesis therapy. However, further data are required to support the use of afatinib following immunotherapy. Given that treatment options are limited in both of these settings, investigating an agent with an entirely new mechanism of action is warranted. If available, molecular analysis to identify ErbB family mutations or the use of proteomic profiling could help to further isolate patients who are likely to derive the most benefit from afatinib.
Collapse
Affiliation(s)
- Edgardo S Santos
- Florida Precision Oncology/A Division of 21st Century Oncology, Florida Atlantic University, Aventura, FL, USA
| | - Lowell Hart
- Drug Development Unit, Florida Cancer Specialists, Fort Myers, FL, USA.,Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
50
|
Chaperone-Mediated Autophagy Markers LAMP2A and HSC70 Are Independent Adverse Prognostic Markers in Primary Resected Squamous Cell Carcinomas of the Lung. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8506572. [PMID: 33029283 PMCID: PMC7527932 DOI: 10.1155/2020/8506572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
LAMP2A and HSC70 are crucial players in chaperone-mediated autophagy (CMA), a targeted, lysosome-dependent protein degradation pathway. Elevated LAMP2A levels, indicative of increased CMA activity, are observed in several malignancies, and CMA downregulation may be exploited therapeutically. We evaluated the impact of LAMP2A and HSC70 in pulmonary squamous cell carcinomas (pSQCC). Antibodies were validated by knockdown and overexpression experiments using three different cell lines. Expression levels in tissue were analyzed by immunohistochemistry in a cohort of 336 consecutive pSQCC using tissue microarrays. There was no significant correlation between the two markers among each other and no association with pathological parameters (TNM categories, grading). However, both high LAMP2A and HSC70 expression were associated with worse outcome, including overall survival (OS; p = 0.012 and p = 0.001) and disease free survival (DFS; p = 0.049 and p = 0.036). In multivariate analysis, both markers and a combination of them were independent adverse prognostic factors for OS (LAMP2Ahigh: HR = 2.059; p < 0.001; HSC70high: HR = 1.987; p < 0.001; LAMP2Ahigh/HSC70high: HR = 1.529; p < 0.001) and DFS (LAMP2Ahigh: HR = 1.709; p = 0.004; HSC70high: HR = 1.484; p = 0.027; LAMP2Ahigh/HSC70high: HR = 1.342, p < 0.001). The negative prognostic impact of high LAMP2A and HSC70 and their variable expression in pSQCC may justify the use of these proteins as potential biomarkers for future CMA-inhibiting therapies.
Collapse
|